Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.476
Filter
1.
Environ Sci Pollut Res Int ; 31(23): 34459-34472, 2024 May.
Article in English | MEDLINE | ID: mdl-38703319

ABSTRACT

Associations of perchlorate, thiocyanate, and nitrate exposures with bone mineral density (BMD) in adults have not previously been studied. This study aimed to estimate the associations of individual and concurrent exposure of the three chemicals with adult BMD. Based on National Health and Nutrition Examination Survey (NHANES, 2011-2018), 1618 non-pregnant adults (age ≥ 20 years and 47.0% female) were included in this study. Survey-weighted linear regression models were used to estimate individual urinary perchlorate, thiocyanate, and nitrate concentrations with lumbar spine BMD and total BMD in adults. Then, weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR) models were conducted to evaluate associations of co-occurrence of the three chemicals with adult BMD. In all participants, nitrate exposure was inversely associated with lumbar spine BMD (ß = - 0.054, 95%CI: - 0.097, - 0.010). In stratification analyses, significant inverse associations were observed in female and participants older than 40 years old. In WQS regressions, significant negative associations of the weighted sum of the three chemicals with total and lumbar spine BMD (ß = - 0.014, 95%CI: - 0.021, - 0.007; ß = - 0.011, 95%CI: - 0.019, - 0.004, respectively) were found, and the dominant contributor was nitrate. In the BKMR models, non-linear dose-response associations of nitrate exposure with lumbar spine and total BMD were observed. These findings suggested that environmental perchlorate, thiocyanate, and nitrate exposure may reduce adult BMD and nitrate is the main contributor.


Subject(s)
Bone Density , Environmental Exposure , Nitrates , Perchlorates , Thiocyanates , Humans , Thiocyanates/urine , Perchlorates/urine , Cross-Sectional Studies , Adult , Female , Nitrates/analysis , Male , Bone Density/drug effects , Middle Aged , Nutrition Surveys , United States , Young Adult
2.
Nat Commun ; 15(1): 3863, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769315

ABSTRACT

Mars is a particularly attractive candidate among known astronomical objects to potentially host life. Results from space exploration missions have provided insights into Martian geochemistry that indicate oxychlorine species, particularly perchlorate, are ubiquitous features of the Martian geochemical landscape. Perchlorate presents potential obstacles for known forms of life due to its toxicity. However, it can also provide potential benefits, such as producing brines by deliquescence, like those thought to exist on present-day Mars. Here we show perchlorate brines support folding and catalysis of functional RNAs, while inactivating representative protein enzymes. Additionally, we show perchlorate and other oxychlorine species enable ribozyme functions, including homeostasis-like regulatory behavior and ribozyme-catalyzed chlorination of organic molecules. We suggest nucleic acids are uniquely well-suited to hypersaline Martian environments. Furthermore, Martian near- or subsurface oxychlorine brines, and brines found in potential lifeforms, could provide a unique niche for biomolecular evolution.


Subject(s)
Evolution, Molecular , Extraterrestrial Environment , Mars , Perchlorates , RNA, Catalytic , RNA, Catalytic/metabolism , RNA, Catalytic/genetics , Perchlorates/metabolism
3.
Sci Rep ; 14(1): 11537, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773211

ABSTRACT

The Martian surface and shallow subsurface lacks stable liquid water, yet hygroscopic salts in the regolith may enable the transient formation of liquid brines. This study investigated the combined impact of water scarcity, UV exposure, and regolith depth on microbial survival under Mars-like environmental conditions. Both vegetative cells of Debaryomyces hansenii and Planococcus halocryophilus, alongside with spores of Aspergillus niger, were exposed to an experimental chamber simulating Martian environmental conditions (constant temperatures of about - 11 °C, low pressure of approximately 6 mbar, a CO2 atmosphere, and 2 h of daily UV irradiation). We evaluated colony-forming units (CFU) and water content at three different regolith depths before and after exposure periods of 3 and 7 days, respectively. Each organism was tested under three conditions: one without the addition of salts to the regolith, one containing sodium chlorate, and one with sodium perchlorate. Our results reveal that the residual water content after the exposure experiments increased with regolith depth, along with the organism survival rates in chlorate-containing and salt-free samples. The survival rates of the three organisms in perchlorate-containing regolith were consistently lower for all organisms and depths compared to chlorate, with the most significant difference being observed at a depth of 10-12 cm, which corresponds to the depth with the highest residual water content. The postulated reason for this is an increase in the salt concentration at this depth due to the freezing of water, showing that for these organisms, perchlorate brines are more toxic than chlorate brines under the experimental conditions. This underscores the significance of chlorate salts when considering the habitability of Martian environments.


