Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.724
Filter
1.
PLoS Biol ; 22(5): e3002628, 2024 May.
Article in English | MEDLINE | ID: mdl-38814940

ABSTRACT

The peptidoglycan (PG) layer is a critical component of the bacterial cell wall and serves as an important target for antibiotics in both gram-negative and gram-positive bacteria. The hydrolysis of septal PG (sPG) is a crucial step of bacterial cell division, facilitated by FtsEX through an amidase activation system. In this study, we present the cryo-EM structures of Escherichia coli FtsEX and FtsEX-EnvC in the ATP-bound state at resolutions of 3.05 Å and 3.11 Å, respectively. Our PG degradation assays in E. coli reveal that the ATP-bound conformation of FtsEX activates sPG hydrolysis of EnvC-AmiB, whereas EnvC-AmiB alone exhibits autoinhibition. Structural analyses indicate that ATP binding induces conformational changes in FtsEX-EnvC, leading to significant differences from the apo state. Furthermore, PG degradation assays of AmiB mutants confirm that the regulation of AmiB by FtsEX-EnvC is achieved through the interaction between EnvC-AmiB. These findings not only provide structural insight into the mechanism of sPG hydrolysis and bacterial cell division, but also have implications for the development of novel therapeutics targeting drug-resistant bacteria.


Subject(s)
Adenosine Triphosphate , Cell Division , Escherichia coli Proteins , Escherichia coli , Peptidoglycan , Peptidoglycan/metabolism , Hydrolysis , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/chemistry , Escherichia coli/metabolism , Escherichia coli/genetics , Adenosine Triphosphate/metabolism , Cryoelectron Microscopy , Cell Wall/metabolism , Protein Conformation , Models, Molecular , N-Acetylmuramoyl-L-alanine Amidase/metabolism , N-Acetylmuramoyl-L-alanine Amidase/genetics , Bacterial Outer Membrane Proteins , ATP-Binding Cassette Transporters , Cystic Fibrosis Transmembrane Conductance Regulator , Lipoproteins , Cell Cycle Proteins
2.
BMC Microbiol ; 24(1): 190, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816687

ABSTRACT

BACKGROUND: Urinary tract infections (UTIs) are common bacterial infections, primarily caused by uropathogenic Escherichia coli (UPEC), leading to significant health issues and economic burden. Although antibiotics have been effective in treating UPEC infections, the rise of antibiotic-resistant strains hinders their efficacy. Hence, identifying novel bacterial targets for new antimicrobial approaches is crucial. Bacterial factors required for maintaining the full virulence of UPEC are the potential target. MepM, an endopeptidase in E. coli, is involved in the biogenesis of peptidoglycan, a major structure of bacterial envelope. Given that the bacterial envelope confronts the hostile host environment during infections, MepM's function could be crucial for UPEC's virulence. This study aims to explore the role of MepM in UPEC pathogenesis. RESULTS: MepM deficiency significantly impacted UPEC's survival in urine and within macrophages. Moreover, the deficiency hindered the bacillary-to-filamentous shape switch which is known for aiding UPEC in evading phagocytosis during infections. Additionally, UPEC motility was downregulated due to MepM deficiency. As a result, the mepM mutant displayed notably reduced fitness in causing UTIs in the mouse model compared to wild-type UPEC. CONCLUSIONS: This study provides the first evidence of the vital role of peptidoglycan endopeptidase MepM in UPEC's full virulence for causing UTIs. MepM's contribution to UPEC pathogenesis may stem from its critical role in maintaining the ability to resist urine- and immune cell-mediated killing, facilitating the morphological switch, and sustaining motility. Thus, MepM is a promising candidate target for novel antimicrobial strategies.


Subject(s)
Escherichia coli Infections , Urinary Tract Infections , Uropathogenic Escherichia coli , Urinary Tract Infections/microbiology , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/pathogenicity , Uropathogenic Escherichia coli/enzymology , Uropathogenic Escherichia coli/drug effects , Animals , Mice , Escherichia coli Infections/microbiology , Virulence , Endopeptidases/genetics , Endopeptidases/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Female , Peptidoglycan/metabolism , Macrophages/microbiology , Macrophages/immunology , Humans , Disease Models, Animal
3.
J Agric Food Chem ; 72(22): 12655-12664, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38775266

ABSTRACT

Using Lactiplantibacillus plantarum as a food-grade carrier to create non-GMO whole-cell biocatalysts is gaining popularity. This work evaluates the immobilization yield of a chitosanase (CsnA, 30 kDa) from Bacillus subtilis and a mannanase (ManB, 40 kDa) from B. licheniformis on the surface of L. plantarum WCFS1 using either a single LysM domain derived from the extracellular transglycosylase Lp_3014 or a double LysM domain derived from the muropeptidase Lp_2162. ManB and CsnA were fused with the LysM domains of Lp_3014 or Lp_2162, produced in Escherichia coli and anchored to the cell surface of L. plantarum. The localization of the recombinant proteins on the bacterial cell surface was successfully confirmed by Western blot and flow cytometry analysis. The highest immobilization yields (44-48%) and activities of mannanase and chitosanase on the displaying cell surface (812 and 508 U/g of dry cell weight, respectively) were obtained when using the double LysM domain of Lp_2162 as an anchor. The presence of manno-oligosaccharides or chito-oligosaccharides in the reaction mixtures containing appropriate substrates and ManB or CsnA-displaying cells was determined by high-performance anion exchange chromatography. This study indicated that non-GMO Lactiplantibacillus chitosanase- and mannanase-displaying cells could be used to produce potentially prebiotic oligosaccharides.


