Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.085
Filter
1.
Biomolecules ; 14(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38785988

ABSTRACT

Peptides possessing antihypertensive attributes via inhibiting the angiotensin-converting enzyme (ACE) were derived through the enzymatic degradation of Trichiurus lepturus (ribbonfish) using alkaline protease. The resulting mixture underwent filtration using centrifugation, ultrafiltration tubes, and Sephadex G-25 gels. Peptides exhibiting ACE-inhibitory properties and DPPH free-radical-scavenging abilities were isolated and subsequently purified via LC/MS-MS, leading to the identification of over 100 peptide components. In silico screening yielded five ACE inhibitory peptides: FAGDDAPR, QGPIGPR, IFPRNPP, AGFAGDDAPR, and GPTGPAGPR. Among these, IFPRNPP and AGFAGDDAPR were found to be allergenic, while FAGDDAPRR, QGPIGPR, and GPTGPAGP showed good ACE-inhibitory effects. IC50 values for the latter peptides were obtained from HUVEC cells: FAGDDAPRR (IC50 = 262.98 µM), QGPIGPR (IC50 = 81.09 µM), and GPTGPAGP (IC50 = 168.11 µM). Peptide constituents derived from ribbonfish proteins effectively modulated ACE activity, thus underscoring their therapeutic potential. Molecular docking and modeling corroborated these findings, emphasizing the utility of functional foods as a promising avenue for the treatment and prevention of hypertension, with potential ancillary health benefits and applications as substitutes for synthetic drugs.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors , Antihypertensive Agents , Human Umbilical Vein Endothelial Cells , Peptides , Peptidyl-Dipeptidase A , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/chemistry , Angiotensin-Converting Enzyme Inhibitors/isolation & purification , Antihypertensive Agents/pharmacology , Antihypertensive Agents/chemistry , Antihypertensive Agents/isolation & purification , Animals , Humans , Peptides/chemistry , Peptides/pharmacology , Peptides/isolation & purification , Human Umbilical Vein Endothelial Cells/drug effects , Peptidyl-Dipeptidase A/metabolism , Peptidyl-Dipeptidase A/chemistry , Molecular Docking Simulation , Perciformes/metabolism
2.
Food Res Int ; 187: 114416, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763666

ABSTRACT

An amaranth beverage (AB) was subjected to a simulated process of dynamic gastrointestinal digestion DIDGI®, a simple two-compartment in vitro dynamic gastrointestinal digestion system. The structural changes caused to the proteins during digestion and the digesta inhibitory capacity of the angiotensin converting enzyme (ACE) were investigated. In gastric compartment the degree of hydrolysis (DH) was 14.7 ± 1.5 % and in the intestinal compartment, proteins were digests in a greater extent (DH = 60.6 ± 8.4 %). Protein aggregation was detected during the gastric phase. The final digesta obtained both at the gastric and intestinal level, showed ACE inhibitory capacity (IC50 80 ± 10 and 140 ± 20 µg/mL, respectively). Purified fractions from these digesta showed even greater inhibitory capacity, being eluted 2 (E2) the most active fraction (IC50 60 ± 10 µg/mL). Twenty-six peptide sequences were identified. Six of them, with potential antihypertensive capacity, belong to A. hypochondriacus, 3 agglutinins and 3 encrypted sequences in the 11S globulin. Results obtained provide new and useful information on peptides released from the digestion of an amaranth based beverage and its ACE bioactivity.


Subject(s)
Amaranthus , Angiotensin-Converting Enzyme Inhibitors , Antihypertensive Agents , Beverages , Digestion , Amaranthus/chemistry , Antihypertensive Agents/chemistry , Antihypertensive Agents/pharmacology , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Hydrolysis , Peptidyl-Dipeptidase A/metabolism
3.
J Agric Food Chem ; 72(19): 10909-10922, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38689562

