Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
Environ Pollut ; 349: 123905, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38580062

ABSTRACT

With the acceleration of air cleaning activities in China, air pollution has entered a new stage characterized by seasonal interplay and predominance of fine particulate matter (PM2.5) and ozone (O3) pollutants. However, the differing peak seasons of these two pollution preclude the use of a unified indicator for air pollution complex. Given that peroxyacetyl nitrate (PAN) originates from secondary formation and persists under low-temperature conditions for extended periods, it is vital to determine whether its concentration can be used as an indicator to represent air pollution, not only in summer but also in winter. Here, PAN observational data from 2018 to 2022 for Beijing were analyzed. The results showed that during photochemical pollution events in summer, secondary formation of PAN was intense and highly correlated with O3 (R = 0.8), while during PM2.5 pollution events in winter, when the lifetime of PAN is extended due to the low temperature, the PAN concentration was highly consistent with the PM2.5 concentration (R = 0.9). As a result, the PAN concentration essentially exhibited consistency with both the seasonal trends in the exceedance of air pollution (R = 0.6) and the air quality index (R = 0.8). When the daily average concentration exceeds 0.5 and 0.9 ppb, the PAN concentration can be used as a complementary indicator of the occurrence of primary and secondary standard pollution, respectively. This study demonstrated the unique role of PAN as an indicator of air pollution complex, highlighting the comprehensive ability for air quality characterization and reducing the burden of atmospheric environment management.


Subject(s)
Air Pollutants , Air Pollution , Environmental Monitoring , Ozone , Particulate Matter , Peracetic Acid , Peracetic Acid/analogs & derivatives , Seasons , Air Pollutants/analysis , Air Pollution/statistics & numerical data , Environmental Monitoring/methods , Particulate Matter/analysis , Ozone/analysis , Peracetic Acid/analysis , Beijing , China
2.
Water Res ; 243: 120361, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37487357

ABSTRACT

Peracetic acid (PAA) may be used in drinking water treatment for pre-oxidation and mussel control at the intake. PAA may exert a downstream chlorine demand, but full details of this reaction have not been reported. There are three possible mechanisms of this demand: (1) PAA may react directly with chlorine; (2) PAA exists in equilibrium with hydrogen peroxide, which is known to react with chlorine; and (3) as H2O2 reacts with chlorine, PAA will hydrolyze to form more H2O2 to re-establish PAA/H2O2 equilibrium, thereby serving as an indirect reservoir of chlorine demand. While the H2O2 reaction with chlorine is well known, the other mechanisms of possible PAA-induced chlorine demand have not previously been investigated. The observed molar stoichiometric ratio of PAA to free chlorine (n) for the presumed direct PAA + free chlorine reaction was determined to be approximately 2, and the corresponding observed reaction rate coefficients at pH 6, 7, 8, and 9 were 2.76, 3.14, 1.61, 10.1 M-n·s-1, respectively (at 25 °C). With these estimated values, a kinetic model was built to predict the chlorine demand by PAA. The results suggest that chlorine demand from PAA is likely to be negligible over the course of several days (e.g., < 20% chlorine loss) for most conditions except for high pH (e.g., >8) and high PAA:Cl2 molar ratios (e.g., >2:1).


Subject(s)
Drinking Water , Water Pollutants, Chemical , Peracetic Acid/analysis , Chlorine , Hydrogen Peroxide , Disinfection/methods , Chlorides
3.
Oper Dent ; 47(5): E211-E221, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36121721

ABSTRACT

PURPOSE: The aim of this study was to evaluate the effects of a new irrigant solution on the post space cleaning and the adhesive resistance of fiber posts. METHODS AND MATERIALS: Eighty roots of bovine teeth were randomly allocated into eight groups (n=10 for each group). Evaluations were performed in two different time points for each irrigant. The irrigants included a control group with distilled water (DW), 2.5% NaOCl and 17% EDTA (SH), 1% peracetic acid (PA), and 5% boric acid and 1% citric acid (EX). The time points were 24 hours (I-immediate) and 6 months (D-delayed). The push-out test was performed using a universal testing machine with a 5 kN load cell operating at a crosshead speed of 0.5 mm/minute. The dentinal cementation system was analyzed using a laser confocal microscope (LSM5, Zeiss, Jena, Germany), and incidence of residue on radicular dentin was evaluated by scanning electron microscopy (SEM). The incidence of residue was evaluated by the Kruskal-Wallis test and push-out bond strength and dentin penetrability were evaluated via a one-way analysis of variance (ANOVA) and Tukey tests (α=0.05). RESULTS: The EX irrigation protocol demonstrated the lowest incidence of residue on the dentin surface (p<0.05), independently of the evaluated third. In the cervical and the middle post thirds, EXI, EXD, SHI, and SHD groups exhibited similar push-out bond strength values (p>0.05). EXI, EXD, PAI, and PAD exhibited the greatest dentinal penetrability of the cementation system in all the post thirds (p<0.05). CONCLUSIONS: A solution containing 5% boric acid and 1% citric acid can be a promising irrigant for radicular post space cleaning. It has adequate potential for cleaning the dentin surface without interfering with the adhesive interface between the dentin and the cementation system.