Subject(s)
Bacillus subtilis , Bacterial Proteins , Glycoside Hydrolases , Peptidoglycan , Bacillus subtilis/genetics , Bacillus subtilis/enzymology , Bacillus subtilis/chemistry , Bacillus subtilis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Glycoside Hydrolases/genetics , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , Peptidoglycan/metabolism , Peptidoglycan/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/genetics , Enzymes, Immobilized/metabolism , Protein Domains , Lactobacillus plantarum/genetics , Lactobacillus plantarum/enzymology , Lactobacillus plantarum/metabolism , Lactobacillus plantarum/chemistry , Chitin/metabolism , Chitin/chemistry
4.
Front Cell Infect Microbiol ; 14: 1347716, 2024.
Article in English | MEDLINE | ID: mdl-38716198

ABSTRACT

High-fat diets (HFDs), a prevailing daily dietary style worldwide, induce chronic low-grade inflammation in the central nervous system and peripheral tissues, promoting a variety of diseases including pathologies associated with neuroinflammation. However, the mechanisms linking HFDs to inflammation are not entirely clear. Here, using a Drosophila HFD model, we explored the mechanism of HFD-induced inflammation in remote tissues. We found that HFDs activated the IMD/NFκB immune pathway in the head through remodeling of the commensal gut bacteria. Removal of gut microbiota abolished such HFD-induced remote inflammatory response. Further experiments revealed that HFDs significantly increased the abundance of Acetobacter malorum in the gut, and the re-association of this bacterium was sufficient to elicit inflammatory response in remote tissues. Mechanistically, Acetobacter malorum produced a greater amount of peptidoglycan (PGN), a well-defined microbial molecular pattern that enters the circulation and remotely activates an inflammatory response. Our results thus show that HFDs trigger inflammation mediated by a bacterial molecular pattern that elicits host immune response.


Subject(s)
Diet, High-Fat , Drosophila Proteins , Gastrointestinal Microbiome , Inflammation , NF-kappa B , Signal Transduction , Animals , Acetobacter/metabolism , Diet, High-Fat/adverse effects , Disease Models, Animal , Drosophila melanogaster/microbiology , Drosophila Proteins/metabolism , Inflammation/metabolism , NF-kappa B/metabolism , Peptidoglycan/metabolism
5.
J Immunol ; 212(11): 1791-1806, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38629918

ABSTRACT

RIG-I-like receptors and NOD-like receptors play pivotal roles in recognizing microbe-associated molecular patterns and initiating immune responses. The LGP2 and NOD2 proteins are important members of the RIG-I-like receptor and NOD-like receptor families, recognizing viral RNA and bacterial peptidoglycan (PGN), respectively. However, in some instances bacterial infections can induce LPG2 expression via a mechanism that remains largely unknown. In the current study, we found that LGP2 can compete with NOD2 for PGN binding and inhibit antibacterial immunity by suppressing the NOD2-RIP2 axis. Recombinant CiLGP2 (Ctenopharyngodon idella LGP2) produced using either prokaryotic or eukaryotic expression platform can bind PGN and bacteria in pull-down and ELISA assays. Comparative protein structure models and intermolecular interaction prediction calculations as well as pull-down and colocalization experiments indicated that CiLGP2 binds PGN via its EEK motif with species and structural specificity. EEK deletion abolished PGN binding of CiLGP2, but insertion of the CiLGP2 EEK motif into zebrafish and mouse LGP2 did not confer PGN binding activity. CiLGP2 also facilitates bacterial replication by interacting with CiNOD2 to suppress expression of NOD2-RIP2 pathway genes. Sequence analysis and experimental verification demonstrated that LGP2 having EEK motif that can negatively regulate antibacterial immune function is present in Cyprinidae and Xenocyprididae families. These results show that LGP2 containing EEK motif competes with NOD2 for PGN binding and suppresses antibacterial immunity by inhibiting the NOD2-RIP2 axis, indicating that LGP2 plays a crucial negative role in antibacterial response beyond its classical regulatory function in antiviral immunity.


Subject(s)
Nod2 Signaling Adaptor Protein , Peptidoglycan , Animals , Nod2 Signaling Adaptor Protein/metabolism , Nod2 Signaling Adaptor Protein/immunology , Nod2 Signaling Adaptor Protein/genetics , Peptidoglycan/metabolism , Peptidoglycan/immunology , Fish Proteins/immunology , Fish Proteins/genetics , Fish Proteins/metabolism , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism , Carps/immunology , Mice , Protein Binding , Signal Transduction/immunology , Humans , Amino Acid Motifs , Zebrafish/immunology
6.
Infect Immun ; 92(5): e0000424, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38563734

ABSTRACT

Neisseria gonorrhoeae, a human restricted pathogen, releases inflammatory peptidoglycan (PG) fragments that contribute to the pathophysiology of pelvic inflammatory disease. The genus Neisseria is also home to multiple species of human- or animal-associated Neisseria that form part of the normal microbiota. Here we characterized PG release from the human-associated nonpathogenic species Neisseria lactamica and Neisseria mucosa and animal-associated Neisseria from macaques and wild mice. An N. mucosa strain and an N. lactamica strain were found to release limited amounts of the proinflammatory monomeric PG fragments. However, a single amino acid difference in the PG fragment permease AmpG resulted in increased PG fragment release in a second N. lactamica strain examined. Neisseria isolated from macaques also showed substantial release of PG monomers. The mouse colonizer Neisseria musculi exhibited PG fragment release similar to that seen in N. gonorrhoeae with PG monomers being the predominant fragments released. All the human-associated species were able to stimulate NOD1 and NOD2 responses. N. musculi was a poor inducer of mouse NOD1, but ldcA mutation increased this response. The ability to genetically manipulate N. musculi and examine effects of different PG fragments or differing amounts of PG fragments during mouse colonization will lead to a better understanding of the roles of PG in Neisseria infections. Overall, we found that only some nonpathogenic Neisseria have diminished release of proinflammatory PG fragments, and there are differences even within a species as to types and amounts of PG fragments released.


