Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.675
Filter
1.
Front Cell Infect Microbiol ; 14: 1410015, 2024.
Article in English | MEDLINE | ID: mdl-38957797

ABSTRACT

Background: Tuberculosis (TB) persists as a global health challenge, with its treatment hampered by the side effects of long-term combination drug therapies and the growing issue of drug resistance. Therefore, the development of novel therapeutic strategies is critical. This study focuses on the role of immune checkpoint molecules (ICs) and functions of CD8+ T cells in the search for new potential targets against TB. Methods: We conducted differential expression genes analysis and CD8+ T cell functional gene analysis on 92 TB samples and 61 healthy individual (HI) samples from TB database GSE83456, which contains data on 34,603 genes. The GSE54992 dataset was used to validated the findings. Additionally, a cluster analysis on single-cell data from primates infected with mycobacterium tuberculosis and those vaccinated with BCG was performed. Results: The overexpression of LAG-3 gene was found as a potentially important characteristic of both pulmonary TB (PTB) and extrapulmonary TB (EPTB). Further correlation analysis showed that LAG-3 gene was correlated with GZMB, perforin, IL-2 and IL-12. A significant temporal and spatial variation in LAG-3 expression was observed in T cells and macrophages during TB infection and after BCG vaccination. Conclusion: LAG-3 was overexpressed in TB samples. Targeting LAG-3 may represent a potential therapeutic target for tuberculosis.


Subject(s)
Antigens, CD , CD8-Positive T-Lymphocytes , Lymphocyte Activation Gene 3 Protein , Mycobacterium tuberculosis , Tuberculosis , Humans , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/genetics , CD8-Positive T-Lymphocytes/immunology , Tuberculosis/immunology , Tuberculosis/microbiology , Animals , Antigens, CD/genetics , BCG Vaccine/immunology , Macrophages/immunology , Macrophages/microbiology , Interleukin-2/metabolism , Interleukin-2/genetics , Gene Expression Profiling , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/microbiology , Interleukin-12/genetics , Interleukin-12/metabolism , Perforin/genetics , Perforin/metabolism , Male
2.
Sci Rep ; 14(1): 15511, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969707

ABSTRACT

Anti-citrullinated protein autoantibodies (ACPA) are diagnostic for rheumatoid arthritis (RA). The antigens recognized by these autoantibodies are produced by protein arginine deiminases (PADs), particularly PAD4. However, it remains unknown why and how PAD4 causes this aberrant citrullination in RA. Here, we report that poly-perforin pores are present on freshly isolated neutrophils from RA patients, but not on healthy donor neutrophils. Neutrophils with perforin pores also contained intracellular citrullinated proteins in the region adjacent to the pores. This response was replicated in vitro by treating neutrophils with purified perforin, which generated intense dots of anti-perforin immunofluorescence, calcium influx, and intracellular citrullination. Extensive neutrophil killing in Felty's syndrome, an aggressive form of RA, correlated with particularly high ACPA, and PAD4 autoantibodies. In contrast, other forms of death, including NETosis, apoptosis, and pyroptosis, produced minimal citrullination. We conclude that neutrophil targeting by perforin leading to intracellular citrullination takes place in patients with RA.


Subject(s)
Anti-Citrullinated Protein Antibodies , Arthritis, Rheumatoid , Citrullination , Neutrophils , Perforin , Protein-Arginine Deiminase Type 4 , Humans , Neutrophils/metabolism , Neutrophils/immunology , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Arthritis, Rheumatoid/immunology , Protein-Arginine Deiminase Type 4/metabolism , Anti-Citrullinated Protein Antibodies/metabolism , Anti-Citrullinated Protein Antibodies/immunology , Perforin/metabolism , Female , Male , Middle Aged , Autoantibodies/immunology , Protein-Arginine Deiminases/metabolism , Adult , Felty Syndrome/metabolism , Felty Syndrome/pathology , Extracellular Traps/metabolism , Citrulline/metabolism , Aged
3.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000234

ABSTRACT

Juvenile Dermatomyositis (JDM) is the most common inflammatory myopathy in pediatrics. This study evaluates the role of Natural Killer (NK) cells in Juvenile Dermatomyositis (JDM) pathophysiology. The study included 133 untreated JDM children with an NK cell count evaluation before treatment. NK cell subsets (CD56low/dim vs. CD 56bright) were examined in 9 untreated children. CD56 and perforin were evaluated in situ in six untreated JDM and three orthopedic, pediatric controls. 56% of treatment-naive JDM had reduced circulating NK cell counts, designated "low NK cell". This low NK group had more active muscle disease compared to the normal NK cell group. The percentage of circulating CD56low/dim NK cells was significantly lower in the NK low group than in controls (0.55% vs. 4.6% p < 0.001). Examination of the untreated JDM diagnostic muscle biopsy documented an increased infiltration of CD56 and perforin-positive cells (p = 0.023, p = 0.038, respectively). Treatment-naive JDM with reduced circulating NK cell counts exhibited more muscle weakness and higher levels of serum muscle enzymes. Muscle biopsies from treatment-naive JDM displayed increased NK cell infiltration, with increased CD56 and perforin-positive cells.