Subject(s)
Dental Bonding , Post and Core Technique , Animals , Boric Acids , Cattle , Citric Acid/analysis , Citric Acid/pharmacology , Dental Bonding/methods , Dental Cements/therapeutic use , Dental Pulp Cavity , Dentin , Disulfides , Edetic Acid/chemistry , Materials Testing , Peracetic Acid/analysis , Peracetic Acid/pharmacology , Resin Cements/chemistry , Resin Cements/therapeutic use , Root Canal Irrigants/analysis , Root Canal Irrigants/chemistry , Root Canal Irrigants/therapeutic use , Thiones , Water
4.
J Occup Environ Hyg ; 19(8): 469-477, 2022 08.
Article in English | MEDLINE | ID: mdl-35709479

ABSTRACT

A method for measuring peracetic acid vapors in air using impinger sampling and field-portable colorimetric analysis is presented. The capture efficiency of aqueous media in glass and plastic impingers was evaluated when used for peracetic acid vapor sampling. Measurement of peracetic acid was done using an N,N-diethyl-p-phenylenediamine colorimetric method with a field-portable spectrometer. The linearity of the N,N-diethyl-p-phenylenediamine method was determined for peracetic acid both in solution and captured from vapor phase using glass or plastic impingers. The Limits of Detection for the glass and plastic impingers were 0.24 mg/m3 and 0.28 mg/m3, respectively, for a 15 L air sample. The Limits of Quantitation were 0.79 mg/m3 and 0.92 mg/m3 for the glass and plastic impingers, respectively. Both metrics were below the American Conference of Governmental Industrial Hygienists Threshold Limit Value Short-Term Exposure Limit of 1.24 mg/m3 (0.4 ppmv) during a 15-min period. The impinger sampling method presented herein allows for an easy-to-use and rapid in-field measurement that can be used for evaluating occupational exposure to peracetic acid.


Subject(s)
Occupational Exposure , Peracetic Acid , Colorimetry , Gases/analysis , Occupational Exposure/analysis , Peracetic Acid/analysis , Plastics , United States
5.
Environ Sci Technol ; 56(13): 9325-9334, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35704858

ABSTRACT

The formation and decomposition of peroxyacetyl nitrate (PAN), an important atmospheric nitrogen oxide reservoir, can impact the level and cycling of free radicals and nitrogen compounds in the atmosphere. PAN sinks are poorly understood, highlighting the importance of elucidating the heterogeneous reaction of PAN on aerosol surfaces. Here, we report for the first time the uptake behavior, kinetics, and potential mechanism of PAN uptake on real-world aerosol PM2.5 using a flow tube system. The uptake coefficients (γ) of PAN increased non-linearly from (1.5 ± 0.7) × 10-5 at 0% relative humidity (RH) to (9.3 ± 2.0) × 10-5 at 80% RH. The γ decrease with increasing initial PAN concentration is consistent with the Langmuir-Hinshelwood mechanism. Organic components of aerosols may promote heterogeneous loss of PAN through redox reactions. Higher γ occurs with higher water content, lower pH, and lower ionic strength in the aqueous phase of aerosols. The present study suggests that heterogeneous reaction of PAN on ambient aerosols plays a non-negligible role in the atmospheric PAN budget and provides new insights into the role of PAN in promoting atmospheric oxidation capacity during hazy periods with cold and wet weather conditions.


Subject(s)
Air Pollutants , Peracetic Acid , Aerosols/chemistry , Air Pollutants/analysis , Atmosphere/chemistry , Particulate Matter/analysis , Peracetic Acid/analogs & derivatives , Peracetic Acid/analysis
6.
Food Microbiol ; 97: 103740, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33653519