Subject(s)
Chlorates , Extraterrestrial Environment , Mars , Perchlorates , Perchlorates/metabolism , Chlorates/metabolism , Aspergillus niger/metabolism , Saccharomycetales/metabolism , Water/chemistry , Microbial Viability
4.
Commun Biol ; 7(1): 588, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755264

ABSTRACT

Although a low temperature limit for life has not been established, it is thought that there exists a physical limit imposed by the onset of intracellular vitrification, typically occurring at ~-20 °C for unicellular organisms. Here, we show, through differential scanning calorimetry, that molar concentrations of magnesium perchlorate can depress the intracellular vitrification point of Bacillus subtilis cells to temperatures much lower than those previously reported. At 2.5 M Mg(ClO4)2, the peak vitrification temperature was lowered to -83 °C. Our results show that inorganic eutectic salts can in principle maintain liquid water in cells at much lower temperatures than those previously claimed as a lower limit to life, raising the prospects of active biochemical processes in low temperature natural settings. Our results may have implications for the habitability of Mars, where perchlorate salts are pervasive and potentially other terrestrial and extraterrestrial, cryosphere environments.


Subject(s)
Bacillus subtilis , Perchlorates , Bacillus subtilis/metabolism , Bacillus subtilis/drug effects , Bacillus subtilis/physiology , Perchlorates/chemistry , Cold Temperature , Vitrification , Calorimetry, Differential Scanning
5.
Chemosphere ; 355: 141855, 2024 May.
Article in English | MEDLINE | ID: mdl-38570051

ABSTRACT

Wastewater polluted by organics can be treated by using electro-generated active chlorine, even if this promising route presents some important drawbacks such as the production of chlorinated by-products. Here, for the first time, this process was studied in a microfluidic electrochemical reactor with a very small inter-electrode distance (145 µm) using a water solution of NaCl and phenol and a BDD anode. The potential production of chloroacetic acids, chlorophenols, carboxylic acids, chlorate and perchlorate was carefully evaluated. It was shown, for the first time, up to our knowledge, that the use of the microfluidic device allows to perform the treatment under a continuous mode and to achieve higher current efficiencies and a lower generation of some important by-products such as chlorate and perchlorate. As an example, the use of the microfluidic apparatus equipped with an Ag cathode allowed to achieve a high removal of total organic carbon (about 76%) coupled with a current efficiency of 17% and the production of a small amount of chlorate (about 30 ppm) and no perchlorate. The effect of many parameters (namely, flow rate, current density and nature of cathode) was also investigated.


Subject(s)
Chlorine , Water Pollutants, Chemical , Electrochemical Techniques , Perchlorates , Microfluidics , Water , Chlorates , Chlorides , Oxidation-Reduction , Electrodes , Water Pollutants, Chemical/analysis
6.
Extremophiles ; 28(2): 25, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664270

ABSTRACT

We surveyed the presence of perchlorate-reducing microorganisms in available metagenomic data of halite environments from the Atacama Desert, an extreme environment characterized by high perchlorate concentrations, intense ultraviolet radiation, saline and oxidizing soils, and severe desiccation. While the presence of perchlorate might suggest a broad community of perchlorate reducers or a high abundance of a dominant taxa, our search reveals a scarce presence. In fact, we identified only one halophilic species, Salinibacter sp003022435, carrying the pcrA and pcrC genes, represented in low abundance. Moreover, we also discovered some napA genes and organisms carrying the nitrate reductase nasB gene, which hints at the possibility of cryptic perchlorate reduction occurring in these ecosystems. Our findings contribute with the knowledge of perchlorate reduction metabolism potentially occurring in halites from Atacama Desert and point towards promising future research into the perchlorate-reducing mechanism in Salinibacter, a common halophilic bacterium found in hypersaline ecosystems, whose metabolic potential remains largely unknown.