ABSTRACT

Pumpkin (Cucurbita moschata) seed meal (PSM), the major byproduct of pumpkin seed oil industry, was used to prepare angiotensin-converting enzyme (ACE) inhibitory and angiotensin-converting enzyme 2 (ACE2) upregulating peptides. These peptides were isolated and purified from the PSM hydrolysate prepared using Neutrase 5.0 BG by ultrafiltration, Sephadex G-15 column chromatography, and reversed-phase high-performance liquid chromatography. Two peptides with significant ACE inhibition activity were identified as SNHANQLDFHP and PVQVLASAYR with IC50 values of 172.07 and 90.69 µM, respectively. The C-terminal tripeptides of the two peptides contained Pro, Phe, and Tyr, respectively, and PVQVLASAYR also had Val in its N-terminal tripeptide, which was a favorable structure for ACE inhibition. Molecular docking results declared that the two peptides could interact with ACE through hydrogen bonds and hydrophobic interactions. Furthermore, the two peptides performed protective function on EA.hy926 cells by decreasing the secretion of endothelin-1, increasing the release of nitric oxide, and regulating the ACE2 activity. In vitro simulated gastrointestinal digestion showed the two peptides exhibited good stability against gastrointestinal enzyme digestion. In conclusion, PSM is a promising material for preparing antihypertensive peptides.


Subject(s)
Angiotensin-Converting Enzyme 2 , Angiotensin-Converting Enzyme Inhibitors , Cucurbita , Molecular Docking Simulation , Peptides , Peptidyl-Dipeptidase A , Seeds , Angiotensin-Converting Enzyme Inhibitors/chemistry , Angiotensin-Converting Enzyme Inhibitors/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Cucurbita/chemistry , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Seeds/chemistry , Humans , Peptides/chemistry , Peptides/pharmacology , Peptides/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Protein Hydrolysates/chemistry , Protein Hydrolysates/metabolism , Up-Regulation/drug effects , Cell Line , Plant Proteins/chemistry , Plant Proteins/metabolism
4.
Food Funct ; 15(10): 5527-5538, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38700280

ABSTRACT

The salty oligopeptides from Stropharia rugosoannulata have been proven to be potential ACE inhibitors. To investigate the ACE receptor binding properties and interaction mechanisms of salty oligopeptides, the molecular interaction, dynamics simulation, and antihypertensive evaluation cross-validation strategy were employed to reveal the oligopeptides' binding reactions and modes with the ACE receptor. Single oligopeptide (ESPERPFL, KSWDDFFTR) had exothermic and specific binding reactions with the ACE receptor, driven by hydrogen bonds and van der Waals forces. The coexistence of the multiple oligopeptide molecules did not produce the apparent ACE receptor competition binding reactions. The molecular dynamics simulation verified that the two oligopeptides disturbed the ACE receptor's different residue regions. Both oligopeptides could form stable complexes with the ACE receptor. Based on the classification of 50 oligopeptides' binding modes, ESPERPFL and KSWDDFFTR belonged to different classes, and their receptor binding modes and sites complemented, resulting in a potential synergistic effect on ACE inhibition. The antihypertensive effect of KSWDDFFTR and its distribution in the body were evaluated using SHR rats orally and ICR mice by tail vein injection, and KSWDDFFTR had antihypertensive effects within 8 h. The study provides a theoretical basis for understanding salty oligopeptides' ACE receptor binding mechanism and their antihypertensive effects.


Subject(s)
Antihypertensive Agents , Molecular Dynamics Simulation , Oligopeptides , Animals , Oligopeptides/pharmacology , Oligopeptides/chemistry , Oligopeptides/metabolism , Antihypertensive Agents/pharmacology , Antihypertensive Agents/chemistry , Rats , Male , Peptidyl-Dipeptidase A/metabolism , Peptidyl-Dipeptidase A/chemistry , Agaricales/chemistry , Agaricales/metabolism , Mice , Hypertension/drug therapy , Hypertension/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/chemistry , Angiotensin-Converting Enzyme Inhibitors/metabolism , Protein Binding , Blood Pressure/drug effects , Rats, Inbred SHR
5.
World J Gastroenterol ; 30(18): 2391-2396, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38764773

ABSTRACT

This editorial contains comments on the article by Zhao et al in print in the World Journal of Gastroenterology. The mechanisms responsible for hepatic fibrosis are also involved in cancerogenesis. Here, we recapitulated the complexity of the renin-angiotensin system, discussed the role of hepatic stellate cell (HSC) autophagy in liver fibrogenesis, and analyzed the possible implications in the development of hepatocarcinoma (HCC). Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers definitively contribute to reducing hepatic fibrogenesis, whereas their involvement in HCC is more evident in experimental conditions than in human studies. Angiotensin-converting enzyme 2 (ACE2), and its product Angiotensin (Ang) 1-7, not only regulate HSC autophagy and liver fibrosis, but they also represent potential targets for unexplored applications in the field of HCC. Finally, ACE2 overexpression inhibits HSC autophagy through the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway. In this case, Ang 1-7 acts binding to the MasR, and its agonists could modulate this pathway. However, since AMPK utilizes different targets to suppress the mTOR downstream complex mTOR complex 1 effectively, we still need to unravel the entire pathway to identify other potential targets for the therapy of fibrosis and liver cancer.