Subject(s)
CD56 Antigen , Dermatomyositis , Killer Cells, Natural , Muscle Weakness , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Dermatomyositis/immunology , Dermatomyositis/blood , Dermatomyositis/pathology , Male , Child , Muscle Weakness/blood , Female , CD56 Antigen/metabolism , Child, Preschool , Perforin/metabolism , Adolescent , Lymphocyte Count
4.
Proc Natl Acad Sci U S A ; 121(29): e2401420121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38995966

ABSTRACT

Cerebral (Aß) plaque and (pTau) tangle deposition are hallmarks of Alzheimer's disease (AD), yet are insufficient to confer complete AD-like neurodegeneration experimentally. Factors acting upstream of Aß/pTau in AD remain unknown, but their identification could enable earlier diagnosis and more effective treatments. T cell abnormalities are emerging AD hallmarks, and CD8 T cells were recently found to mediate neurodegeneration downstream of tangle deposition in hereditary neurodegeneration models. The precise impact of T cells downstream of Aß/pTau, however, appears to vary depending on the animal model. Our prior work suggested that antigen-specific memory CD8 T ("hiT") cells act upstream of Aß/pTau after brain injury. Here, we examine whether hiT cells influence sporadic AD-like pathophysiology upstream of Aß/pTau. Examining neuropathology, gene expression, and behavior in our hiT mouse model we show that CD8 T cells induce plaque and tangle-like deposition, modulate AD-related genes, and ultimately result in progressive neurodegeneration with both gross and fine features of sporadic human AD. T cells required Perforin to initiate this pathophysiology, and IFNγ for most gene expression changes and progression to more widespread neurodegenerative disease. Analogous antigen-specific memory CD8 T cells were significantly elevated in the brains of human AD patients, and their loss from blood corresponded to sporadic AD and related cognitive decline better than plasma pTau-217, a promising AD biomarker candidate. We identify an age-related factor acting upstream of Aß/pTau to initiate AD-like pathophysiology, the mechanisms promoting its pathogenicity, and its relevance to human sporadic AD.


Subject(s)
Alzheimer Disease , CD8-Positive T-Lymphocytes , Disease Models, Animal , Alzheimer Disease/immunology , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Animals , CD8-Positive T-Lymphocytes/immunology , Mice , Humans , Plaque, Amyloid/pathology , Plaque, Amyloid/immunology , Amyloid beta-Peptides/metabolism , Mice, Transgenic , Brain/pathology , Brain/immunology , Male , Interferon-gamma/metabolism , Interferon-gamma/immunology , Aging/immunology , Immunologic Memory , Memory T Cells/immunology , Perforin/metabolism , Perforin/genetics , Female
5.
Sci Rep ; 14(1): 14586, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38918457

ABSTRACT

Natural killer (NK) cells play a key role in defense against Salmonella infections during the early phase of infection. Our previous work showed that the excretory/secretory products of Ascaris suum repressed NK activity in vitro. Here, we asked if NK cell functionality was influenced in domestic pigs during coinfection with Ascaris and Salmonella enterica serotype Typhimurium. Ascaris coinfection completely abolished the IL-12 and IL-18 driven elevation of IFN-γ production seen in CD16 + CD8α + perforin + NK cells of Salmonella single-infected pigs. Furthermore, Ascaris coinfection prohibited the Salmonella-driven rise in NK perforin levels and CD107a surface expression. In line with impaired effector functions, NK cells from Ascaris-single and coinfected pigs displayed elevated expression of the inhibitory KLRA1 and NKG2A receptors genes, contrasting with the higher expression of the activating NKp46 and NKp30 receptors in NK cells during Salmonella single infection. These differences were accompanied by the highly significant upregulation of T-bet protein expression in NK cells from Ascaris-single and Ascaris/Salmonella coinfected pigs. Together, our data strongly indicate a profound repression of NK functionality by an Ascaris infection which may hinder infected individuals from adequately responding to a concurrent bacterial infection.