Subject(s)
Neisseria , Nod1 Signaling Adaptor Protein , Nod2 Signaling Adaptor Protein , Peptidoglycan , Animals , Humans , Mice , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Membrane Transport Proteins , Neisseria/genetics , Neisseria gonorrhoeae/immunology , Neisseria gonorrhoeae/genetics , Neisseria gonorrhoeae/metabolism , Nod1 Signaling Adaptor Protein/metabolism , Nod1 Signaling Adaptor Protein/genetics , Nod2 Signaling Adaptor Protein/metabolism , Nod2 Signaling Adaptor Protein/genetics , Peptidoglycan/metabolism
7.
Nat Commun ; 15(1): 3286, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627398

ABSTRACT

Food availability and usage is a major adaptive force for the successful survival of animals in nature, yet little is known about the specific signals that activate the host digestive system to allow for the consumption of varied foods. Here, by using a food digestion system in C. elegans, we discover that bacterial peptidoglycan (PGN) is a unique food signal that activates animals to digest inedible food. We identified that a glycosylated protein, Bacterial Colonization Factor-1 (BCF-1), in the gut interacts with bacterial PGN, leading to the inhibition of the mitochondrial unfolded protein response (UPRmt) by regulating the release of Neuropeptide-Like Protein (NLP-3). Interestingly, activating UPRmt was found to hinder food digestion, which depends on the innate immune p38 MAPK/PMK-1 pathway. Conversely, inhibiting PMK-1 was able to alleviate digestion defects in bcf-1 mutants. Furthermore, we demonstrate that animals with digestion defects experience reduced natural adaptation capabilities. This study reveals that PGN-BCF-1 interaction acts as "good-food signal" to promote food digestion and animal growth, which facilitates adaptation of the host animals by increasing ability to consume a wide range of foods in their natural environment.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Peptidoglycan/metabolism , Host Adaptation
8.
PLoS Genet ; 20(4): e1011234, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38598601

ABSTRACT

Peptidoglycan (PG) is the main component of the bacterial cell wall; it maintains cell shape while protecting the cell from internal osmotic pressure and external environmental challenges. PG synthesis is essential for bacterial growth and survival, and a series of PG modifications are required to allow expansion of the sacculus. Endopeptidases (EPs), for example, cleave the crosslinks between adjacent PG strands to allow the incorporation of newly synthesized PG. EPs are collectively essential for bacterial growth and must likely be carefully regulated to prevent sacculus degradation and cell death. However, EP regulation mechanisms are poorly understood. Here, we used TnSeq to uncover novel EP regulators in Vibrio cholerae. This screen revealed that the carboxypeptidase DacA1 (PBP5) alleviates EP toxicity. dacA1 is essential for viability on LB medium, and this essentiality was suppressed by EP overexpression, revealing that EP toxicity both mitigates, and is mitigated by, a defect in dacA1. A subsequent suppressor screen to restore viability of ΔdacA1 in LB medium identified hypomorphic mutants in the PG synthesis pathway, as well as mutations that promote EP activation. Our data thus reveal a more complex role of DacA1 in maintaining PG homeostasis than previously assumed.


Subject(s)
Carboxypeptidases , Cell Wall , Endopeptidases , Peptidoglycan , Vibrio cholerae , Peptidoglycan/metabolism , Vibrio cholerae/genetics , Vibrio cholerae/metabolism , Endopeptidases/genetics , Endopeptidases/metabolism , Carboxypeptidases/genetics , Carboxypeptidases/metabolism , Cell Wall/metabolism , Cell Wall/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Epistasis, Genetic , Mutation
9.
Microbiome ; 12(1): 77, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664737