ABSTRACT

Parameters such as type and concentration of the active compound, exposure time, application temperature, and organic load presence influence the antimicrobial action of sanitizers, although there is little data in the literature. Thus, this study aimed to evaluate the antifungal efficacy of different chemical sanitizers under different conditions according to the European Committee for Standardization (CEN). Aspergillus brasiliensis (ATCC 16404) was exposed to four compounds (benzalkonium chloride, iodine, peracetic acid, and sodium hypochlorite) at two different concentrations (minimum and maximum described on the product label), different exposure times (5, 10, and 15 min), temperatures (10, 20, 30, and 40 °C), and the presence or absence of an organic load. All parameters, including the type of sanitizer, influenced the antifungal efficacy of the tested compounds. Peracetic acid and benzalkonium chloride were the best antifungal sanitizers. The efficacy of peracetic acid increased as temperatures rose, although the opposite effect was observed for benzalkonium chloride. Sodium hypochlorite was ineffective under all tested conditions. In general, 5 min of sanitizer exposure is not enough and >10 min are necessary for effective fungal inactivation. The presence of organic load reduced sanitizer efficacy in most of the tested situations, and when comparing the efficacy of each compound in the presence and absence of an organic load, a difference of up to 1.5 log CFU was observed. The lowest concentration recommended on the sanitizer label is ineffective for 99.9% fungal inactivation, even at the highest exposure time (15 min) or under the best conditions of temperature and organic load absence. Knowledge of the influence exerted by these parameters contributes to successful hygiene since the person responsible for the sanitization process in the food facility can select and apply a certain compound in the most favorable conditions for maximum antifungal efficacy.


Subject(s)
Antifungal Agents/pharmacology , Aspergillus/drug effects , Benzalkonium Compounds/pharmacology , Disinfectants/pharmacology , Peracetic Acid/pharmacology , Sodium Hypochlorite/pharmacology , Aspergillus/growth & development , Benzalkonium Compounds/chemistry , Colony Count, Microbial , Disinfectants/analysis , Peracetic Acid/analysis , Sodium Hypochlorite/analysis , Temperature , Time Factors
7.
J Environ Sci (China) ; 94: 81-87, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32563490

ABSTRACT

As an important secondary photochemical pollutant, peroxyacetyl nitrate (PAN) has been studied over decades, yet its simulations usually underestimate the corresponding observations, especially in polluted areas. Recent observations in north China found unusually high concentrations of PAN during wintertime heavy haze events, but the current model still cannot reproduce the observations, and researchers speculated that nitrous acid (HONO) played a key role in PAN formation. For the first time we systematically assessed the impact of potential HONO sources on PAN formation mechanisms in eastern China using the Weather Research and Forecasting/Chemistry (WRF-Chem) model in February of 2017. The results showed that the potential HONO sources significantly improved the PAN simulations, remarkably accelerated the ROx (sum of hydroxyl, hydroperoxyl, and organic peroxy radicals) cycles, and resulted in 80%-150% enhancements of PAN near the ground in the coastal areas of eastern China and 10%-50% enhancements in the areas around 35-40°N within 3 km during a heavy haze period. The direct precursors of PAN were aldehyde and methylglyoxal, and the primary precursors of PAN were alkenes with C > 3, xylenes, propene and toluene. The above results suggest that the potential HONO sources should be considered in regional and global chemical transport models when conducting PAN studies.


Subject(s)
Air Pollutants/analysis , China , Peracetic Acid/analogs & derivatives , Peracetic Acid/analysis , Seasons
8.
Environ Sci Pollut Res Int ; 27(27): 34135-34146, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32557042

ABSTRACT

Chlorine-based compounds have been used as a disinfectant in drinking water treatment plants for decades because of their excellent sterilisation efficiency and low cost. However, the formation of disinfection by-products during chlorination is a cause for concern. Peracetic acid (PAA) is a strong oxidant with a redox potential higher than that of chlorine and does not form harmful disinfection by-products. It is thus a potential alternative for chlorine-based disinfectants. However, PAA decomposes rapidly in water at a rate that is highly affected by many factors, such as organic compounds and pH. The aim of this study is to investigate the stability of PAA during drinking water disinfection. To accomplish this, we studied methods for rapid detection of residual PAA and PAA decay in drinking water. Residual PAA was detected in water by the spectrophotometry-total chlorine reagent (SPTCR) method with a PAA concentration range of 0.090-10 mg/L (R2 = 0.9943). Decay tests of PAA in drinking water and other sources of water showed that the decay process conformed to the first-order kinetic model with fast and slow reactions. Among four factors, pH was the key factor in the decay process because an alkaline environment significantly promotes the decomposition of PAA. In addition, total organic carbon (TOC), conductivity, and initial PAA concentration also affected PAA decay. Experimental and statistical analyses suggested that these factors affected PAA decay in the following descending order of influence: TOC, initial PAA concentration, and conductivity. In real water matrices, the PAA decay rate increased with increasing initial PAA concentration.