Subject(s)
Desert Climate , Extreme Environments , Oxidation-Reduction , Perchlorates , Perchlorates/metabolism , Metagenome , Microbiota
7.
Wei Sheng Yan Jiu ; 53(1): 102-108, 2024 Jan.
Article in Chinese | MEDLINE | ID: mdl-38443180

ABSTRACT

OBJECTIVE: To establish a method for determination of perchlorate and chlorate in drinks by ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS) based on isotopic internal standard method. METHODS: The perchlorate and chlorate residue in liquid drinks were extracted with methanol, in solid drinks with acetic acid solution, then centrifuged. The supernatant was cleaned-up with PSA/C18 cleanup tube. The separation of perchlorate and chlorate was carried out on a Acquity CSH fluorophenyl column(100 mm×2.1mm, 1.7 µm) and the detection was performed with tandem mass spectrometry with internal standard method for quantification. RESULTS: The peak area ratio of perchlorate and chlorate had a good linear relationship with their mass concentration within their respective linear ranges, with correlation coefficients(r) greater than 0.999. The limits of detection of perchlorate and chlorate were 0.2and 1 µg/L respectively and the limits of quantification were 0.5 and 3 µg/L respectively. The mean recoveries of two compounds were from 84.0% to 105.5% with relative standard deviations from 4.2% to 17.0% and 82.7% to 112.1% with relative standard deviations from 5.5% to 18.4%(n=6), respectively. The perchlorates in 11 kinds of beverage samples were 0.53-4.12 µg/L, chlorates were 3.27-61.86 µg/L. CONCLUSION: This method is simple, sensitive, accurate and reliable, which is suitable for the determination of perchlorate and chlorate in drinks.


Subject(s)
Chlorates , Perchlorates , Chromatography, Liquid , Tandem Mass Spectrometry
8.
J Inorg Biochem ; 255: 112538, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38547785

ABSTRACT

A novel hexadentate bishydrazone ligand, 1,10-bis(di(2-pyridyl)ketone) adipic acid dihydrazone (H2L1) is synthesized and characterized. With copper perchlorate as a catalytic oxidant, the ligand undergoes oxidative cyclisation and resulted in the formation of an unusual copper complex [Cu(L1a)2Cl]ClO4 (1), where L1a is 3-(2-pyridyl)triazolo[1,5-a]-pyridine. The Cu(II) complex was characterized physicochemically, while the molecular structure was confirmed by single crystal X- ray diffraction. In the complex cation, copper(II) is in a distorted trigonal bipyramidal coordination environment, surrounded by two triazolo nitrogen atoms and two pyridyl nitrogen atoms of L1a and a chloride atom. The relevant non covalent intermolecular interactions of the complex quantified using Hirshfeld surface analysis reveals that the O···H/ H···O (27.2%) contacts has the highest contribution. The solution phase bandgaps of the compounds were calculated using Tauc plot, whereas the solid-state band gaps were calculated by Kubelka-Munk model. DFT studies of the compounds indicate that the theoretical calculations corroborate with the experimental data. DPPH antioxidant activity assay of the synthesized compounds showed that the proligand H2L1 has a lower IC50 value (24.1 µM) than that of complex 1 (29.7 µM). The in vitro antibacterial activity was evaluated against Escherichia coli and Staphylococcus aureus, which revealed that complex 1 have excellent activity against E. coli, much as the standard ciprofloxacin. The cytotoxic efficacy investigation of the compounds against A549 (lung) adenocarcinoma cells suggested that H2L1 has more anticancer activity (IC50 value of 149.08 µM) than that of complex 1(IC50 value of 176.70 µM).