ABSTRACT

BACKGROUND: The deep sea represents the largest marine ecosystem, driving global-scale biogeochemical cycles. Microorganisms are the most abundant biological entities and play a vital role in the cycling of organic matter in such ecosystems. The primary food source for abyssal biota is the sedimentation of particulate organic polymers. However, our knowledge of the specific biopolymers available to deep-sea microbes remains largely incomplete. One crucial rate-limiting step in organic matter cycling is the depolymerization of particulate organic polymers facilitated by extracellular enzymes (EEs). Therefore, the investigation of active EEs and the microbes responsible for their production is a top priority to better understand the key nutrient sources for deep-sea microbes. RESULTS: In this study, we conducted analyses of extracellular enzymatic activities (EEAs), metagenomics, and metatranscriptomics from seawater samples of 50-9305 m from the Mariana Trench. While a diverse array of microbial groups was identified throughout the water column, only a few exhibited high levels of transcriptional activities. Notably, microbial populations actively transcribing EE genes involved in biopolymer processing in the abyssopelagic (4700 m) and hadopelagic zones (9305 m) were primarily associated with the class Actinobacteria. These microbes actively transcribed genes coding for enzymes such as cutinase, laccase, and xyloglucanase which are capable of degrading phytoplankton polysaccharides as well as GH23 peptidoglycan lyases and M23 peptidases which have the capacity to break down peptidoglycan. Consequently, corresponding enzyme activities including glycosidases, esterase, and peptidases can be detected in the deep ocean. Furthermore, cell-specific EEAs increased at 9305 m compared to 4700 m, indicating extracellular enzymes play a more significant role in nutrient cycling in the deeper regions of the Mariana Trench. CONCLUSIONS: Transcriptomic analyses have shed light on the predominant microbial population actively participating in organic matter cycling in the deep-sea environment of the Mariana Trench. The categories of active EEs suggest that the complex phytoplankton polysaccharides (e.g., cutin, lignin, and hemicellulose) and microbial peptidoglycans serve as the primary nutrient sources available to deep-sea microbes. The high cell-specific EEA observed in the hadal zone underscores the robust polymer-degrading capacities of hadal microbes even in the face of the challenging conditions they encounter in this extreme environment. These findings provide valuable new insights into the sources of nutrition, the key microbes, and the EEs crucial for biopolymer degradation in the deep seawater of the Mariana Trench. Video Abstract.


Subject(s)
Bacteria , Metagenomics , Nutrients , Peptidoglycan , Phytoplankton , Polysaccharides , Seawater , Polysaccharides/metabolism , Seawater/microbiology , Phytoplankton/metabolism , Phytoplankton/genetics , Nutrients/metabolism , Peptidoglycan/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Microbiota
10.
PLoS Biol ; 22(4): e3002589, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38683856

ABSTRACT

Peptidoglycan (PG) and most surface glycopolymers and their modifications are built in the cytoplasm on the lipid carrier undecaprenyl phosphate (UndP). These lipid-linked precursors are then flipped across the membrane and polymerized or directly transferred to surface polymers, lipids, or proteins. Despite its essential role in envelope biogenesis, UndP is maintained at low levels in the cytoplasmic membrane. The mechanisms by which bacteria distribute this limited resource among competing pathways is currently unknown. Here, we report that the Bacillus subtilis transcription factor SigM and its membrane-anchored anti-sigma factor respond to UndP levels and prioritize its use for the synthesis of the only essential surface polymer, the cell wall. Antibiotics that target virtually every step in PG synthesis activate SigM-directed gene expression, confounding identification of the signal and the logic of this stress-response pathway. Through systematic analyses, we discovered 2 distinct responses to these antibiotics. Drugs that trap UndP, UndP-linked intermediates, or precursors trigger SigM release from the membrane in <2 min, rapidly activating transcription. By contrasts, antibiotics that inhibited cell wall synthesis without directly affecting UndP induce SigM more slowly. We show that activation in the latter case can be explained by the accumulation of UndP-linked wall teichoic acid precursors that cannot be transferred to the PG due to the block in its synthesis. Furthermore, we report that reduction in UndP synthesis rapidly induces SigM, while increasing UndP production can dampen the SigM response. Finally, we show that SigM becomes essential for viability when the availability of UndP is restricted. Altogether, our data support a model in which the SigM pathway functions to homeostatically control UndP usage. When UndP levels are sufficiently high, the anti-sigma factor complex holds SigM inactive. When levels of UndP are reduced, SigM activates genes that increase flux through the PG synthesis pathway, boost UndP recycling, and liberate the lipid carrier from nonessential surface polymer pathways. Analogous homeostatic pathways that prioritize UndP usage are likely to be common in bacteria.


Subject(s)
Bacillus subtilis , Bacterial Proteins , Cell Wall , Peptidoglycan , Signal Transduction , Cell Wall/metabolism , Bacillus subtilis/metabolism , Bacillus subtilis/genetics , Bacillus subtilis/drug effects , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Peptidoglycan/metabolism , Peptidoglycan/biosynthesis , Polyisoprenyl Phosphates/metabolism , Anti-Bacterial Agents/pharmacology , Gene Expression Regulation, Bacterial , Cell Membrane/metabolism
11.
Elife ; 132024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639995

ABSTRACT

Mechanisms by which Mycobacterium tuberculosis (Mtb) evades pathogen recognition receptor activation during infection may offer insights for the development of improved tuberculosis (TB) vaccines. Whilst Mtb elicits NOD-2 activation through host recognition of its peptidoglycan-derived muramyl dipeptide (MDP), it masks the endogenous NOD-1 ligand through amidation of glutamate at the second position in peptidoglycan side-chains. As the current BCG vaccine is derived from pathogenic mycobacteria, a similar situation prevails. To alleviate this masking ability and to potentially improve efficacy of the BCG vaccine, we used CRISPRi to inhibit expression of the essential enzyme pair, MurT-GatD, implicated in amidation of peptidoglycan side-chains. We demonstrate that depletion of these enzymes results in reduced growth, cell wall defects, increased susceptibility to antibiotics, altered spatial localization of new peptidoglycan and increased NOD-1 expression in macrophages. In cell culture experiments, training of a human monocyte cell line with this recombinant BCG yielded improved control of Mtb growth. In the murine model of TB infection, we demonstrate that depletion of MurT-GatD in BCG, which is expected to unmask the D-glutamate diaminopimelate (iE-DAP) NOD-1 ligand, yields superior prevention of TB disease compared to the standard BCG vaccine. In vitro and in vivo experiments in this study demonstrate the feasibility of gene regulation platforms such as CRISPRi to alter antigen presentation in BCG in a bespoke manner that tunes immunity towards more effective protection against TB disease.