Subject(s)
Disinfectants , Drinking Water , Water Purification , Chlorine , Disinfection , Peracetic Acid/analysis
9.
J Environ Sci (China) ; 89: 1-8, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31892382

ABSTRACT

Increasing concerns have been raised on endocrine disrupting chemicals like the sex hormone 17α-ethinylestradiol (EE2), the more since traditional wastewater (WW) treatments appear to be ineffective for their removal. The efficacy of the relatively novel disinfectant peracetic acid (PAA) in EE2 removal was evaluated, as well as its potential effects on WW quality parameters. The treatments tested for EE2 removal were also evaluated in terms of toxicity, through the determination of biochemical responses (antioxidant enzymes, lipid peroxidation and vitellogenin induction) using zebrafish (Danio rerio) as a biological model. PAA contact times less than 20 min appeared insufficient regardless of the PAA dose tested, but a 100% EE2 removal was attained at a PAA concentration of 15 mg/L with a contact time of 20 min. Total suspended solids, chemical oxygen demand and pH in PAA treatments remained well within levels set in European legislation for WW discharge. EE2 induced significant increased vitellogenin (VTG) levels in both female and male fish, indicating increased estrogenic activity, especially in males suggesting an endocrine disruption effect. With the addition of PAA (15 mg/L), however, VTG levels in both sexes returned to control values. Although this PAA treatment showed increased levels of the antioxidant enzyme catalase, the lipid peroxidation levels were similar or even lower than in controls. Overall the results suggest that the use of PAA appears a promising way forward as a less toxic alternative to chlorine disinfection with high efficiency in the removal of EDC like EE2.


Subject(s)
Ethinyl Estradiol/chemistry , Peracetic Acid/chemistry , Waste Disposal, Fluid/methods , Wastewater , Water Pollutants, Chemical/chemistry , Contraceptive Agents , Estradiol , Ethinyl Estradiol/analysis , Peracetic Acid/analysis , Vitellogenins , Water Pollutants, Chemical/analysis
10.
Infect Dis Health ; 24(4): 240-243, 2019 11.
Article in English | MEDLINE | ID: mdl-31288991

ABSTRACT

This short report documents an in-use evaluation of three disinfectant solutions that was conducted within the operating theatre of a South Australian hospital to address a high occurrence of Clostridium difficile Infection (CDI). The disinfectants were all registered by the Therapeutic Goods Administration (TGA) and included a buffered peracetic acid, a chlorine-based disinfectant used at 1000 ppm, and a hydrogen peroxide-based disinfectant. The use of the chlorine and hydrogen peroxide disinfectants both caused a number of adverse staff reactions and increased safe-work related incident reporting. The peracetic acid-based product met all criteria for use, including staff acceptance, cleaning expectation, cost and efficacy requirements.


Subject(s)
Chlorine/pharmacology , Clostridium Infections/prevention & control , Disinfectants/pharmacology , Disinfection/methods , Hydrogen Peroxide/pharmacology , Peracetic Acid/pharmacology , Chlorine/analysis , Clostridioides difficile/drug effects , Clostridioides difficile/growth & development , Disinfectants/analysis , Disinfection/economics , Disinfection/instrumentation , Humans , Hydrogen Peroxide/analysis , Peracetic Acid/analysis
11.
Environ Pollut ; 252(Pt B): 1910-1919, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31227349

ABSTRACT

Peroxyacetyl nitrate (PAN) is an important reservoir of atmospheric nitrogen, modulating reactive nitrogen cycle and ozone (O3) formation. To understand the origins of PAN, a field measurement was conducted at Tung Chung site (TC) in suburban Hong Kong from October to November 2016. The average level of PAN was 0.63 ±â€¯0.05 ppbv, with a maximum of 7.30 ppbv. Higher PAN/O3 ratio (0.043-0.058) was captured on episodes, i.e. when hourly maximum O3 exceeded 80 ppbv, than on non-episodes (0.01), since O3 production was less efficient than PAN when there was an elevation of precursors (i.e. volatile organic compounds (VOCs) and nitrogen oxide (NOx)). Model simulations revealed that oxidations of acetaldehyde (65.3 ±â€¯2.3%), methylglyoxal (MGLY, 12.7 ±â€¯1.2%) and other oxygenated VOCs (OVOCs) (8.0 ±â€¯0.6%), and radical cycling (12.2 ±â€¯0.8%) were the major production pathways of peroxyacetyl (PA) radical, while local PAN formation was controlled by both VOCs and nitrogen dioxide (NO2). Among all VOC species, carbonyls made the highest contribution (59%) to PAN formation, followed by aromatics (26%) and biogenic VOCs (BVOCs) (10%) through direct oxidation/decomposition. Besides, active VOCs (i.e. carbonyls, aromatics, BVOCs and alkenes/alkynes) could stimulate hydroxyl (OH) production, thus indirectly facilitating the PAN formation. Apart from primary emissions, carbonyls were also generated from oxidation of first-generation precursors, i.e., hydrocarbons, of which xylenes contributed the most to PAN production. Furthermore, PAN formation suppressed local O3 formation at a rate of 2.84 ppbv/ppbv, when NO2, OH and hydroperoxy (HO2) levels decreased and nitrogen monoxide (NO) value enhanced. Namely, O3 was reduced by 2.84 ppbv per ppbv PAN formation. Net O3 production rate was weakened (∼36%) due to PAN photochemistry, so as each individual production and loss pathway. The findings advanced our knowledge of atmospheric PAN and its impact on O3 production.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Environmental Pollution/analysis , Ozone/analysis , Peracetic Acid/analogs & derivatives , Volatile Organic Compounds/analysis , Acetaldehyde/chemistry , Hong Kong , Hydrocarbons/analysis , Hydroxyl Radical/analysis , Nitrogen Oxides/analysis , Oxidation-Reduction , Peracetic Acid/analysis , Photochemistry , Pyruvaldehyde/chemistry , Xylenes/analysis
12.
Sci Total Environ ; 685: 419-427, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31176227