Subject(s)
Copper , Organometallic Compounds , Copper/chemistry , Organometallic Compounds/chemistry , Ligands , Perchlorates , Escherichia coli , Nitrogen , Oxidative Stress , Crystallography, X-Ray
9.
Environ Sci Pollut Res Int ; 31(17): 25929-25939, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38488916

ABSTRACT

In a laboratory scale, an anaerobic baffled reactor (ABR) consisting of eight compartments, the heterotrophic combining sulfur autotrophic processes under different reflux ratios were constructed to achieve effective perchlorate removal and alleviate sulfur disproportionation reaction. Perchlorate was efficiently removed with effluent perchlorate concentration below 0.5 µg/L when the influent perchlorate concentration was 1030 mg/L during stages I ~ V, indicating that heterotrophic combining sulfur autotrophic perchlorate reduction processes can effectively achieve high concentration perchlorate removal. Furthermore, the 100% reflux ratio could reduce the contact time between sulfur particles and water; thus, the sulfur disproportionation reaction was inhibited. However, the inhibition effect of reflux on sulfur disproportionation was attenuated due to dilute perchlorate concentration when a reflux ratio of 150% and 200% was implemented. Meanwhile, the content of extracellular polymeric substances (EPS) in the heterotrophic unit (36.79 ~ 45.71 mg/g VSS) was higher than that in the sulfur autotrophic unit (22.19 ~ 25.77 mg/g VSS), indicating that high concentration perchlorate stress in the heterotrophic unit promoted EPS secretion. Thereinto, the PN content of sulfur autotrophic unit decreased in stage III and stage V due to decreasing perchlorate concentration in the autotrophic unit. Meanwhile, the PS content increased with increasing reflux in the autotrophic unit, which was conducive to the formation of biofilm. Furthermore, the high-throughput sequencing result showed that Proteobacteria, Chloroflexi, Firmicutes, and Bacteroidetes were the dominant phyla and Longilinea, Diaphorobacter, Acinetobacter, and Nitrobacter were the dominant genus in ABR, which were associated with heterotrophic or autotrophic perchlorate reduction and beneficial for effective perchlorate removal. The study indicated that reflux was a reasonable strategy for alleviating sulfur disproportionation in heterotrophic combining sulfur autotrophic perchlorate removal processes.


Subject(s)
Bioreactors , Perchlorates , Anaerobiosis , Bioreactors/microbiology , Autotrophic Processes , Heterotrophic Processes , Sulfur , Denitrification , Nitrates
10.
Appl Microbiol Biotechnol ; 108(1): 266, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38498184

ABSTRACT

Lipoxygenases (LOXs) catalyze dioxygenation of polyunsaturated fatty acids (PUFAs) into fatty acid hydroperoxides (FAHPs), which can be further transformed into a number of value-added compounds. LOXs have garnered interest as biocatalysts for various industrial applications. Therefore, a high-throughput LOX activity assay is essential to evaluate their performance under different conditions. This study aimed to enhance the suitability of the ferrous-oxidized xylenol orange (FOX) assay for screening LOX activity across a wide pH range with different PUFAs. The narrow linear detection range of the standard FOX assay restricts its utility in screening LOX activity. To address this, the concentration of perchloric acid in the xylenol orange reagent was adjusted. The modified assay exhibited a fivefold expansion in the linear detection range for hydroperoxides and accommodated samples with pH values ranging from 3 to 10. The assay could quantify various hydroperoxide species, indicating its applicability in assessing LOX substrate preferences. Due to sensitivity to pH, buffer types, and hydroperoxide species, the assay required calibration using the respective standard compound diluted in the same buffer as the measured sample. The use of correction factors is suggested when financial constraints limit the use of FAHP standard compounds in routine LOX substrate preference analysis. FAHP quantification by the modified FOX assay aligned well with results obtained using the commonly used conjugated diene method, while offering a quicker and broader sample pH range assessment. Thus, the modified FOX assay can be used as a reliable high-throughput screening method for determining LOX activity. KEY POINTS: • Modifying perchloric acid level in FOX reagent expands its linear detection range • The modified FOX assay is applicable for screening LOX activity in a wide pH range • The modified FOX assay effectively assesses substrate specificity of LOX.