Tuberculosis is the leading cause of death from an infectious disease worldwide, partially due to a lack of access to drug treatments in certain countries where the disease is common. The only available tuberculosis vaccine ­ known as the BCG vaccine ­ is useful for preventing cases in young children, but is ineffective in teenagers and adults. So, there is a need to develop new vaccines that offer better, and longer lasting, durable protection in people of all ages. During an infection, our immune system recognizes markers known as PAMPs on the surface of bacteria, viruses or other disease-causing pathogens. The recognition of PAMPs by the immune system enables the body to distinguish foreign invading organisms from its own cells and tissues, thus triggering a response that fights the infection. If the body encounters the infectious agent again in the future, the immune system is able to quickly recognize and eliminate it before it can cause disease. Vaccines protect us by mimicking the appearance of the pathogen to trigger the first immune response without causing the illness. The BCG vaccine contains live bacteria that are closely related to the bacterium responsible for tuberculosis called Mycobacterium tuberculosis. Both M. tuberculosis and the live bacteria used in the BCG vaccine are able to hide an important PAMP, known as the NOD-1 ligand, from the immune system, making it harder for the body to detect them. The NOD-1 ligand forms part of the bacterial cell wall and modifying the BCG bacterium so it cannot disguise this PAMP may lead to a new, more effective vaccine. To investigate this possibility, Shaku et al. used a gene editing approach to develop a modified version of the BCG bacterium which is unable to hide its NOD-1 ligand when treated with a specific drug. Immune cells trained with the modified BCG vaccine were more effective at controlling the growth of M. tuberculosis than macrophages trained using the original vaccine. Furthermore, mice vaccinated with the modified BCG vaccine were better able to limit M. tuberculosis growth in their lungs than mice that had received the original vaccine. These findings offer a new candidate vaccine in the fight against tuberculosis. Further studies will be needed to modify the vaccine for use in humans. More broadly, this work demonstrates that gene editing can be used to expose a specific PAMP present in a live vaccine. This may help develop more effective vaccines for other diseases in the future.


Subject(s)
BCG Vaccine , Mycobacterium tuberculosis , Peptidoglycan , Tuberculosis , Animals , Peptidoglycan/metabolism , Mice , BCG Vaccine/immunology , Mycobacterium tuberculosis/immunology , Tuberculosis/prevention & control , Tuberculosis/immunology , Tuberculosis/microbiology , Humans , Mice, Inbred C57BL , Macrophages/immunology , Macrophages/microbiology , Macrophages/metabolism , Female , Nod1 Signaling Adaptor Protein/metabolism , Nod1 Signaling Adaptor Protein/genetics , Disease Models, Animal , Bacterial Proteins/metabolism , Bacterial Proteins/genetics
12.
Cell Rep ; 43(4): 114067, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38583150

ABSTRACT

Mitochondrial dysfunction critically contributes to many major human diseases. The impact of specific gut microbial metabolites on mitochondrial functions of animals and the underlying mechanisms remain to be uncovered. Here, we report a profound role of bacterial peptidoglycan muropeptides in promoting mitochondrial functions in multiple mammalian models. Muropeptide addition to human intestinal epithelial cells (IECs) leads to increased oxidative respiration and ATP production and decreased oxidative stress. Strikingly, muropeptide treatment recovers mitochondrial structure and functions and inhibits several pathological phenotypes of fibroblast cells derived from patients with mitochondrial disease. In mice, muropeptides accumulate in mitochondria of IECs and promote small intestinal homeostasis and nutrient absorption by modulating energy metabolism. Muropeptides directly bind to ATP synthase, stabilize the complex, and promote its enzymatic activity in vitro, supporting the hypothesis that muropeptides promote mitochondria homeostasis at least in part by acting as ATP synthase agonists. This study reveals a potential treatment for human mitochondrial diseases.


Subject(s)
Mitochondria , Oxidative Phosphorylation , Animals , Humans , Mitochondria/metabolism , Mitochondria/drug effects , Oxidative Phosphorylation/drug effects , Mice , Oxidative Stress/drug effects , Peptidoglycan/metabolism , Mice, Inbred C57BL , Adenosine Triphosphate/metabolism
13.
Mol Biol Cell ; 35(6): ar79, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38598294

ABSTRACT

The symbiotic relationship between the bioluminescent bacterium Vibrio fischeri and the bobtail squid Euprymna scolopes serves as a valuable system to investigate bacterial growth and peptidoglycan (PG) synthesis within animal tissues. To better understand the growth dynamics of V. fischeri in the crypts of the light-emitting organ of its juvenile host, we showed that, after the daily dawn-triggered expulsion of most of the population, the remaining symbionts rapidly proliferate for ∼6 h. At that point the population enters a period of extremely slow growth that continues throughout the night until the next dawn. Further, we found that PG synthesis by the symbionts decreases as they enter the slow-growing stage. Surprisingly, in contrast to the most mature crypts (i.e., Crypt 1) of juvenile animals, most of the symbiont cells in the least mature crypts (i.e., Crypt 3) were not expelled and, instead, remained in the slow-growing state throughout the day, with almost no cell division. Consistent with this observation, the expression of the gene encoding the PG-remodeling enzyme, L,D-transpeptidase (LdtA), was greatest during the slowly growing stage of Crypt 1 but, in contrast, remained continuously high in Crypt 3. Finally, deletion of the ldtA gene resulted in a symbiont that grew and survived normally in culture, but was increasingly defective in competing against its parent strain in the crypts. This result suggests that remodeling of the PG to generate additional 3-3 linkages contributes to the bacterium's fitness in the symbiosis, possibly in response to stresses encountered during the very slow-growing stage.