Subject(s)
Ascariasis , Coinfection , Killer Cells, Natural , Swine Diseases , Animals , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Ascariasis/immunology , Ascariasis/veterinary , Ascariasis/parasitology , Coinfection/immunology , Coinfection/microbiology , Coinfection/parasitology , Swine , Swine Diseases/parasitology , Swine Diseases/immunology , Swine Diseases/microbiology , Salmonella Infections, Animal/immunology , Salmonella typhimurium/immunology , Salmonella typhimurium/pathogenicity , Ascaris suum/immunology , Interferon-gamma/metabolism , Perforin/metabolism , Interleukin-12/metabolism , T-Box Domain Proteins/metabolism , T-Box Domain Proteins/genetics , Interleukin-18/metabolism
6.
Biosens Bioelectron ; 261: 116512, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38908292

ABSTRACT

Natural killer (NK) cells are a crucial component of the innate immune system. This study introduces Cellytics NK, a novel platform for rapid and precise measurement of NK cell activity. This platform combines an NK-specific activation stimulator cocktail (ASC) and lens-free shadow imaging technology (LSIT), using optoelectronic components. LSIT captures digital hologram images of resting and ASC-activated NK cells, while an algorithm evaluates cell size and cytoplasmic complexity using shadow parameters. The combined shadow parameter derived from the peak-to-peak distance and width standard deviation rapidly distinguishes active NK cells from inactive NK cells at the single-cell level within 30 s. Here, the feasibility of the system was demonstrated by assessing NK cells from healthy donors and immunocompromised cancer patients, demonstrating a significant difference in the innate immunity index (I3). Cancer patients showed a lower I3 value (161%) than healthy donors (326%). I3 was strongly correlated with NK cell activity measured using various markers such as interferon-gamma, tumor necrosis factor-alpha, perforin, granzyme B, and CD107a. This technology holds promise for advancing immune functional assays, offering rapid and accurate on-site analysis of NK cells, a crucial innate immune cell, with its compact and cost-effective optoelectronic setup, especially in the post-COVID-19 era.


Subject(s)
Biosensing Techniques , Killer Cells, Natural , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/cytology , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Immunity, Innate , COVID-19/immunology , COVID-19/virology , Holography/methods , Holography/instrumentation , Lymphocyte Activation , Interferon-gamma/analysis , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Neoplasms/immunology , Neoplasms/diagnostic imaging , Granzymes , Tumor Necrosis Factor-alpha , Perforin/metabolism
7.
Int J Mol Sci ; 25(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38928129

ABSTRACT

Peripheral blood CD8+ T lymphocytes play a crucial role in cell-mediated immunity and tumor-related immune responses in breast cancer. In this study, label-free quantification analysis and gene set enrichment analysis (GSEA) of CD8+ T lymphocytes in the peripheral blood of benign patients and patients with different breast cancer (BC) subtypes, i.e., luminal A, luminal B, and triple-negative breast cancer (TNBC), were performed using nano-UHPLC and Orbitrap mass spectrometry. Differential protein expression in CD8+ T lymphocytes revealed significant downregulation (log2 FC ≥ 0.38 or ≤-0.38, adj. p < 0.05), particularly in proteins involved in cytotoxicity, cytolysis, and proteolysis, such as granzymes (GZMs) and perforin 1 (PRF1). This downregulation was observed in the benign group (GZMH, GZMM, and PRF1) and luminal B (GZMA, GZMH) subtypes, whereas granzyme K (GZMK) was upregulated in TNBC in comparison to healthy controls. The RNA degradation pathway was significantly downregulated (p < 0.05, normalized enrichment score (NES) from -1.47 to -1.80) across all BC subtypes, suggesting a potential mechanism for regulating gene expression during T cell activation. Also, the Sm-like proteins (LSM2, LSM3, and LSM5) were significantly downregulated in the RNA degradation pathway. Proteomic analysis of CD8+ T lymphocytes in peripheral blood across different breast cancer subtypes provides a comprehensive view of the molecular mechanisms of the systemic immune response that can significantly contribute to advancements in the diagnosis, treatment, and prognosis of this disease.