ABSTRACT

Peracetic acid (PAA) is an emerging disinfectant with a low disinfection by-product formation potential, but how PAA destroys gene function after killing bacteria remains to be studied. Bacterial plasmid DNA is a mobile genetic element that often harbors undesirable genes encoding antibiotic resistance and virulence factors. Even though PAA efficiently kills bacteria, bacterial plasmids and other mobile genetic elements might still be intact and functional after PAA disinfection, posing potential public health and environmental risks. This study evaluated the impact of PAA disinfection on the functionality of plasmid DNA in vivo and compared the results with those from chlorination. We delivered a plasmid DNA harboring two antibiotic resistance genes to Escherichia coli TOP10 to form an antibiotic-resistant bacterium (ARB). The planktonic ARB was treated with PAA and chlorine to find the minimum doses inhibiting the regrowth of the strain. PAA and chlorine stopped the regrowth at 8 ±â€¯1 mg PAA·L-1 and 20 ±â€¯9 mg Cl2·L-1, respectively. The functionality of the plasmid DNA after PAA and chlorine disinfection was then determined at higher doses in vivo. Neither PAA nor chlorine completely destroyed the plasmid DNA. However, chlorine was more efficient than PAA in eliminating the plasmid DNA. PAA at 25 mg PAA·L-1 reduced the transforming activity of the plasmid DNA by less than 0.3 log10 units, whereas chlorine at 25 mg Cl2·L-1 reduced the transforming activity by approximately 1.7 log10 units. Chlorine had a more pronounced impact on the functionality of the plasmid DNA because it oxidizes or destroys bacterial components including plasmid DNA faster than PAA. In addition, environmental scanning electron microscopy shows that chlorination desiccated the cells resulting in the flat cellular structure and possibly more complete loss of plasmid DNA, whereas PAA disinfection had a less impact on cell structure and morphology. This study demonstrates that more plasmid DNA remains functional in water after PAA disinfection than after chlorination. These functional genetic elements could be acquired by other microorganisms via horizontal gene transfer to pose potential public health and environmental risks.


Subject(s)
Disinfectants/analysis , Disinfection/methods , Peracetic Acid/analysis , Water Purification/methods , DNA, Bacterial , Halogenation , Plasmids/genetics
13.
Environ Pollut ; 244: 379-387, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30352352

ABSTRACT

Peroxyacetyl nitrate (PAN) are effective indicators of photochemical pollution, and also play an important role in regional oxidant balance. Surprisingly, in recent years, PAN have also been detected under conditions that do not favor the photochemical processes. To obtain a better understanding of the mechanisms of formation of atmospheric compound pollution, this study examined the relationships between concentrations of PAN and other pollutants (e.g., ozone [O3] and PM2.5) during a winter haze episode. The observation periods were from December 31, 2015, to February 2, 2016, and from February 19, 2016, to March 4, 2016. The maximum daily concentration of PAN during haze episodes was 4-10 times higher than that during non-haze episodes. The continuous cumulative increase in PAN concentrations was the result of a combination of photochemical production during the daytime and production based on free radical chemical reactions during the nighttime. During the haze episode, the correlation between concentrations of PAN and O3 was weak, while a significant correlation was observed between PAN and PM2.5 concentrations (R2 = 0.82). This may have been due to higher concentrations of particulate matter impairing illumination, which can then inhibit the photochemical reactions that produce PAN and O3. OH radicals can replace the role of light in PAN formation, which can cause concentrations of PAN and O3 to vary independently. During the haze episode, the ratio of PAN/O3 was around 0.3, which was much higher than that during the clean period.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Environmental Pollution/analysis , Ozone/analysis , Particulate Matter/analysis , Peracetic Acid/analogs & derivatives , Beijing , China , Hydroxyl Radical/analysis , Peracetic Acid/analysis , Seasons
14.
J Environ Sci (China) ; 77: 189-197, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30573082