Subject(s)
Aliivibrio fischeri , Decapodiformes , Peptidoglycan , Symbiosis , Symbiosis/physiology , Aliivibrio fischeri/physiology , Aliivibrio fischeri/metabolism , Animals , Decapodiformes/microbiology , Decapodiformes/physiology , Peptidoglycan/metabolism , Peptidoglycan/biosynthesis , Bacterial Proteins/metabolism , Bacterial Proteins/genetics
14.
ACS Infect Dis ; 10(5): 1767-1779, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38619138

ABSTRACT

Peptidoglycan synthesis is an underutilized drug target in Mycobacterium tuberculosis (Mtb). Diazabicyclooctanes (DBOs) are a class of broad-spectrum ß-lactamase inhibitors that also inhibit certain peptidoglycan transpeptidases that are important in mycobacterial cell wall synthesis. We evaluated the DBO durlobactam as an inhibitor of BlaC, the Mtb ß-lactamase, and multiple Mtb peptidoglycan transpeptidases (PonA1, LdtMt1, LdtMt2, LdtMt3, and LdtMt5). Timed electrospray ionization mass spectrometry (ESI-MS) captured acyl-enzyme complexes with BlaC and all transpeptidases except LdtMt5. Inhibition kinetics demonstrated durlobactam was a potent and efficient DBO inhibitor of BlaC (KI app 9.2 ± 0.9 µM, k2/K 5600 ± 560 M-1 s-1) and similar to clavulanate (KI app 3.3 ± 0.6 µM, k2/K 8400 ± 840 M-1 s-1); however, durlobactam had a lower turnover number (tn = kcat/kinact) than clavulanate (1 and 8, respectively). KI app values with durlobactam and clavulanate were similar for peptidoglycan transpeptidases, but ESI-MS captured durlobactam complexes at more time points. Molecular docking and simulation demonstrated several productive interactions of durlobactam in the active sites of BlaC, PonA1, and LdtMt2. Antibiotic susceptibility testing was conducted on 11 Mtb isolates with amoxicillin, ceftriaxone, meropenem, imipenem, clavulanate, and durlobactam. Durlobactam had a minimum inhibitory concentration (MIC) range of 0.5-16 µg/mL, similar to the ranges for meropenem (1-32 µg/mL) and imipenem (0.5-64 µg/mL). In ß-lactam + durlobactam combinations (1:1 mass/volume), MICs were lowered 4- to 64-fold for all isolates except one with meropenem-durlobactam. This work supports further exploration of novel ß-lactamase inhibitors that target BlaC and Mtb peptidoglycan transpeptidases.


Subject(s)
Mycobacterium tuberculosis , beta-Lactamase Inhibitors , beta-Lactamases , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , beta-Lactamase Inhibitors/pharmacology , beta-Lactamase Inhibitors/chemistry , beta-Lactamases/metabolism , beta-Lactamases/chemistry , Peptidyl Transferases/antagonists & inhibitors , Peptidyl Transferases/metabolism , Azabicyclo Compounds/pharmacology , Azabicyclo Compounds/chemistry , Microbial Sensitivity Tests , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Molecular Docking Simulation , Peptidoglycan/metabolism , Peptidoglycan/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Kinetics , Aminoacyltransferases
15.
mBio ; 15(4): e0032524, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38426748

ABSTRACT

Gram-negative bacteria have a thin peptidoglycan layer between the cytoplasmic and outer membranes protecting the cell from osmotic challenges. Hydrolases of this structure are needed to cleave bonds to allow the newly synthesized peptidoglycan strands to be inserted by synthases. These enzymes need to be tightly regulated and their activities coordinated to prevent cell lysis. To better understand this process in Escherichia coli, we probed the genetic interactions of mrcA (encodes PBP1A) and mrcB (encodes PBP1B) with genes encoding peptidoglycan amidases and endopeptidases in envelope stress conditions. Our extensive genetic interaction network analysis revealed relatively few combinations of hydrolase gene deletions with reduced fitness in the absence of PBP1A or PBP1B, showing that none of the amidases or endopeptidases is strictly required for the functioning of one of the class A PBPs. This illustrates the robustness of the peptidoglycan growth mechanism. However, we discovered that the fitness of ∆mrcB cells is significantly reduced under high salt stress and in vitro activity assays suggest that this phenotype is caused by a reduced peptidoglycan synthesis activity of PBP1A at high salt concentration.IMPORTANCEEscherichia coli and many other bacteria have a surprisingly high number of peptidoglycan hydrolases. These enzymes function in concert with synthases to facilitate the expansion of the peptidoglycan sacculus under a range of growth and stress conditions. The synthases PBP1A and PBP1B both contribute to peptidoglycan expansion during cell division and growth. Our genetic interaction analysis revealed that these two penicillin-binding proteins (PBPs) do not need specific amidases, endopeptidases, or lytic transglycosylases for function. We show that PBP1A and PBP1B do not work equally well when cells encounter high salt stress and demonstrate that PBP1A alone cannot provide sufficient PG synthesis activity under this condition. These results show how the two class A PBPs and peptidoglycan hydrolases govern cell envelope integrity in E. coli in response to environmental challenges and particularly highlight the importance of PBP1B in maintaining cell fitness under high salt conditions.