Subject(s)
Hydrogen Peroxide , Perchlorates , Phenols , Sulfoxides , High-Throughput Screening Assays , Xylenes/chemistry , Lipoxygenases
11.
Front Immunol ; 15: 1318737, 2024.
Article in English | MEDLINE | ID: mdl-38495893

ABSTRACT

Background: Perchlorates, nitrates, and thiocyanates are prevalent environmental chemicals. Their potential association with arthritis remains unexplored. This study aimed to investigate the link between perchlorate, nitrate, and thiocyanate exposure and arthritis, as well as the potential role of inflammation in this context. Methods: Utilizing the National Health and Nutrition Examination Survey (NHANES) data spanning from 2005 to 2016, the study enrolled 6597 participants aged 20-59 (young and middle-aged), of which 1045 had arthritis. Employing multivariate logistic regression modeling, multiple linear regression models, restricted cubic spline analysis, Bayesian kernel machine regression (BKMR) modeling, and mediation analysis, we assessed these relationships. Results: There was a significant positive association between elevated urinary thiocyanate levels and arthritis risk [1.19 (1.11, 1.28)]. This association held true across subgroups of osteoarthritis (OA) [1.24 (1.10, 1.40)] and rheumatoid arthritis (RA) [1.33 (1.15, 1.55)]. Thiocyanate levels displayed a dose-dependent relationship with arthritis risk, showing a linear trend (nonlinear P > 0.05). Conversely, perchlorate and nitrate did not exhibit associations with arthritis risk. BKMR outcomes highlighted a positive correlation between a mixture of perchlorate, nitrate, and thiocyanate and arthritis risk, with thiocyanate being the predominant predictors. Moreover, BKMR and generalized linear model analyses unveiled no significant synergistic effect of urinary perchlorate, nitrate, and thiocyanate on arthritis risk. Furthermore, thiocyanate exposure has been linked to elevated levels of inflammatory indicators (white blood cell, neutrophils, lymphocytes, and systemic immune-inflammatory index (SII)). Conclusion: Heightened thiocyanate exposure may be linked to elevated arthritis risk, either single or in combined effects. Additionally, thiocyanate exposure is associated with heightened inflammation levels.


Subject(s)
Arthritis , Nitrates , Adult , Middle Aged , Humans , Nitrates/adverse effects , Nitrates/urine , Thiocyanates/urine , Perchlorates/adverse effects , Perchlorates/urine , Nutrition Surveys , Bayes Theorem , Inflammation/epidemiology , Arthritis/epidemiology
12.
Ophthalmic Plast Reconstr Surg ; 40(2): 198-200, 2024.
Article in English | MEDLINE | ID: mdl-38427834

ABSTRACT

PURPOSE: To investigate the ocular safety profile of topical perchlorate as a potential preventive treatment for nasolacrimal obstruction associated with excessive use of radioactive iodine therapy. METHODS: Nine Wistar male rats (18 eyes) were randomly assigned to receive an ocular application (topical eye drop on the OD, 3 times a day for 5 days) consisting of either: 1) sterile saline solution, 2) 30 mg/ml NaClO4 or 3) 30 mg/ml KClO4. The rat eyes were examined daily for corneal cloudiness/clarity, discharge, mucous secretions, conjunctival injection, eyelid erythema, and/or changes in behavior. Seven days after the first dose, the rats were euthanized and OU were harvested, fixed, embedded in paraffin, and stained with H&E and Masson's trichrome using standard techniques. RESULTS: The data collected over the 7 days revealed no behavior changes or ocular complications in any of the 3 study groups. Pathologic analysis of the corneas revealed normal findings on all groups without signs of inflammation, fibrosis, or any other abnormality, and no difference between the treated and control eyes. CONCLUSIONS: The findings of this study suggest that the use of topical perchlorate is safe to use on eyes in high concentrations. The efficacy of this compound in minimizing fibrosis of the nasolacrimal sac and duct warrants further study.


Subject(s)
Iodine Radioisotopes , Thyroid Neoplasms , Male , Rats , Animals , Rats, Wistar , Perchlorates/toxicity , Cornea , Fibrosis
13.
J Hazard Mater ; 466: 133683, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38310847

ABSTRACT

The conventional perchlorate (ClO4-) reduction typically necessitates anaerobic conditions. However, in this study, we observed efficient ClO4- reduction using CH4 as the electron donor in a microaerobic environment. The maximum ClO4- removal flux of 2.18 g/m2·d was achieved in CH4-based biofilm. The kinetics of ClO4- reduction showed significant differences, with trace oxygen increasing the reduction rate of ClO4-, whereas oxygen levels exceeding 2 mg/L decelerated the ClO4- reduction. In the absence of exogenous oxygen, anaerobic methanotrophic (ANME) archaea contribute more than 80% electrons through the reverse methanogenesis pathway for ClO4- reduction. Simultaneously, microorganisms activate CH4 by utilizing oxygen generated from chlorite (ClO2-) disproportionation. In the presence of exogenous oxygen, methane oxidizers predominantly consume oxygen to drive the aerobic oxidation of methane. It is indicated that methane oxidizers and perchlorate reducing bacteria can form aggregates to resist external oxygen shocks and achieve efficient ClO4- reduction under microaerobic condition. These findings provide new insights into biological CH4 mitigation and ClO4- removal in hypoxic environment.