Subject(s)
Breast Neoplasms , CD8-Positive T-Lymphocytes , Granzymes , Humans , Female , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Breast Neoplasms/immunology , Breast Neoplasms/blood , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Middle Aged , Granzymes/metabolism , Granzymes/genetics , Granzymes/blood , Adult , Perforin/metabolism , Perforin/genetics , Aged , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/blood , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Gene Expression Regulation, Neoplastic
8.
Front Immunol ; 15: 1392535, 2024.
Article in English | MEDLINE | ID: mdl-38846935

ABSTRACT

The pivotal role of Granzyme B (GzmB) in immune responses, initially tied to cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells, has extended across diverse cell types and disease models. A number of studies have challenged conventional notions, revealing GzmB activity beyond apoptosis, impacting autoimmune diseases, inflammatory disorders, cancer, and neurotoxicity. Notably, the diverse functions of GzmB unfold through Perforin-dependent and Perforin-independent mechanisms, offering clinical implications and therapeutic insights. This review underscores the multifaceted roles of GzmB, spanning immunological and pathological contexts, which call for further investigations to pave the way for innovative targeted therapies.


Subject(s)
Granzymes , Killer Cells, Natural , Perforin , T-Lymphocytes, Cytotoxic , Granzymes/metabolism , Humans , Perforin/metabolism , Animals , T-Lymphocytes, Cytotoxic/immunology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Autoimmune Diseases/immunology , Autoimmune Diseases/therapy , Neoplasms/immunology , Neoplasms/therapy
9.
Zhonghua Yi Xue Za Zhi ; 104(23): 2160-2166, 2024 Jun 18.
Article in Chinese | MEDLINE | ID: mdl-38871474

ABSTRACT

Objective: To investigate the clinical and genetic mutation characteristics of patients with primary hemophagocytic lymphohistiocytosis (HLH) and their impact on prognosis. Methods: Sixty-three primary HLH patients with complete medical records admitted and diagnosed at Beijing Friendship Hospital of Capital Medical University from January 2013 to December 2022 were selected. The patients' clinical and laboratory features, genetic and rapid immunological indicator characteristics, treatment outcomes and prognosis were retrospectively analyzed. Follow-up was up to June 30, 2023, with a median follow-up time [M (Q1, Q3)] of 47 (21, 76) months. Overall survival was analyzed using Kaplan-Meier survival curve, and prognostic factors were analyzed using Cox proportional hazards regression model. Results: Sixty-three primary HLH patients included 35 males and 28 females, with a median age [M (Q1, Q3)] of 17 (7, 27) years. Clinical manifestations at the initial diagnosis mainly included fever (93.7%, 59/63), splenomegaly (87.3%, 55/63), hemophagocytosis (65.1%, 41/63), hepatomegaly (52.4%, 33/63) and central nervous system (CNS) involvement (38.1%, 24/63). A total of 39 patients (61.9%) were diagnosed with EB virus (EBV) infection at initial diagnosis.PRF1 and UNC13D gene mutations were the most common mutations, and the highest frequency mutation site in the PRF1 gene was c.1349C>T, and that of UNC13D gene was c.2588G>A. A total of 76.2% (48/63) of patients had reduced activity of natural killer (NK) cells. Cytotoxic cell degranulation function was impaired or absent in 52.7% (29/55) of patients, of which 79.2% (19/24) of patients with primary HLH with defects in degranulation-related genes had impaired degranulation function. The 1-year and 3-year overall survival rates were 74.8% and 66.7%, respectively. Cox multivariate analysis suggested that peripheral blood EBV≥10 000 copies/ml (HR=3.523, 95%CI: 1.418-8.757, P=0.007) was the risk factor for prognosis. Conclusions: The main clinical manifestations of primary HLH patients at the initial diagnosis include fever, splenomegaly, hemophagocytosis, hepatomegaly, and CNS involvement. PRF1 and UNC13D are the most commonly mutated genes. High copy number EBV infection in peripheral blood is the risk factor for prognosis.


Subject(s)
Lymphohistiocytosis, Hemophagocytic , Mutation , Humans , Lymphohistiocytosis, Hemophagocytic/genetics , Lymphohistiocytosis, Hemophagocytic/diagnosis , Male , Prognosis , Female , Retrospective Studies , Adolescent , Child , Adult , Young Adult , Perforin/genetics
10.
Sci Rep ; 14(1): 13074, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38844784

ABSTRACT

While adaptive immune responses have been studied extensively in SLE (systemic lupus erythematosus), there is limited and contradictory evidence regarding the contribution of natural killer (NK) cells to disease pathogenesis. There is even less evidence about the role of NK cells in the more severe phenotype with juvenile-onset (J)SLE. In this study, analysis of the phenotype and function of NK cells in a large cohort of JSLE patients demonstrated that total NK cells, as well as perforin and granzyme A expressing NK cell populations, were significantly diminished in JSLE patients compared to age- and sex-matched healthy controls. The reduction in NK cell frequency was associated with increased disease activity, and transcriptomic analysis of NK populations from active and low disease activity JSLE patients versus healthy controls confirmed that disease activity was the main driver of differential NK cell gene expression. Pathway analysis of differentially expressed genes revealed an upregulation of interferon-α responses and a downregulation of exocytosis in active disease compared to healthy controls. Further gene set enrichment analysis also demonstrated an overrepresentation of the apoptosis pathway in active disease. This points to increased propensity for apoptosis as a potential factor contributing to NK cell deficiency in JSLE.