Subject(s)
AMP-Activated Protein Kinases , Angiotensin-Converting Enzyme 2 , Autophagy , Carcinoma, Hepatocellular , Hepatic Stellate Cells , Liver Cirrhosis , Liver Neoplasms , Renin-Angiotensin System , Signal Transduction , TOR Serine-Threonine Kinases , Humans , TOR Serine-Threonine Kinases/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , AMP-Activated Protein Kinases/metabolism , Signal Transduction/drug effects , Autophagy/drug effects , Hepatic Stellate Cells/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/enzymology , Renin-Angiotensin System/drug effects , Renin-Angiotensin System/physiology , Angiotensin I/metabolism , Animals , Peptidyl-Dipeptidase A/metabolism , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Peptide Fragments/metabolism , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin Receptor Antagonists/pharmacology , Liver/pathology , Liver/drug effects , Liver/metabolism
6.
Int J Biol Macromol ; 268(Pt 2): 131901, 2024 May.
Article in English | MEDLINE | ID: mdl-38677685

ABSTRACT

Food-derived peptides with low molecular weight, high bioavailability, and good absorptivity have been exploited as angiotensin-converting enzyme (ACE) inhibitors. In the present study, in-vitro inhibition kinetics of peanut peptides, in silico screening, validation of ACE inhibitory activity, molecular dynamics (MD) simulations, and HUVEC cells were performed to systematically identify the inhibitory mechanism of ACE interacting with peanut peptides. The results indicate that FPHPP, FPHY, and FPHFD peptides have good thermal, pH, and digestive stability. MD trajectories elucidate the dynamic correlation between peptides and ACE and verify the specific binding interaction. Noteworthily, FPHPP is the best inhibitor with a strongest binding affinity and significantly increases NO, SOD production, and AT2R expression, and decreases ROS, MDA, ET-1 levels, ACE, and AT1R accumulation in Ang II-injury HUVEC cells.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors , Arachis , Human Umbilical Vein Endothelial Cells , Peptides , Peptidyl-Dipeptidase A , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/chemistry , Angiotensin-Converting Enzyme Inhibitors/metabolism , Humans , Peptidyl-Dipeptidase A/metabolism , Peptidyl-Dipeptidase A/chemistry , Arachis/chemistry , Peptides/chemistry , Peptides/metabolism , Peptides/pharmacology , Molecular Dynamics Simulation , Computer Simulation , Kinetics , Protein Binding
7.
Anal Chem ; 96(19): 7602-7608, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38671546

ABSTRACT

Molecular imprinting techniques have attracted a lot of attention as a potential biomimetic technology, but there are still challenges in protein imprinting. Herein, multifunctional nanosized molecularly imprinted polymers (nanoMIPs) for human angiotensin-converting enzyme 2 (ACE2) were prepared by epitope imprinting of magnetic nanoparticles-anchored peptide (magNP-P) templates, which were further applied to construct a competitive displacement fluorescence assay toward ACE2. A cysteine-flanked dodecapeptide sequence was elaborately selected as an epitope for ACE2, which was immobilized onto the surface of magnetic nanoparticles and served as a magNP-P template for imprinting. During polymerization, fluorescent monomers were introduced to endow fluorescence responsiveness to the prepared self-signaling nanoMIPs. A competitive displacement fluorescence assay based on the nanoMIPs was established and operated in a washing-free manner, yielding a wide range for ACE2 (0.1-6.0 pg/mL) and a low detection limit (0.081 pg/mL). This approach offers a promising avenue in the preparation of nanoMIPs for macromolecule recognition and expands potential application of an MIP in the detection of proteins as well as peptides.