Subject(s)
Methane , Perchlorates , Methane/metabolism , Perchlorates/metabolism , Archaea/metabolism , Oxidation-Reduction , Anaerobiosis , Oxygen/metabolism
14.
Environ Sci Pollut Res Int ; 31(6): 8510-8518, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38182951

ABSTRACT

Chlorate and perchlorate are emerging pollutants that may interfere with thyroid function. Since they are highly water soluble, chlorate and perchlorate in tea leaves cause health concerns but have scarcely been studied. In this study, chlorate and perchlorate concentrations in 216 tea samples from different regions of China were determined. Perchlorate was detected in all the samples with a median concentration of 44.1 µg kg-1, while the chlorate detection frequency was 15.7%. We observed regional differences in perchlorate contents in tea leaves, with the highest quantity found in the central region of China. Except for dark tea, the concentration of perchlorate in tea infusions decreased with the increased number of times the tea leaves were brewed. The hazard quotients (HQs) of chlorate and perchlorate in all the samples were less than 1, suggesting negligible health risks caused by these pollutants from tea consumption. To the best of our knowledge, this is the first study to investigate chlorate and perchlorate contamination in tea infusions by simulating brewing behavior.


Subject(s)
Chlorates , Environmental Pollutants , Humans , Chlorates/analysis , Perchlorates/analysis , Tea , China
15.
Int J Biol Macromol ; 255: 128125, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37984571

ABSTRACT

Transforming lignin into aromatic monomers is critically attractive to develop green and sustainable energy supplies. However, the usage of the additional catalysts like metal or base/acid is commonly limited by the caused repolymerized and environmental issues. The key step is to mediate electron transfer in lignin to trigger lignin C-C/C-O bonds cleavage without the catalysts mentioned above. Here, we report that the ionic liquids [BMim][ClO4] was found to trigger lignin electron transfer to cleave the C-C/C-O bonds for aromatic monomers without any additional catalyst. The proton transfer from [BMim]+ to [ClO4]- could polarize the anion and decrease its structure stability, upon which the active hydroxyl radical generated and induced lignin C-C/C-O bonds fragmentation via free radical-mediated routes with the assistance of photothermal synergism. About 4.4 wt% yields of aromatic monomers, mainly composed of vanillin and acetosyringone, are afforded in [BMim][ClO4] under UV-light irradiation in the air at 80 °C. This work opens the way to produce value-added aromatic monomers from lignin using an eco-friendly, energy-efficient, and simple route that may contribute to the sustainable utilization of renewable natural resources.


Subject(s)
Ionic Liquids , Ionic Liquids/chemistry , Lignin/chemistry , Alkalies , Perchlorates , Catalysis
16.
J Hazard Mater ; 465: 133226, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38103290

ABSTRACT

The release and accumulation of perchlorate into the environment have raised concerns about safety to food, however, the dietary risk of perchlorate in honey have not yet received attention. Herein, we investigated the pollution characteristics and assessed the human health risks of perchlorate in honey from China. A total of 151 honey samples collected from 20 provinces of China were analyzed, and overall detection frequencies was 95.4 %. The levels of perchlorate ranged from below limit of quantitation to 612 µg/kg, with a mean value of 34.5 µg/kg. Lychee honey samples had the highest mean perchlorate concentration (163 µg/kg). The mean concentration of perchlorate in the honey samples produced in South China was significantly higher than that in honey from Southwest China, East China and North China (P < 0.05). The health risk assessment showed that mean hazard quotient (HQ) values of different honey for children (ranged from 0.0108 to 0.400) and adults (ranged from 0.0123 to 0.453) were less than 1. This result indicated that mean pollution levels of perchlorate in various honey were unlikely to pose health risk. However, perchlorate concentrations in two lychee honey samples had associated HQ values were >1, suggesting potential health risks. This work not only offers valuable information for honey consumer, but also important reference for comparison of honey samples in the future. ENVIRONMENTAL IMPLICATION: Perchlorate contamination has become a hot environmental issue in connection with human health due to its potential thyroid toxicity and widespread occurrence in environment and foods. Honey not only was widely beloved by consumers worldwide but also considered a potential indicator of environmental pollution. Here, a national investigation and risk assessment of perchlorate levels in different types of honey from China was conducted. The results describe the perchlorate contamination were extensive in honey samples, mean levels of perchlorate in various honey were unlikely to cause health risks. However, significantly high level of contamination in lychee honey should be of concern.