Subject(s)
Killer Cells, Natural , Lupus Erythematosus, Systemic , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/pathology , Female , Male , Adolescent , Child , Phenotype , Granzymes/metabolism , Granzymes/genetics , Perforin/metabolism , Perforin/genetics , Apoptosis/genetics , Transcriptome , Gene Expression Profiling , Case-Control Studies
11.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791196

ABSTRACT

Fish germ cell transplantation holds great potential for conserving endangered species, improving cultured fish breeds, and exploring reproductive techniques. However, low transplantation efficiency is a common issue in heterotransplantation. This study transplanted fat greenling (Hexagrammos otakii) spermatogonia into the testes of spotted sea bass (Lateolabrax maculatus) to investigate factors that might affect the colonization and fixation of heterologous transplanted germ cells. Results indicated that transplanted fat greenling spermatogonia cells were successfully detected in the early transplantation phase in spotted sea bass. Their numbers gradually decreased over time, and after 10 days post-transplantation, more than 90% of the transplanted cells underwent apoptosis. Transcriptome sequencing analysis of the testes of spotted sea bass and fat greenling spermatogonia on days 1 and 10 post-transplantation revealed that this apoptosis process involved many immune-related genes and their associated signaling pathways. Acute immune rejection marker genes prf1 and gzmb were detected in the spotted sea bass testes, while immune tolerance genes lck and zap-70 were expressed in the fat greenling spermatogonia. Additionally, differential expression of prf1 and gzmb genes was screened from spotted sea bass, with experimental evidence indicating that PRF1 and GZMB protein from spotted sea bass primarily induce apoptosis in transplanted fat greenling spermatogonia via the mitochondrial apoptosis pathway, at the protein level. This suggests that the difficulties in heterotransplantation are primarily related to acute immune rejection, with PRF1 and GZMB playing significant roles.


Subject(s)
Bass , Heterografts , Spermatogonia , Animals , Male , Apoptosis , Bass/genetics , Bass/immunology , Fish Proteins/genetics , Fish Proteins/metabolism , Perforin/metabolism , Perforin/genetics , Spermatogonia/metabolism , Testis/metabolism , Heterografts/immunology , Conservation of Natural Resources
12.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167219, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38734321

ABSTRACT

Chronic infections induce CD4+ T-cells with cytotoxic functions (CD4 CTLs); at present, it is still unknown whether latent tuberculosis (LTB) and active tuberculosis (ATB) induce CD4 CTLs. Plasma and cells from four patient groups-uninfected contact (UC), LTB, and ATB (divided as sensitive [DS-TB]- or resistant [DR-TB]-drug)-were evaluated by flow cytometry, q-PCR, and proteomics. The data showed that ATB patients had an increased frequency of CD4+ T-cells and a decreased frequency of CD8+ T-cells. The latter displays an exhausted-like profile characterized by CD39, CD279, and TIM-3 expression. ATB had a high frequency of CD4 + perforin+ cells, suggesting a CD4 CTL profile. The expression (at the transcriptional level) of granzyme A, granzyme B, granulysin, and perforin, as well as the genes T-bet (Tbx21) and NKG2D (Klrk1), in enriched CD4+ T-cells, confirmed the cytotoxic signature of CD4+ T-cells during ATB (which was stronger in DS-TB than in DR-TB). Moreover, proteomic analysis revealed the presence of HSP70 (in DS-TB) and annexin A5 (in DR-TB), which are molecules that have been associated with favoring the CD4 CTL profile. Finally, we found that lipids from Mycobacterium tuberculosis increased the presence of CD4 CTLs in DR-TB patients. Our data suggest that ATB is characterized by exhausted-like CD8+ T-cells, which, together with a specific microenvironment, favor the presence of CD4 CTLs.