Subject(s)
Angiotensin-Converting Enzyme 2 , Humans , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Peptidyl-Dipeptidase A/metabolism , Peptidyl-Dipeptidase A/chemistry , Molecular Imprinting , Magnetite Nanoparticles/chemistry , Molecularly Imprinted Polymers/chemistry , Limit of Detection , Peptides/chemistry , Peptides/metabolism
8.
J Agric Food Chem ; 72(15): 8606-8617, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38581395

ABSTRACT

Peptide IRW is the first food-derived angiotensin-converting enzyme 2 (ACE2) upregulator. This study aimed to investigate the pharmacokinetic characteristics of IRW and identify the metabolites contributing to its antihypertensive activity in spontaneously hypertensive rats (SHRs). Rats were administered 100 mg of IRW/kg of the body weight via an intragastric or intravenous route. The bioavailability (F %) was determined to be 11.7%, and the half-lives were 7.9 ± 0.5 and 28.5 ± 6.8 min for gavage and injection, respectively. Interestingly, significant blood pressure reduction was not observed until 1.5 h post oral administration, or 2 h post injection, indicating that the peptide's metabolites are likely responsible for the blood pressure-lowering activity. Time-course metabolomics revealed a significant increase in the level of kynurenine, a tryptophan metabolite, in blood after IRW administration. Kynurenine increased the level of ACE2 in cells. Oral administration of tryptophan (W), but not dipeptide IR, lowered the blood pressure and upregulated aortic ACE2 in SHRs. Our study supports the key role of tryptophan and its metabolite, kynurenine, in IRW's blood pressure-lowering effects.


Subject(s)
Angiotensin-Converting Enzyme 2 , Hypertension , Rats , Animals , Rats, Inbred SHR , Angiotensin-Converting Enzyme 2/metabolism , Biological Availability , Kynurenine/metabolism , Kynurenine/pharmacology , Tryptophan/metabolism , Peptides/metabolism , Antihypertensive Agents/pharmacology , Blood Pressure , Hypertension/metabolism , Peptidyl-Dipeptidase A/metabolism
9.
Cells ; 13(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38474396

ABSTRACT

The pathologic consequences of Coronavirus Disease-2019 (COVID-19) include elevated inflammation and dysregulated vascular functions associated with thrombosis. In general, disruption of vascular homeostasis and ensuing prothrombotic events are driven by activated platelets, monocytes, and macrophages, which form aggregates (thrombi) attached to the endothelium lining of vessel walls. However, molecular pathways underpinning the pathological interactions between myeloid cells and endothelium during COVID-19 remain undefined. Here, we tested the hypothesis that modulations in the expression of cellular receptors angiotensin-converting enzyme 2 (ACE2), CD147, and glucose-regulated protein 78 (GRP78), which are involved in homeostasis and endothelial performance, are the hallmark responses induced by SARS-CoV-2 infection. Cultured macrophages and lungs of hamster model systems were used to test this hypothesis. The results indicate that while macrophages and endothelial cells are less likely to support SARS-CoV-2 proliferation, these cells may readily respond to inflammatory stimuli generated by the infected lung epithelium. SARS-CoV-2 induced modulations of tested cellular receptors correlated with corresponding changes in the mRNA expression of coagulation cascade regulators and endothelial integrity components in infected hamster lungs. Among these markers, tissue factor (TF) had the best correlation for prothrombotic events during SARS-CoV-2 infection. Furthermore, the single-molecule fluorescence in situ hybridization (smFISH) method alone was sufficient to determine the peak and resolution phases of SARS-CoV-2 infection and enabled screening for cellular markers co-expressed with the virus. These findings suggest possible molecular pathways for exploration of novel drugs capable of blocking the prothrombotic shift events that exacerbate COVID-19 pathophysiology and control the disease.


Subject(s)
COVID-19 , Thrombosis , Humans , COVID-19/pathology , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2 , Endoplasmic Reticulum Chaperone BiP , Endothelial Cells/metabolism , In Situ Hybridization, Fluorescence , Peptidyl-Dipeptidase A/metabolism , Lung/metabolism , Thrombosis/pathology , Endothelium/metabolism , Homeostasis
10.
Int J Mol Sci ; 25(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38474055

