Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 11563, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32665569

ABSTRACT

Salinity is a serious challenge to global agriculture and threatens human food security. Plant cells can respond to salt stress either by activation of adaptive responses, or by programmed cell death. The mechanisms deciding the respective response are far from understood, but seem to depend on the degree, to which mitochondria can maintain oxidative homeostasis. Using plant PeptoQ, a Trojan Peptoid, as vehicle, it is possible to transport a coenzyme Q10 (CoQ10) derivative into plant mitochondria. We show that salinity stress in tobacco BY-2 cells (Nicotiana tabacum L. cv Bright Yellow-2) can be mitigated by pretreatment with plant PeptoQ with respect to numerous aspects including proliferation, expansion, redox homeostasis, and programmed cell death. We tested the salinity response for transcripts from nine salt-stress related-genes representing different adaptive responses. While most did not show any significant response, the salt response of the transcription factor NtNAC, probably involved in mitochondrial retrograde signaling, was significantly modulated by the plant PeptoQ. Most strikingly, transcripts for the mitochondrial, Mn-dependent Superoxide Dismutase were rapidly and drastically upregulated in presence of the peptoid, and this response was disappearing in presence of salt. The same pattern, albeit at lower amplitude, was seen for the sodium exporter SOS1. The findings are discussed by a model, where plant PeptoQ modulates retrograde signalling to the nucleus leading to a strong expression of mitochondrial SOD, what renders mitochondria more resilient to perturbations of oxidative balance, such that cells escape salt induced cell death and remain viable.


Subject(s)
Food Security , Mitochondria/genetics , Ubiquinone/analogs & derivatives , Ubiquinone/genetics , Agriculture , Humans , Mitochondria/metabolism , Oxidation-Reduction , Oxidative Stress/genetics , Peptoids/genetics , Plant Cells/enzymology , Reactive Oxygen Species/metabolism , Salt Stress/genetics , Superoxide Dismutase/genetics , Nicotiana/growth & development , Nicotiana/metabolism
2.
Biopolymers ; 106(5): 726-36, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27258140

ABSTRACT

A novel approach to sequentially degrade peptoid N-terminal N-(substituted)glycine residues on the solid-phase using very mild conditions is reported. This method relies on the treatment of resin-bound, bromoacetylated peptoids with silver perchlorate in THF, leading to an intramolecular cyclization reaction to liberate the terminal residue as a N-substituted morpholine-2,5-dione, resulting in a truncated peptoid upon hydrolysis and a silver bromide byproduct. Side-chain functional group tolerance is explored and reaction kinetics are determined. In a series of pentapeptoids possessing variable, non-nucleophilic side-chains at the second position (R(2) ), we demonstrate that sequential N-terminal degradation of the first two residues proceeds in 87% and 74% conversions on average, respectively. We further demonstrate that the degradation reaction is selective for peptoids, and represents substantial progress toward a mild, iterative sequencing method for peptoid oligomers. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 726-736, 2016.


Subject(s)
Peptoids , Proteolysis , Sequence Analysis, Protein/methods , Peptoids/chemistry , Peptoids/genetics
3.
RNA ; 20(4): 528-39, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24497550

ABSTRACT

We have found a small molecule that specifically inhibits cleavage of a precursor to the oncogenic miRNA, miR-21, by the microprocessor complex of Drosha and DGCR8. We identified novel ligands for the apical loop of this precursor from a screen of 14,024 N-substituted oligoglycines (peptoids) in a microarray format. Eight distinct compounds with specific affinity were obtained, three having affinities for the targeted loop in the low micromolar range and greater than 15-fold discrimination against a closely related hairpin. One of these compounds completely inhibits microprocessor cleavage of a miR-21 primary transcript at concentrations at which cleavage of another miRNA primary transcript, pri-miR-16, is little affected. The apical loop of pri-miR-21, placed in the context of pri-miR-16, is sufficient for inhibition of microprocessor cleavage by the peptoid. This compound also inhibits cleavage of pri-miR-21 containing the pri-miR-16 apical loop, suggesting an additional site of association within pri-miR-21. The reported peptoid is the first example of a small molecule that inhibits microprocessor cleavage by binding to the apical loop of a pri-miRNA.


Subject(s)
MicroRNAs/genetics , Peptoids/genetics , RNA Processing, Post-Transcriptional/genetics , Ribonuclease III/metabolism , Small Molecule Libraries/pharmacology , Humans , Magnesium/metabolism , MicroRNAs/metabolism , Microarray Analysis , Molecular Structure , Peptide Library , Peptoids/metabolism , Ribonuclease III/genetics
4.
Biochim Biophys Acta ; 1768(6): 1506-17, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17462584

ABSTRACT

Melittin (ME), a non-cell-selective antimicrobial peptide, contains the leucine zipper motif, wherein every seventh amino acid is leucine or isolucine. Here, we attempted to generate novel cell-selective peptides by substituting amino acids in the leucine zipper sequence of ME with peptoid residues. We generated a series of ME analogues by replacing Leu-6, Lue-13 and Ile-20 with Nala, Nleu, Nphe, or Nlys, and we examined their secondary structure, self-association activity, cell selectivity and mode of action. Circular dichroism spectroscopy indicated that the substitutions disrupt the alpha-helical structure of ME in micelles of sodium dodecyl sulfate and on negatively charged and zwitterionic phospholipid vesicles. Substitution by Nleu, Nphe, or Nlys but not Nala disturbed the self-association in an aqueous environment, interaction with zwitterionic membranes, and toxicity to mammalian cells of ME but did not affect the interaction with negatively charged membranes or antibacterial activity. Notably, peptides with Nphe or Nlys substitution had the highest therapeutic indices, consistent with their lipid selectivity. In addition, all of peptoid residue-containing ME analogues had little or no ability to induce membrane disruption, membrane depolarization and lipid flip-flop. Taken together, our studies indicate that substitution of the leucine zipper motif in ME with peptoid residues increases its selectivity against bacterial cells by impairing self-association activity and changes its mode of antibacterial action from membrane-targeting mechanism to possible intracellular targeting mechanism. Furthermore, our ME analogues especially those with Nleu, Nphe, or Nlys substitutions, may be therapeutically useful antimicrobial peptides.


Subject(s)
Amino Acids/genetics , Leucine Zippers/genetics , Melitten/chemistry , Peptoids/genetics , Amino Acid Sequence , Animals , Bacteria/drug effects , Cell Membrane/metabolism , Circular Dichroism , Erythrocytes/drug effects , HeLa Cells , Humans , Melitten/chemical synthesis , Melitten/toxicity , Molecular Sequence Data , Protein Engineering , Protein Structure, Secondary , Tetrazolium Salts , Thiazoles
SELECTION OF CITATIONS
SEARCH DETAIL
...