Subject(s)
CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Granzymes , Hepatitis A Virus Cellular Receptor 2 , Perforin , Tuberculosis , Humans , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Male , Granzymes/metabolism , Granzymes/genetics , Granzymes/immunology , Perforin/metabolism , Perforin/genetics , Perforin/immunology , Adult , Female , Hepatitis A Virus Cellular Receptor 2/metabolism , Hepatitis A Virus Cellular Receptor 2/immunology , Tuberculosis/immunology , Tuberculosis/microbiology , Latent Tuberculosis/immunology , Latent Tuberculosis/microbiology , Middle Aged , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism , Mycobacterium tuberculosis/immunology , T-Box Domain Proteins/metabolism , T-Box Domain Proteins/genetics , T-Box Domain Proteins/immunology , Antigens, CD/metabolism , Antigens, CD/immunology , Antigens, CD/genetics , NK Cell Lectin-Like Receptor Subfamily K/metabolism , NK Cell Lectin-Like Receptor Subfamily K/immunology , NK Cell Lectin-Like Receptor Subfamily K/genetics , Proteomics/methods , Antigens, Differentiation, T-Lymphocyte , Apyrase
13.
PLoS One ; 19(5): e0303945, 2024.
Article in English | MEDLINE | ID: mdl-38776335

ABSTRACT

Killer cell lectin-like receptor G1 (KLRG1) has traditionally been regarded as an inhibitory receptor of T cell exhaustion in chronic infection and inflammation. However, its exact role in hepatitis B virus (HBV) infection remains elusive. CD8+ T cells from 190 patients with chronic hepatitis B were analyzed ex vivo for checkpoint and apoptosis markers, transcription factors, cytokines and subtypes in 190 patients with chronic hepatitis B. KLRG1+ and KLRG1- CD8+ T cells were sorted for transcriptome analysis. The impact of the KLRG1-E-cadherin pathway on the suppression of HBV replication mediated by virus-specific T cells was validated in vitro. As expected, HBV-specific CD8+ T cells expressed higher levels of KLRG1 and showed an exhausted molecular phenotype and function. However, despite being enriched for the inhibitory molecules, thymocyte selection-associated high mobility group box protein (TOX), eomesodermin (EOMES), and Helios, CD8+ T cells expressing KLRG1 produced significant levels of tumour necrosis factor (TNF)-α, interferon (IFN)-γ, perforin, and granzyme B, demonstrating not exhausted but active function. Consistent with the in vitro phenotypic assay results, RNA sequencing (RNA-seq) data showed that signature effector T cell and exhausted T cell genes were enriched in KLRG1+ CD8+ T cells. Furthermore, in vitro testing confirmed that KLRG1-E-cadherin binding inhibits the antiviral efficacy of HBV-specific CD8+ T cells. Based on these findings, we concluded that KLRG1+ CD8+ T cells are not only a terminally exhausted subgroup but also exhibit functional diversity, despite inhibitory signs in HBV infection.


Subject(s)
CD8-Positive T-Lymphocytes , Hepatitis B virus , Hepatitis B, Chronic , Lectins, C-Type , Receptors, Immunologic , Humans , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Lectins, C-Type/metabolism , Lectins, C-Type/genetics , Receptors, Immunologic/metabolism , Hepatitis B, Chronic/immunology , Hepatitis B, Chronic/virology , Female , Male , Hepatitis B virus/immunology , Adult , Middle Aged , Virus Replication , Cadherins/metabolism , Cadherins/genetics , Perforin/metabolism , Perforin/genetics
14.
Sci Rep ; 14(1): 12188, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806640

ABSTRACT

Natural killer (NK) cells are closely associated with malignant tumor progression and metastasis. However, studies on their relevance in colorectal cancer (CRC) are limited. We aimed to comprehensively analyze the absolute counts, phenotypes, and function of circulating NK cells in patients with CRC using multiparametric flow cytometry. The distribution of NK cell subsets in the peripheral circulation of patients with CRC was significantly altered relative to the control group. This is shown by the decreased frequency and absolute count of CD56dimCD16+ NK cells with antitumor effects, contrary to the increased frequency of CD56bright NK and CD56dimCD16- NK cells with poor or ineffective antitumor effects. NK cells in patients with CRC were functionally impaired, with decreased intracellular interferon (IFN)-γ secretion and a significantly lower percentage of cell surface granzyme B and perforin expression. In addition, IFN-γ expression decreased significantly with the tumor stage progression. Based on a comprehensive analysis of the absolute counts, phenotypes, and functional markers of NK cells, we found an altered subset distribution and impaired function of circulating NK cells in patients with CRC.