Subject(s)
Honey , Child , Adult , Humans , Perchlorates , Environmental Pollution , China , Risk Assessment
17.
Toxicol Sci ; 198(1): 113-127, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38145495

ABSTRACT

The environmental contaminant perchlorate impairs the synthesis of thyroid hormones by reducing iodine uptake into the thyroid gland. Despite this known action, moderate doses of perchlorate do not significantly alter serum thyroid hormone in rat pups born to exposed dams. We examined perchlorate dosimetry and responsivity of the thyroid gland and brain in offspring following maternal exposure to perchlorate. Pregnant rat dams were delivered perchlorate in drinking water (0, 30, 100, 300, 1000 ppm) from gestational day 6 to postnatal day (PN) 21. Perchlorate was present in the placenta, milk, and serum, the latter declining in pups over the course of lactation. Serum and brain thyroid hormone were reduced in pups at birth but recovered to control levels by PN2. Dramatic upregulation of Nis was observed in the thyroid gland of the exposed pup. Despite the return of serum thyroid hormone to control levels by PN2, expression of several TH-responsive genes was altered in the PN14 pup brain. Contextual fear learning was unimpaired in the adults, supporting previous reports. Declining levels of serum perchlorate and a profound upregulation of Nis gene expression in the thyroid gland are consistent with the rapid return to the euthyroid state in the neonate. However, despite this recovery, thyroid hormone insufficiencies in serum and brain beginning in utero and present at birth appear sufficient to alter TH action in the fetus and subsequent trajectory of brain development. Biomarkers of that altered trajectory remain in the brain of the neonate, demonstrating that perchlorate is not devoid of effects on the developing brain.


Subject(s)
Quaternary Ammonium Compounds , Resilience, Psychological , Thyroid Gland , Pregnancy , Female , Rats , Animals , Perchlorates/toxicity , Perchlorates/metabolism , Animals, Newborn , Thyroid Hormones
18.
Appl Microbiol Biotechnol ; 108(1): 22, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38159121

ABSTRACT

Three new strains of dissimilatory perchlorate-reducing bacteria (DPRB), QD19-16, QD1-5, and P3-1, were isolated from an active sludge. Phylogenetic trees based on 16S rRNA genes indicated that QD19-16, QD1-5, and P3-1 belonged to Brucella, Acidovorax, and Citrobacter, respectively, expanding the distribution of DPRB in the Proteobacteria. The three strains were gram-negative and facultative anaerobes with rod-shaped cells without flagella, which were 1.0-1.6 µm long and 0.5-0.6 µm wide. The three DPRB strains utilized similar broad spectrum of electron donors and acceptors and demonstrated a similar capability to reduce perchlorate within 6 days. The enzyme activity of perchlorate reductase in QD19-16 toward chlorate was higher than that toward perchlorate. The high sequence similarity of the perchlorate reductase operon and chlorite dismutase genes in the perchlorate reduction genomic islands (PRI) of the three strains implied that they were monophyletic origin from a common ancestral PRI. Two transposase genes (tnp1 and tnp2) were found in the PRIs of strain QD19-16 and QD1-5, but were absent in the strain P3-1 PRI. The presence of fragments of IR sequences in the P3-1 PRI suggested that P3-1 PRI had previously contained these two tnp genes. Therefore, it is plausible to suggest that a common ancestral PRI transferred across the strains Brucella sp. QD19-16, Acidovorax sp. QD1-5, and Citrobacter sp. P3-1 through horizontal gene transfer, facilitated by transposases. These results provided a direct evidence of horizontal gene transfer of PRI that could jump across phylogenetically unrelated bacteria through transposase. KEY POINTS: • Three new DPRB strains can effectively remove high concentration of perchlorate. • The PRIs of three DPRB strains are acquired from a single ancestral PRI. • PRIs are incorporated into different bacteria genome through HGT by transposase.