Subject(s)
Escherichia coli Proteins , Peptidoglycan Glycosyltransferase , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Peptidoglycan/metabolism , Peptidoglycan Glycosyltransferase/metabolism , Penicillin-Binding Proteins/metabolism , Cell Wall/metabolism , Endopeptidases/genetics , Endopeptidases/metabolism , Amidohydrolases/genetics , Amidohydrolases/metabolism
16.
Methods Mol Biol ; 2778: 159-183, 2024.
Article in English | MEDLINE | ID: mdl-38478278

ABSTRACT

Gram-negative bacteria coordinate the biosynthesis of their different cell envelope components. Growth of the outer membrane (OM) requires the essential ß-barrel assembly machine (BAM), which inserts OM proteins (OMPs) into the OM. The underlying peptidoglycan (PG) sacculus grows by the insertion of nascent glycan chains. We have previously identified interactions between BAM and PG in E. coli and showed that these interactions coordinate OM biogenesis with PG growth. BAM responds to the maturation state of the PG, and this mechanism activates preferentially BAM complexes at sites of active PG synthesis. Here we present protocols to purify soluble Bam proteins and full-length BamABCDE, isolate PG and soluble PG fragments, and study BAM-PG interactions with the isolated components. We also describe the protocol to detect interactions between Bam proteins and PG in cells.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Peptidoglycan/metabolism , Cell Membrane/metabolism , Cell Wall/metabolism , Bacterial Outer Membrane Proteins/metabolism , Protein Folding
17.
Nat Microbiol ; 9(4): 1049-1063, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38480900

ABSTRACT

Bacterial cell division requires recruitment of peptidoglycan (PG) synthases to the division site by the tubulin homologue, FtsZ. Septal PG synthases promote septum growth. FtsZ treadmilling is proposed to drive the processive movement of septal PG synthases and septal constriction in some bacteria; however, the precise mechanisms spatio-temporally regulating PG synthase movement and activity and FtsZ treadmilling are poorly understood. Here using single-molecule imaging of division proteins in the Gram-positive pathogen Staphylococcus aureus, we showed that the septal PG synthase complex FtsW/PBP1 and its putative activator protein, DivIB, move with similar velocity around the division site. Impairing FtsZ treadmilling did not affect FtsW or DivIB velocities or septum constriction rates. Contrarily, PG synthesis inhibition decelerated or stopped directional movement of FtsW and DivIB, and septum constriction. Our findings suggest that a single population of processively moving FtsW/PBP1 associated with DivIB drives cell constriction independently of FtsZ treadmilling in S. aureus.


Subject(s)
Bacterial Proteins , Staphylococcus aureus , Staphylococcus aureus/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Peptidoglycan/metabolism , Constriction , Nitric Oxide Synthase/metabolism
18.
Immunohorizons ; 8(3): 269-280, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38517345

ABSTRACT

Bacillus anthracis peptidoglycan (PGN) is a major component of the bacterial cell wall and a key pathogen-associated molecular pattern contributing to anthrax pathology, including organ dysfunction and coagulopathy. Increases in apoptotic leukocytes are a late-stage feature of anthrax and sepsis, suggesting there is a defect in apoptotic clearance. In this study, we tested the hypothesis that B. anthracis PGN inhibits the capacity of human monocyte-derived macrophages (MΦ) to efferocytose apoptotic cells. Exposure of CD163+CD206+ MΦ to PGN for 24 h impaired efferocytosis in a manner dependent on human serum opsonins but independent of complement component C3. PGN treatment reduced cell surface expression of the proefferocytic signaling receptors MERTK, TYRO3, AXL, integrin αVß5, CD36, and TIM-3, whereas TIM-1, αVß3, CD300b, CD300f, STABILIN-1, and STABILIN-2 were unaffected. ADAM17 is a major membrane-bound protease implicated in mediating efferocytotic receptor cleavage. We found multiple ADAM17-mediated substrates increased in PGN-treated supernatant, suggesting involvement of membrane-bound proteases. ADAM17 inhibitors TAPI-0 and Marimastat prevented TNF release, indicating effective protease inhibition, and modestly increased cell-surface levels of MerTK and TIM-3 but only partially restored efferocytic capacity by PGN-treated MΦ. We conclude that human serum factors are required for optimal recognition of PGN by human MΦ and that B. anthracis PGN inhibits efferocytosis in part by reducing cell surface expression of MERTK and TIM-3.


Subject(s)
Anthrax , Bacillus anthracis , Humans , c-Mer Tyrosine Kinase/metabolism , Peptidoglycan/pharmacology , Peptidoglycan/metabolism , Anthrax/metabolism , Anthrax/pathology , Efferocytosis , Hepatitis A Virus Cellular Receptor 2/metabolism , Macrophages/metabolism , Cell Wall/metabolism , Cell Wall/pathology
19.
Antimicrob Agents Chemother ; 68(5): e0131523, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38517189