ABSTRACT

Peroxyacyl nitrates (PANs) are important secondary pollutants in ground-level atmosphere. Accurate prediction of atmospheric pollutant concentrations is crucial to guide effective precautions for before and during specific pollution events. In this study, four models based on the back-propagation (BP) artificial neural network (ANN) and multiple linear regression (MLR) methods were used to predict the hourly average PAN concentrations at Peking University, Beijing, in 2014. The model inputs were atmospheric pollutant data and meteorological parameters. Model 3 using a BP-ANN based on the original variables achieved the best prediction results among the four models, with a correlation coefficient (R) of 0.7089, mean bias error of -0.0043 ppb, mean absolute error of 0.4836 ppb, root mean squared error of 0.5320 ppb, and Willmott's index of agreement of 0.8214. Based on a comparison of the performance indices of the MLR and BP-ANN models, we concluded that the BP-ANN model was able to capture the highly non-linear relationships between PAN concentration and the conventional atmospheric pollutant and meteorological parameters, providing more accurate results than the traditional MLR models did, with a markedly higher goodness of R. The selected meteorological and atmospheric pollutant parameters described a sufficient amount of PAN variation, and thus provided satisfactory prediction results. More specifically, the BP-ANN model performed very well for capturing the variation pattern when PAN concentrations were low. The findings of this study address some of the existing knowledge gaps in this research field and provide a theoretical basis for future regional air pollution control.


Subject(s)
Environmental Monitoring , Peracetic Acid/analogs & derivatives , Beijing , Humidity , Linear Models , Neural Networks, Computer , Particulate Matter/analysis , Peracetic Acid/analysis , Temperature , Wind
15.
J Environ Sci (China) ; 71: 249-260, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30195683

ABSTRACT

Peroxyacetyl nitrate (PAN), as a major secondary pollutant, has gained increasing worldwide attentions, but relevant studies in China are still quite limited. During winter of 2015 to summer of 2016, the ambient levels of PAN were measured continuously by an automatic gas chromatograph equipped with an electron capture detector (GC-ECD) analyzer at an urban site in Jinan (China), with related parameters including concentrations of O3, NO, NO2, PM2.5, HONO, the photolysis rate constant of NO2 and meteorological factors observed concurrently. The mean and maximum values of PAN concentration were (1.89 ±â€¯1.42) and 9.61 ppbv respectively in winter, and (2.54 ±â€¯1.44) and 13.47 ppbv respectively in summer. Unusually high levels of PAN were observed during severe haze episodes in winter, and the formation mechanisms of them were emphatically discussed. Study showed that high levels of PAN in winter were mainly caused by local accumulation and strong photochemical reactions during haze episodes, while mass transport played only a minor role. Accelerated photochemical reactions (compared to winter days without haze) during haze episodes were deduced by the higher concentrations but shorter lifetimes of PAN, which was further supported by the sufficient solar radiation in the photolysis band along with the high concentrations of precursors (NO2, VOCs) and HONO during haze episodes. In addition, significant PAN accumulation during calm weather of haze episodes was verified by meteorological data.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Peracetic Acid/analogs & derivatives , China , Meteorological Concepts , Particulate Matter/analysis , Peracetic Acid/analysis , Seasons
16.
Environ Sci Pollut Res Int ; 25(23): 23143-23156, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29860696

ABSTRACT

Atmospheric concentrations of peroxyacetyl nitrate (PAN) were measured in Ziyang in December 2012 to provide basic knowledge of PAN in the Chengyu district and offer recommendations for air pollution management. The PAN pollution was relatively severe in Ziyang in winter, with the maximum and average PAN concentrations of 1.61 and 0.55 ppbv, respectively, and a typical single-peak diurnal trend in PAN and theoretical PAN lost by thermal decomposition (TPAN) were observed. PAN and O3 concentrations were correlated (R2 = 0.52) and the ratios of daily maximum PAN to O3 ([PAN]/[O3] ratio) ranged from 0.013 to 0.108, with an average of 0.038. Both acetone and methyl ethyl ketone (MEK) were essential for producing the acetylperoxy radicals (PA) and subsequently PAN in Ziyang in winter, and PAN concentrations at the sampling site exhibited more sensitivity to volatile organic compound (VOC) concentrations than nitrogen oxide (NOx) levels. Therefore, management should focus on reducing VOCs emissions, in particular those that produce acetone and MEK through photolysis and oxidizing reactions. In addition, the influence of relative humidity (RH) on the heterogeneous reactions between PAN and PM2.5 in the atmospheric environment may have led to the strong correlation between observed PM2.5 and PAN in Ziyang in winter. Furthermore, a typical air pollution event was observed on 17-18 December 2012, which Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) and PSCF simulations suggest that it was caused by the local formation and the regional transport of polluted air masses from Hanzhong, Nanchong, and Chengdu.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Peracetic Acid/analogs & derivatives , Air Pollution/analysis , Air Pollution/prevention & control , China , Peracetic Acid/analysis , Seasons
17.
Int J Occup Med Environ Health ; 31(4): 527-535, 2018 Jul 04.
Article in English | MEDLINE | ID: mdl-29411781