ABSTRACT

Angiotensin-converting enzyme (ACE) plays a crucial role in the pathogenesis of hypertension. Piper sarmentosum Roxb., an herb known for its antihypertensive effect, lacks a comprehensive understanding of the mechanism underlying its antihypertensive action. This study aimed to elucidate the antihypertensive mechanism of aqueous extract of P. sarmentosum leaves (AEPS) via its modulation of the ACE pathway in phorbol 12-myristate-13-acetate (PMA)-induced human umbilical vein endothelial cells (HUVECs). HUVECs were divided into five groups: control, treatment with 200 µg/mL AEPS, induction 200 nM PMA, concomitant treatment with 200 nM PMA and 200 µg/mL AEPS, and treatment with 200 nM PMA and 0.06 µM captopril. Subsequently, ACE mRNA expression, protein level and activity, angiotensin II (Ang II) levels, and angiotensin II type 1 receptor (AT1R) and angiotensin II type 2 receptor (AT2R) mRNA expression in HUVECs were determined. AEPS successfully inhibited ACE mRNA expression, protein and activity, and angiotensin II levels in PMA-induced HUVECs. Additionally, AT1R expression was downregulated, whereas AT2R expression was upregulated. In conclusion, AEPS reduces the levels of ACE mRNA, protein and activity, Ang II, and AT1R expression in PMA-induced HUVECs. Thus, AEPS has the potential to be developed as an ACE inhibitor in the future.


Subject(s)
Phorbols , Piper , Humans , Antihypertensive Agents/pharmacology , Myristates/metabolism , Myristates/pharmacology , Angiotensin II/metabolism , Endothelial Cells/metabolism , Cells, Cultured , Peptidyl-Dipeptidase A/metabolism , Receptor, Angiotensin, Type 1/metabolism , RNA, Messenger/metabolism , Acetates/pharmacology , Phorbols/metabolism , Phorbols/pharmacology
11.
Sci Rep ; 14(1): 5846, 2024 03 10.
Article in English | MEDLINE | ID: mdl-38462662

ABSTRACT

The expression of ACE2 is linked to disease severity in COVID-19 patients. The ACE2 receptor gene polymorphisms are considered determinants for SARS-CoV-2 infection and its outcome. In our study, serum ACE2 and its genetic variant S19P rs73635825 polymorphism were investigated in 114 SARS-CoV-2 patients. The results were compared with 120 control subjects. ELISA technique and allele discrimination assay were used for measuring serum ACE2 and genotype analysis of ACE2 rs73635825. Our results revealed that serum ACE2 was significantly lower in SARS-CoV-2 patients (p = 0.0001), particularly in cases with hypertension or diabetes mellitus. There was a significant difference in the genotype distributions of ACE2 rs73635825 A > G between COVID-19 patients and controls (p-value = 0.001). A higher frequency of the heterozygous AG genotype (65.8%) was reported in COVID-19 patients. The G allele was significantly more common in COVID-19 patients (p < 0.0001). The AG and GG genotypes were associated with COVID-19 severity as they were correlated with abnormal laboratory findings, GGO, CXR, and total severity scores with p < 0.05. Our results revealed that the ACE2 S19P gene variant is correlated with the incidence of infection and its severity, suggesting the usefulness of this work in identifying the susceptible population groups for better disease control.


Subject(s)
COVID-19 , Humans , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/genetics , Egypt/epidemiology , Patient Acuity , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Polymorphism, Genetic , SARS-CoV-2/metabolism
12.
World J Gastroenterol ; 30(6): 607-609, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38463024

ABSTRACT

The present letter to the editor is related to the study titled 'Angiotensin-converting enzyme 2 improves liver fibrosis in mice by regulating autophagy of hepatic stellate cells'. Angiotensin-converting enzyme 2 can alleviate liver fibrosis by regulating autophagy of hepatic stellate cells and affecting the renin-angiotensin system.


Subject(s)
Peptidyl-Dipeptidase A , Renin-Angiotensin System , Animals , Mice , Angiotensin II/metabolism , Angiotensin-Converting Enzyme 2 , Fibrosis , Hepatic Stellate Cells/metabolism , Liver Cirrhosis , Peptidyl-Dipeptidase A/metabolism
13.
Int J Biol Macromol ; 266(Pt 2): 131152, 2024 May.
Article in English | MEDLINE | ID: mdl-38556230

ABSTRACT

This study aims to seek angiotensin-I-converting enzyme inhibitory (ACEi) peptides from walnut using different enzymatic hydrolysis, and further to validate the potent ACEi peptides identified and screened via peptidomics and in silico analysis against hypertension in spontaneously hypertensive rats (SHRs). Results showed that walnut protein hydrolysate (WPH) prepared by combination of alcalase and simulated gastrointestinal digestion exhibited high ACEi activity. WPH was separated via Sephadex-G25, and four peptides were identified, screened and verified based on their PeptideRanker score, structural characteristic and ACE inhibition. Interestingly, FDWLR showed the highest ACEi activity with IC50 value of 8.02 µg/mL, which might be related to its close affinity with ACE observed in molecular docking. Subsequently, high absorption and non-toxicity of FDWLR was predicted via in silico absorption, distribution, metabolism, excretion and toxicity. Furthermore, FDWLR exhibited positively vasoregulation in Ang II-induced human umbilical vein endothelial cells, and great blood pressure lowering effect in SHRs.