Subject(s)
Colorectal Neoplasms , Granzymes , Interferon-gamma , Killer Cells, Natural , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/blood , Male , Female , Middle Aged , Interferon-gamma/metabolism , Aged , Granzymes/metabolism , Perforin/metabolism , CD56 Antigen/metabolism , Flow Cytometry , Adult
15.
J Control Release ; 369: 658-667, 2024 May.
Article in English | MEDLINE | ID: mdl-38604384

ABSTRACT

Granzyme B (GrB)-based immunotherapy is of interest for cancer treatment. However, insufficient cellular uptake and a lack of targeting remain challenges to make use of GrB for solid tumour therapy. As GrB induced cell death requires the help of perforin (PFN), we designed a system (nGPM) for the co-delivery of GrB and PFN. Therefore, GrB and PFN were loaded in a porous polymeric nanocapsule rich in acetylcholine analogues and matrix metalloproteinase-2 (MMP-2) responsive peptides. The neutrally charged nGPM nanocapsules showed as long circulating time and accumulated at the tumour sites. Once in the tumour the outside shell of nanocapsules became degraded by overexpressed MMP-2 proteases, resulting in the release of GrB and PFN. We found that the PFN complex formed small pores on the surface of tumour cells which allow GrB to enter the cytoplasm of tumour cells inducing cell apoptosis and tumour suppression significantly.


Subject(s)
Granzymes , Nanocapsules , Perforin , Granzymes/metabolism , Nanocapsules/chemistry , Animals , Perforin/metabolism , Humans , Cell Line, Tumor , Neoplasms/drug therapy , Neoplasms/therapy , Neoplasms/immunology , Apoptosis/drug effects , Matrix Metalloproteinase 2/metabolism , Immunotherapy/methods , Mice, Inbred BALB C , Female , Mice
16.
Mol Biol Evol ; 41(5)2024 May 03.
Article in English | MEDLINE | ID: mdl-38676945

ABSTRACT

Gene duplication is a major force driving evolutionary innovation. A classic example is generating new animal toxins via duplication of physiological protein-encoding genes and recruitment into venom. While this process drives the innovation of many animal venoms, reverse recruitment of toxins into nonvenomous cells remains unresolved. Using comparative genomics, we find members of the Membrane Attack Complex and Perforin Family (MAC) have been recruited into venom-injecting cells (cnidocytes), in soft and stony corals and sea anemones, suggesting that the ancestral MAC was a cnidocyte expressed toxin. Further investigation into the model sea anemone Nematostella vectensis reveals that three members have undergone Nematostella-specific duplications leading to their reverse recruitment into endomesodermal cells. Furthermore, simultaneous knockdown of all three endomesodermally expressed MACs leads to mis-development, supporting that these paralogs have nonvenomous function. By resolving the evolutionary history and function of MACs in Nematostella, we provide the first proof for reverse recruitment from venom to organismal development.


Subject(s)
Evolution, Molecular , Perforin , Sea Anemones , Animals , Sea Anemones/genetics , Perforin/metabolism , Perforin/genetics , Gene Duplication , Cnidarian Venoms/genetics , Cnidarian Venoms/metabolism , Phylogeny , Multigene Family
17.
Zhonghua Er Ke Za Zhi ; 62(5): 467-472, 2024 May 02.
Article in Chinese | MEDLINE | ID: mdl-38623016

ABSTRACT

Objective: To analyze the efficacy and safety of the L-DEP regimen (asparaginase, liposome doxorubicin, etoposide and methylprednisolone) as a salvage therapy for the refractory primary hemophagocytic lymphohistocytosis triggered by Epstein-Barr virus infection (EBV-pHLH) in children. Methods: In this retrospective case study, clinical and laboratory data before and after L-DEP regimen of 4 children diagnosed with EBV-pHLH in Beijing Children's hospital between January 2016 and June 2022 were collected, and the efficacy and safety of L-DEP regimen for the treatment of EBV-pHLH were analyzed. Results: Among 4 patients, there were 3 females and 1 male with the age ranged from 0.8 to 7.0 years. Two of them showed compound heterozygous mutations of PRF1, one with a heterozygous mutation of UNC13D, one homozygous mutation of ITK. Before the L-DEP therapy, all of them had anemia and a soaring level of soluble CD25, 3 patients had neutropenia and thrombopenia, 3 patients had a high level of ferritin, 3 patients had hypofibrinogenemia and 1 patient had hypertriglyceridemia. After receiving 1 or 2 cycles of L-DEP treatment, three achieved remission, including complete remission (1 case) and partial remission (2 cases), and the other one had no remission. The levels of blood cell counts, soluble CD25, triglyceride, fibrinogen and albumin were recovered gradually in 3 patients who got remission. All four patients underwent hematopoietic stem cell transplantation (HSCT) after L-DEP regimen, and three survived. All patients had no severe chemotherapy related complications. The main side effects were bone marrow suppression, infection and pancreatitis, which recovered after appropriate treatments, apart from one who died from severe infection after urgent HSCT. Conclusion: L-DEP regimen could be served as an effective and safe salvage treatment for refractory pediatric EBV-pHLH, and also provide an opportunity for patients to receive HSCT.