ABSTRACT

OBJECTIVES: In order to assess short-term exposure to peracetic acid (PAA) in disinfection processes, the Authors compared 4 industrial hygiene monitoring methods to evaluate their proficiency in measuring airborne PAA concentrations. MATERIAL AND METHODS: An active sampling by basic silica gel impregnated with methyl p-tolyl sulfoxide (MTSO), a passive solid phase micro-extraction technique using methyl p-tolyl sulfide (MTS) as on-fiber derivatization reagent, an electrochemical direct-reading PAA monitor, and a novel visual test strip PAA detector doped with 2,2'-azino-bis (3-ethylbenzothiazoline)-6-sulfonate were evaluated and tested over the range of 0.06-16 mg/m3, using dynamically generated PAA air concentrations. RESULTS: The linear regression analysis of linearity and accuracy showed that the 4 methods were suitable for PAA monitoring. Peracetic acid monitoring in several use applications showed that the PAA concentration (1.8 mg/m3) was immediately dangerous to life or health as proposed by the National Institute of Occupational Safety and Health, and was frequently exceeded in wastewater treatment (up to 7.33 mg/m3), and sometimes during food and beverage processes and hospital high-level disinfection operations (up to 6.8 mg/m3). CONCLUSIONS: The methods were suitable for the quick assessment of acute exposure in PAA environmental monitoring and can assist in improving safety and air quality in the workplace where this disinfectant is used. These monitoring methods allowed the evaluation of changes to work out practices to reduce PAA vapor concentrations during the operations when workers are potentially overexposed to this strong antioxidant agent. Int J Occup Med Environ Health 2018;31(4):527-535.


Subject(s)
Air Pollutants, Occupational/analysis , Occupational Exposure/analysis , Peracetic Acid/analysis , Disinfectants/analysis , Electrochemical Techniques/methods , Environmental Monitoring/methods , Food-Processing Industry , Gas Chromatography-Mass Spectrometry , Hospitals , Humans , Waste Disposal, Fluid
18.
Toxicol Ind Health ; 33(12): 922-929, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29137570

ABSTRACT

Peracetic acid (PAA) is a corrosive chemical with a pungent odor, which is extensively used in occupational settings and causes various health hazards in exposed workers. Currently, there is no US government agency recommended method that could be applied universally for the sampling and analysis of PAA. Legacy methods for determining airborne PAA vapor levels frequently suffered from cross-reactivity with other chemicals, particularly hydrogen peroxide (H2O2). Therefore, to remove the confounding factor of cross-reactivity, a new viable, sensitive method was developed for assessment of PAA exposure levels, based on the differential reaction kinetics of PAA with methyl p-tolylsulfide (MTS), relative to H2O2, to preferentially derive methyl p-tolysulfoxide (MTSO). By quantifying MTSO concentration produced in the liquid capture solution from an air sampler, using an internal standard, and utilizing the reaction stoichiometry of PAA and MTS, the original airborne concentration of PAA is determined. After refining this liquid trap high-performance liquid chromatography (HPLC) method in the laboratory, it was tested in five workplace settings where PAA products were used. PAA levels ranged from the detection limit of 0.013 parts per million (ppm) to 0.4 ppm. The results indicate a viable and potentially dependable method to assess the concentrations of PAA vapors under occupational exposure scenarios, though only a small number of field measurements were taken while field testing this method. However, the low limit of detection and precision offered by this method makes it a strong candidate for further testing and validation to expand the uses of this liquid trap HPLC method.