Subject(s)
Angiotensin II , Angiotensin-Converting Enzyme Inhibitors , Human Umbilical Vein Endothelial Cells , Hypertension , Juglans , Molecular Docking Simulation , Protein Hydrolysates , Rats, Inbred SHR , Juglans/chemistry , Animals , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/chemistry , Humans , Human Umbilical Vein Endothelial Cells/drug effects , Protein Hydrolysates/pharmacology , Protein Hydrolysates/chemistry , Rats , Hypertension/drug therapy , Hypertension/metabolism , Angiotensin II/metabolism , Peptides/chemistry , Peptides/pharmacology , Male , Peptidyl-Dipeptidase A/metabolism , Antihypertensive Agents/pharmacology , Antihypertensive Agents/chemistry , Blood Pressure/drug effects , Plant Proteins/pharmacology , Plant Proteins/chemistry
14.
Viruses ; 16(3)2024 03 15.
Article in English | MEDLINE | ID: mdl-38543820

ABSTRACT

Acute acalculous cholecystitis (AAC) represents cholecystitis without gallstones, occurring in approximately 5-10% of all cases of acute cholecystitis in adults. Several risk factors have been recognized, while infectious diseases can be a cause of cholecystitis in otherwise healthy people. Coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has spread worldwide, leading to an unprecedented pandemic. The virus enters cells through the binding of the spike protein to angiotensin-converting enzyme 2 (ACE2) receptors expressed in many human tissues, including the epithelial cells of the gastrointestinal (GI) tract, and this explains the symptoms emanating from the digestive system. Acute cholecystitis has been reported in patients with COVID-19. The purpose of this review is to provide a detailed analysis of the current literature on the pathogenesis, diagnosis, management, and outcomes of AAC in patients with COVID-19.


Subject(s)
Acalculous Cholecystitis , COVID-19 , Cholecystitis, Acute , Cholecystitis , Adult , Humans , SARS-CoV-2/metabolism , Acalculous Cholecystitis/diagnosis , Peptidyl-Dipeptidase A/metabolism
15.
Molecules ; 29(5)2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38474646

ABSTRACT

Food-derived angiotensin-I-converting enzyme (ACE)-inhibitory peptides have gained attention for their potent and safe treatment of hypertensive disorders. However, there are some limitations of conventional methods for preparing ACE-inhibitory peptides. In this study, in silico hydrolysis, the quantitative structure-activity relationship (QSAR) model, LC-MS/MS, inhibition kinetics, and molecular docking were used to investigate the stability, hydrolyzability, in vitro activity, and inhibition mechanism of bioactive peptides during the actual hydrolysis process. Six novel ACE-inhibitory peptides were screened from the Larimichthys crocea protein (LCP) and had low IC50 values (from 0.63 ± 0.09 µM to 10.26 ± 0.21 µM), which were close to the results of the QSAR model. After in vitro gastrointestinal simulated digestion activity of IPYADFK, FYEPFM and NWPWMK were found to remain almost unchanged, whereas LYDHLGK, INEMLDTK, and IHFGTTGK were affected by gastrointestinal digestion. Meanwhile, the inhibition kinetics and molecular docking results were consistent in that ACE-inhibitory peptides of different inhibition forms could effectively bind to the active or non-central active centers of ACE through hydrogen bonding. Our proposed method has better reproducibility, accuracy, and higher directivity than previous methods. This study can provide new approaches for the deep processing, identification, and preparation of Larimichthys crocea.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors , Peptidyl-Dipeptidase A , Angiotensin-Converting Enzyme Inhibitors/chemistry , Molecular Docking Simulation , Peptidyl-Dipeptidase A/metabolism , Chromatography, Liquid , Reproducibility of Results , Tandem Mass Spectrometry , Peptides/chemistry , Angiotensins
16.
Int Immunopharmacol ; 131: 111855, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38493697