ABSTRACT

Chromosomal and transferable AmpC ß-lactamases represent top resistance mechanisms in different gram-negatives, but knowledge regarding the latter, mostly concerning regulation and virulence-related implications, is far from being complete. To fill this gap, we used Klebsiella pneumoniae (KP) and two different plasmid-encoded AmpCs [DHA-1 (AmpR regulator linked, inducible) and CMY-2 (constitutive)] as models to perform a study in which we show that blockade of peptidoglycan recycling through AmpG permease inactivation abolished DHA-1 inducibility but did not affect CMY-2 production and neither did it alter KP pathogenic behavior. Moreover, whereas regular production of both AmpC-type enzymes did not attenuate KP virulence, when blaDHA-1 was expressed in an ampG-defective mutant, Galleria mellonella killing was significantly (but not drastically) attenuated. Spontaneous DHA-1 hyperproducer mutants were readily obtained in vitro, showing slight or insignificant virulence attenuations together with high-level resistance to ß-lactams only mildly affected by basal production (e.g., ceftazidime, ceftolozane/tazobactam). By analyzing diverse DHA-1-harboring clinical KP strains, we demonstrate that the natural selection of these hyperproducers is not exceptional (>10% of the collection), whereas mutational inactivation of the typical AmpC hyperproduction-related gene mpl was the most frequent underlying mechanism. The potential silent dissemination of this kind of strains, for which an important fitness cost-related contention barrier does not seem to exist, is envisaged as a neglected threat for most ß-lactams effectiveness, including recently introduced combinations. Analyzing whether this phenomenon is applicable to other transferable ß-lactamases and species as well as determining the levels of conferred resistance poses an essential topic to be addressed.IMPORTANCEAlthough there is solid knowledge about the regulation of transferable and especially chromosomal AmpC ß-lactamases in Enterobacterales, there are still gaps to fill, mainly related to regulatory mechanisms and virulence interplays of the former. This work addresses them using Klebsiella pneumoniae as model, delving into a barely explored conception: the acquisition of a plasmid-encoded inducible AmpC-type enzyme whose production can be increased through selection of chromosomal mutations, entailing dramatically increased resistance compared to basal expression but minor associated virulence costs. Accordingly, we demonstrate that clinical K. pneumoniae DHA-1 hyperproducer strains are not exceptional. Through this study, we warn for the first time that this phenomenon may be a neglected new threat for ß-lactams effectiveness (including some recently introduced ones) silently spreading in the clinical context, not only in K. pneumoniae but potentially also in other pathogens. These facts must be carefully considered in order to design future resistance-preventive strategies.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Klebsiella pneumoniae , Membrane Transport Proteins , Microbial Sensitivity Tests , Peptidoglycan , Plasmids , beta-Lactamases , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/pathogenicity , Klebsiella pneumoniae/metabolism , Peptidoglycan/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Virulence , beta-Lactamases/genetics , beta-Lactamases/metabolism , Anti-Bacterial Agents/pharmacology , Plasmids/genetics , Animals , Klebsiella Infections/microbiology , Moths/microbiology
20.
Am J Physiol Cell Physiol ; 326(5): C1451-C1461, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38525539

ABSTRACT

Acute pyelonephritis (APN) is most frequently caused by uropathogenic Escherichia coli (UPEC), which ascends from the bladder to the kidneys during a urinary tract infection. Patients with APN have been reported to have reduced renal concentration capacity under challenged conditions, polyuria, and increased aquaporin-2 (AQP2) excretion in the urine. We have recently shown increased AQP2 accumulation in the plasma membrane in cell cultures exposed to E. coli lysates and in the apical plasma membrane of inner medullary collecting ducts in a 5-day APN mouse model. This study aimed to investigate if AQP2 expression in host cells increases UPEC infection efficiency and to identify specific bacterial components that mediate AQP2 plasma membrane insertion. As the transepithelial water permeability in the collecting duct is codetermined by AQP3 and AQP4, we also investigated whether AQP3 and AQP4 localization is altered in the APN mouse model. We show that AQP2 expression does not increase UPEC infection efficiency and that AQP2 was targeted to the plasma membrane in AQP2-expressing cells in response to the two pathogen-associated molecular patterns (PAMPs), lipopolysaccharide and peptidoglycan. In contrast to AQP2, the subcellular localizations of AQP1, AQP3, and AQP4 were unaffected both in lysate-incubated cell cultures and in the APN mouse model. Our finding demonstrated that cellular exposure to lipopolysaccharide and peptidoglycan can trigger the insertion of AQP2 in the plasma membrane revealing a new regulatory pathway for AQP2 plasma membrane translocation, which may potentially be exploited in intervention strategies.NEW & NOTEWORTHY Acute pyelonephritis (APN) is associated with reduced renal concentration capacity and increased aquaporin-2 (AQP2) excretion. Uropathogenic Escherichia coli (UPEC) mediates changes in the subcellular localization of AQP2 and we show that in vitro, these changes could be elicited by two pathogen-associated molecular patterns (PAMPs), namely, lipopolysaccharide and peptidoglycan. UPEC infection was unaltered by AQP2 expression and the other renal AQPs (AQP1, AQP3, and AQP4) were unaltered in APN.


Subject(s)
Aquaporin 2 , Aquaporin 3 , Pyelonephritis , Uropathogenic Escherichia coli , Pyelonephritis/metabolism , Pyelonephritis/microbiology , Pyelonephritis/pathology , Animals , Aquaporin 2/metabolism , Mice , Uropathogenic Escherichia coli/metabolism , Aquaporin 3/metabolism , Aquaporin 3/genetics , Acute Disease , Escherichia coli Infections/metabolism , Escherichia coli Infections/microbiology , Escherichia coli Infections/pathology , Lipopolysaccharides/toxicity , Lipopolysaccharides/pharmacology , Cell Membrane/metabolism , Humans , Aquaporin 4/metabolism , Aquaporin 4/genetics , Peptidoglycan/metabolism , Kidney/metabolism , Kidney/pathology , Mice, Inbred C57BL , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...