Subject(s)
Air Pollutants, Occupational/analysis , Environmental Monitoring/methods , Peracetic Acid/analysis , Chromatography, High Pressure Liquid , Limit of Detection
19.
Ann Work Expo Health ; 62(1): 28-40, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29077798

ABSTRACT

Cleaning and disinfecting products consisting of a mixture of hydrogen peroxide (HP), peracetic acid (PAA), and acetic acid (AA) are widely used as sporicidal agents in health care, childcare, agricultural, food service, and food production industries. HP and PAA are strong oxidants and their mixture is a recognized asthmagen. However, few exposure assessment studies to date have measured HP, PAA, and AA in a health care setting. In 2015, we performed a health and exposure assessment at a hospital where a new sporicidal product, consisting of HP, PAA, and AA was introduced 16 months prior. We collected 49 full-shift time-weighted average (TWA) air samples and analyzed samples for HP, AA, and PAA content. Study participants were observed while they performed cleaning duties, and duration and frequency of cleaning product use was recorded. Acute upper airway, eye, and lower airway symptoms were recorded in a post-shift survey (n = 50). A subset of 35 cleaning staff also completed an extended questionnaire that assessed symptoms reported by workers as regularly occurring or as having occurred in the previous 12 months. Air samples for HP (range: 5.5 to 511.4 ppb) and AA (range: 6.7 to 530.3 ppb) were all below established US occupational exposure limits (OEL). To date, no full-shift TWA OEL for PAA has been established in the United States, however an OEL of 0.2 ppm has been suggested by several research groups. Air samples for PAA ranged from 1.1 to 48.0 ppb and were well below the suggested OEL of 0.2 ppm. Hospital cleaning staff using a sporicidal product containing HP, PAA, and AA reported work-shift eye (44%), upper airway (58%), and lower airway (34%) symptoms. Acute nasal and eye irritation were significantly positively associated with increased exposure to the mixture of the two oxidants: HP and PAA, as well as the total mixture (TM)of HP, PAA, and AA. Shortness of breath when hurrying on level ground or walking up a slight hill was significantly associated with increased exposure to the oxidant mixture (P = 0.017), as well as the TM (P = 0.026). Our results suggest that exposure to a product containing HP, PAA, and AA contributed to eye and respiratory symptoms reported by hospital cleaning staff at low levels of measured exposure.


Subject(s)
Acetic Acid , Air Pollutants, Occupational , Disinfectants , Hydrogen Peroxide , Occupational Exposure , Peracetic Acid , Personnel, Hospital/statistics & numerical data , Respiration Disorders , Acetic Acid/analysis , Acetic Acid/toxicity , Adult , Air Pollutants, Occupational/analysis , Air Pollutants, Occupational/toxicity , Disinfectants/analysis , Disinfectants/toxicity , Female , Humans , Hydrogen Peroxide/analysis , Hydrogen Peroxide/toxicity , Male , Occupational Exposure/adverse effects , Occupational Exposure/analysis , Peracetic Acid/analysis , Peracetic Acid/toxicity , Respiration Disorders/chemically induced , Respiration Disorders/epidemiology
20.
Chemosphere ; 189: 349-356, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28942261

ABSTRACT

Free chlorine is a commonly used disinfectant in drinking water treatment. However, disinfection by-products (DBPs) are formed during water disinfection. Haloacetic acids (HAAs) and trihalomethanes (THMs) are two major groups of DBPs. Iodo-HAAs and iodo-THMs (I-HAAs and I-THMs) are formed during the disinfection of the water containing high levels of iodide and are much more toxic than their chlorinated and brominated analogs. Peracetic acid (PAA) is a strong antimicrobial disinfectant that is expected to reduce the formation of HAAs and THMs during disinfection. In this study, the formations of thirteen HAAs and ten THMs, including the iodinated forms, have been investigated during PAA disinfection and chlorination as the comparison. The DBP formations under different iodide concentrations, pHs, and contact times were systematically investigated. Two types of commercial PAAs containing different concentrations of PAA and hydrogen peroxide (H2O2) were studied. A solid-phase microextraction gas chromatography-mass spectrometry method was upgraded for THM analysis including I-THMs. HAAs were analyzed by following a recently developed high performance ion chromatography-tandem mass spectrometry method. Results show that the ratio of PAA and H2O2 concentration significantly affect the formation of I-THMs and I-HAAs. During PAA disinfection with lower PAA than H2O2, no detectable levels of THMs and HAAs were observed. During PAA disinfection with higher PAA than H2O2, low levels of monoiodoacetic acid, diiodoacetic acid, and iodoform were formed, and these levels were enhanced with the increase of iodide concentration. No significant quantities of chloro- or bromo-THMs and HAAs were formed during PAA disinfection treatment.


Subject(s)
Acetic Acid/analysis , Trihalomethanes/analysis , Water Pollutants, Chemical/analysis , Water Purification/methods , Chlorine/chemistry , Disinfectants/chemistry , Disinfection/methods , Drinking Water/analysis , Gas Chromatography-Mass Spectrometry , Halogenation , Hydrocarbons, Iodinated , Hydrogen Peroxide/analysis , Iodides , Models, Chemical , Peracetic Acid/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...