ABSTRACT

Mechanical ventilation (MV) is an essential therapy for acute respiratory distress syndrome (ARDS) and pulmonary fibrosis. However, it can also induce mechanical ventilation-induced pulmonary fibrosis (MVPF) and the underlying mechanism remains unknown. Based on a mouse model of MVPF, the present study aimed to explore the role of the angiotensin-converting enzyme/angiotensin II/angiotensin type 1 receptor (ACE/Ang-2/AT1R) axis in the process of MVPF. In addition, recombinant angiotensin-converting enzyme 2(rACE2), AT1R inhibitor valsartan, AGTR1-directed shRNA and ACE inhibitor perindopril were applied to verify the effect of inhibiting ACE/Ang-2/AT1R axis in the treatment of MVPF. Our study found MV induced an inflammatory reaction and collagen deposition in mouse lung tissue accompanied by the activation of ACE in lung tissue, increased concentration of Ang-2 in bronchoalveolar lavage fluid (BALF), and upregulation of AT1R in alveolar epithelial cells. The process of pulmonary fibrosis could be alleviated by the application of the ACE inhibitor perindopril, ATIR inhibitor valsartan and AGTR1-directed shRNA. Meanwhile, rACE2 could also alleviate MVPF through the degradation of Ang-2. Our finding indicated the ACE/Ang-2/AT1R axis played an essential role in the pathogenesis of MVPF. Pharmacological inhibition of the ACE/Ang-2/AT1R axis might be a promising strategy for the treatment of MVPF.


Subject(s)
Pulmonary Fibrosis , Mice , Animals , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/pathology , Receptor, Angiotensin, Type 1/metabolism , Peptidyl-Dipeptidase A/metabolism , Perindopril/pharmacology , Perindopril/therapeutic use , Respiration, Artificial , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Valsartan/therapeutic use , RNA, Small Interfering/genetics , Angiotensin II/metabolism
17.
Physiol Res ; 73(1): 27-35, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38466002

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2), one of the key enzymes of the renin-angiotensin system (RAS), plays an important role in SARS-CoV-2 infection by functioning as a virus receptor. Angiotensin peptides Ang I and Ang II, the substrates of ACE2, can modulate the binding of SARS-CoV-2 Spike protein to the ACE2 receptor. In the present work, we found that co incubation of HEK-ACE2 and Vero E6 cells with the SARS-CoV-2 Spike pseudovirus (PVP) resulted in stimulation of the virus entry at low and high micromolar concentrations of Ang I and Ang II, respectively. The potency of Ang I and Ang II stimulation of virus entry corresponds to their binding affinity to ACE2 catalytic pocket with 10 times higher efficiency of Ang II. The Ang II induced mild increase of PVP infectivity at 20 microM; while at 100 microM the increase (129.74+/-3.99 %) was highly significant (p<0.001). Since the angiotensin peptides act in HEK ACE2 cells without the involvement of angiotensin type I receptors, we hypothesize that there is a steric interaction between the catalytic pocket of the ACE2 enzyme and the SARS-CoV-2 S1 binding domain. Oversaturation of the ACE2 with their angiotensin substrate might result in increased binding and entry of the SARS-CoV-2. In addition, the analysis of angiotensin peptides metabolism showed decreased ACE2 and increased ACE activity upon SARS-CoV-2 action. These effects should be taken into consideration in COVID-19 patients suffering from comorbidities such as the over-activated renin-angiotensin system as a mechanism potentially influencing the SARS-CoV-2 invasion into recipient cells.


Subject(s)
COVID-19 , Renin-Angiotensin System , Spike Glycoprotein, Coronavirus , Humans , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin I/metabolism , Angiotensin I/pharmacology , Peptidyl-Dipeptidase A/metabolism , Angiotensin-Converting Enzyme Inhibitors , Angiotensin II/metabolism
18.
Food Chem ; 447: 138873, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38452536

ABSTRACT

Food-derived angiotensin-converting enzyme-inhibitory (ACE-I) peptides have attracted extensive attention. Herein, the ACE-I peptides from Scomber japonicus muscle hydrolysates were screened, and their mechanisms of action and inhibition stability were explored. The quantitative structure-activity relationship (QSAR) model based on 5z-scale metrics was developed to rapidly screen for ACE-I peptides. Two novel potential ACE-I peptides (LTPFT, PLITT) were predicted through this model coupled with in silico screening, of which PLITT had the highest activity (IC50: 48.73 ± 7.59 µM). PLITT inhibited ACE activity with a mixture of non-competitive and competitive mechanisms, and this inhibition mainly contributed to the hydrogen bonding based on molecular docking study. PLITT is stable under high temperatures, pH, glucose, and NaCl. The zinc ions (Zn2+) and copper ions (Cu2+) enhanced ACE-I activity. The study suggests that the QSAR model is effective in rapidly screening for ACE-I inhibitors, and PLITT can be supplemented in foods to lower blood pressure.