Subject(s)
Genomic Islands , Perchlorates , Phylogeny , Oxidation-Reduction , Gene Transfer, Horizontal , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Oxidoreductases/genetics , Ecosystem , Transposases/genetics
19.
Chemosphere ; 346: 140662, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37949182

ABSTRACT

Perchlorate, a widespread environmental contaminant originating from various industrial applications, agricultural practices, and natural sources, poses potential risks to ecosystems and human health. While previous studies have highlighted its influence on the thyroid endocrine system and its impact on gonadal maturation, reproduction, and sex hormone synthesis, the specific interplay between thyroid and steroid hormones, in this context, remains largely unexplored. Therefore, this study was undertaken to investigate the adverse effects and underlying mechanisms triggered by exposure to sodium perchlorate (SP) on reproductive endocrine activity in zebrafish. For 21 d, the fish were exposed to test SP concentrations (0, 3, 30, 300 mg/L), which were determined based on the exposure concentrations that induced various toxic effects in the fish, considering naturally occurring concentrations. Exposure to SP, except at 3 mg/L in males, significantly decreased the production of thyroid hormone (TH) in both female and male zebrafish. Moreover, gonadal steroid levels were markedly reduced in both sexes. The expression of hepatic vitellogenin (VTG) mRNA in female zebrafish was significantly decreased, whereas aromatase activity in male zebrafish was significantly elevated in the SP exposure groups. The reduced levels of THs and gonadal steroid hormones were strongly correlated. Abnormal responses to SP exposure led to reduced reproductive success in the 300 mg/L SP exposure group. These findings indicate that prolonged and continuous exposure to a specific concentration of SP may lead to long-term reproductive problems in zebrafish, primarily through hormonal imbalances and suppression of hepatic VTG mRNA expression.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Humans , Female , Male , Zebrafish/metabolism , Perchlorates/toxicity , Perchlorates/metabolism , Thyroid Gland/metabolism , Reproductive Health , Ecosystem , Gonads , Gonadal Steroid Hormones/metabolism , Reproduction , Steroids/metabolism , RNA, Messenger/metabolism , Vitellogenins/metabolism , Water Pollutants, Chemical/metabolism
20.
J Phycol ; 60(1): 185-194, 2024 02.
Article in English | MEDLINE | ID: mdl-38156502

ABSTRACT

The mechanism of perchlorate resistance of the desert cyanobacterium Chroococcidiopsis sp. CCMEE 029 was investigated by assessing whether the pathways associated with its desiccation tolerance might play a role against the destabilizing effects of this chaotropic agent. During 3 weeks of growth in the presence of 2.4 mM perchlorate, an upregulation of trehalose and sucrose biosynthetic pathways was detected. This suggested that in response to the water stress triggered by perchlorate salts, these two compatible solutes play a role in the stabilization of macromolecules and membranes as they do in response to dehydration. During the perchlorate exposure, the production of oxidizing species was observed by using an oxidant-sensing fluorochrome and determining the expression of the antioxidant defense genes, namely superoxide dismutases and catalases, while the presence of oxidative DNA damage was highlighted by the over-expression of genes of the base excision repair. The involvement of desiccation-tolerance mechanisms in the perchlorate resistance of this desert cyanobacterium is interesting since, so far, chaotropic-tolerant bacteria have been identified among halophiles. Hence, it is anticipated that desert microorganisms might possess an unrevealed capability of adapting to perchlorate concentrations exceeding those naturally occurring in dry environments. Furthermore, in the endeavor of supporting future human outposts on Mars, the identified mechanisms might contribute to enhance the perchlorate resistance of microorganisms relevant for biologically driven utilization of the perchlorate-rich soil of the red planet.


Subject(s)
Cyanobacteria , Perchlorates , Humans , Perchlorates/metabolism , Cyanobacteria/genetics , Cyanobacteria/metabolism , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL
...