Subject(s)
Protein Hydrolysates , Quantitative Structure-Activity Relationship , Molecular Docking Simulation , Protein Hydrolysates/pharmacology , Protein Hydrolysates/chemistry , Peptides/pharmacology , Peptides/chemistry , Muscles/metabolism , Ions , Angiotensins , Peptidyl-Dipeptidase A/metabolism
19.
Food Funct ; 15(5): 2655-2667, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38362628

ABSTRACT

Peptides in milk fermented with Lactobacillus delbrueckii QS306 before and after ultrahigh pressure treatment were identified using proteomics. Subsequently, 16 stable tripeptides were screened out based on activity score prediction, PeptideCutter analysis, and hydrophobicity calculations. Among them, WRP, WSR, and YRP showed the best angiotensin-converting enzyme (ACE) inhibitory activity, and their semi-inhibitory concentrations were 46.707, 300.121, and 89.555 µM, respectively. WRP and WSR were competitive inhibitors, whereas YRP was non-competitive. Gastrointestinal simulation revealed that WRP and YRP had better gastrointestinal stability. The values of RMSD, ΔGbind, ΔGpol, and RSMF obtained from molecular dynamics simulation indicated that the interaction of WRP and ACE was stable. Thus, Lactobacillus delbrueckii QS306-fermented milk can serve as an important source of ACE inhibitory peptides both before and after ultrahigh pressure treatment. The strategy of in silico screening, activity evaluation, and molecular dynamics simulation adopted in this study can be applied to the large-scale screening of novel peptides with high ACE inhibitory activity.


Subject(s)
Lactobacillus delbrueckii , Lactobacillus , Milk , Animals , Milk/chemistry , Lactobacillus delbrueckii/metabolism , Angiotensin-Converting Enzyme Inhibitors/chemistry , Molecular Dynamics Simulation , Peptides/chemistry , Peptidyl-Dipeptidase A/metabolism , Molecular Docking Simulation
20.
Int J Biol Macromol ; 262(Pt 1): 129811, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38302018

ABSTRACT

Effects of fermentation by Lactobacillus Plantarum NCU116 on the antihypertensive potential of black sesame seed (BSS) and structure characteristics of fermented black sesame seed protein (FBSSP) were investigated. Angiotensin-I-converting enzyme (ACE) inhibition and zinc chelating ability of fermented black sesame seed hydrolysate (FBSSH) reached the highest of 60.78 ± 3.67 % and 2.93 ± 0.04 mg/mL at 48 h and 60 h of fermentation, respectively. Additionally, the antioxidant activities of FBSSH and surface hydrophobicity of FBSSP were increased noticeably by fermentation. The α-helix and ß-rotation of FBSSP tended to decrease and increase, respectively, during fermentation. Correlation analysis indicated strong positive relationships between ß-turn and ACE inhibition activity as well as zinc chelating ability with correlation coefficients r of 0.8976 and 0.8932. Importantly, novel ACE inhibitory peptides LLLPYY (IC50 = 12.20 µM) and ALIPSF (IC50 = 558.99 µM) were screened from FBSSH at 48 h using in silico method. Both peptides showed high antioxidant activities in vitro. Molecular docking analysis demonstrated that the hydrogen bond connected with zinc ions of ACE mainly attributed to the potent ACE inhibitory activity of LLLPYY. The findings indicated that fermentation by Lactobacillus Plantarum NCU116 is an effective method to enhance the antihypertensive potential of BSS.


Subject(s)
Lactobacillus plantarum , Sesamum , Antihypertensive Agents/pharmacology , Lactobacillus plantarum/metabolism , Fermentation , Angiotensin-Converting Enzyme Inhibitors/chemistry , Antioxidants/pharmacology , Antioxidants/metabolism , Molecular Docking Simulation , Peptides/chemistry , Zinc/metabolism , Peptidyl-Dipeptidase A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...