Subject(s)
Asparaginase , Epstein-Barr Virus Infections , Etoposide , Lymphohistiocytosis, Hemophagocytic , Salvage Therapy , Humans , Lymphohistiocytosis, Hemophagocytic/therapy , Lymphohistiocytosis, Hemophagocytic/drug therapy , Male , Female , Epstein-Barr Virus Infections/drug therapy , Epstein-Barr Virus Infections/complications , Retrospective Studies , Salvage Therapy/methods , Child , Infant , Child, Preschool , Etoposide/administration & dosage , Asparaginase/administration & dosage , Doxorubicin/administration & dosage , Methylprednisolone/administration & dosage , Mutation , Membrane Proteins/genetics , Treatment Outcome , Perforin/genetics , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Liposomes , Herpesvirus 4, Human/genetics
18.
Clin Rheumatol ; 43(6): 2027-2034, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38625643

ABSTRACT

OBJECTIVES: Gout is characterized by hyperuricemia and recurrent inflammatory episodes caused by intra-articular crystal deposition of monosodium urate (MSU). There is a clear relationship between gout and metabolic syndrome. Recent evidence indicates that perforin plays a role in regulating glucose homeostasis and provides protection in diet-induced non-alcoholic steatohepatitis models. However, the impact of perforin on immune inflammation in gout remains unclear. METHODS: We induced acute gout models in both wild-type (WT) mice and Prf1null mice by administering intra-articular injections of MSU crystals. We compared the ankle joint swelling and the histological score between the two groups. Furthermore, we investigated underlying mechanisms through in vitro co-culture experiments involving CD8 T cells and macrophages. RESULTS: In this study, Prf1null mice showed significantly more pronounced ankle swelling with increased inflammatory cell infiltrations compared with WT mice 24 h after local MSU injection. Moreover, MSU-induced Prf1null mice exhibited increased accumulation of CD8 T cells but not NK cells. Perforin-deficient CD8 T cells displayed reduced cytotoxicity towards bone marrow-derived M0 and M1 macrophages and promoted TNF-α secretion from macrophage. CONCLUSIONS: Perforin from CD8 T cells limits joint inflammation in mice with acute gout by downregulating macrophage-mediated inflammation. Key Points • Perforin deficiency increased swelling in the ankle joints of mice upon MSU injection. • Perforin deficiency is associated with increased immune cell recruitment and severe joint damage in gout. • Perforin regulated CD8 T cell accumulation in gout and promoted CD8 T cell cytotoxicity towards M0 and M1 macrophages. • CD8 T cell-derived perforin regulated pro-inflammatory cytokine secretion of macrophage.


Subject(s)
CD8-Positive T-Lymphocytes , Disease Models, Animal , Gout , Inflammation , Macrophages , Perforin , Uric Acid , Animals , CD8-Positive T-Lymphocytes/immunology , Mice , Macrophages/metabolism , Macrophages/immunology , Perforin/metabolism , Gout/immunology , Gout/metabolism , Mice, Inbred C57BL , Mice, Knockout , Male , Tumor Necrosis Factor-alpha/metabolism , Pore Forming Cytotoxic Proteins
19.
Fish Shellfish Immunol ; 149: 109531, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604479

ABSTRACT

In this study, we present the first cloning and identification of perforin (MsPRF1) in largemouth bass (Micropterus salmoides). The full-length cDNA of MsPRF1 spans 1572 base pairs, encoding a 58.88 kDa protein consisting of 523 amino acids. Notably, the protein contains MACPF and C2 structural domains. To evaluate the expression levels of MsPRF1 in various healthy largemouth bass tissues, real-time quantitative PCR was employed, revealing the highest expression in the liver and gut. After the largemouth bass were infected by Nocardia seriolae, the mRNA levels of MsPRF1 generally increased within 48 h. Remarkably, the recombinant protein MsPRF1 exhibits inhibitory effects against both Gram-negative and Gram-positive bacteria. Additionally, the largemouth bass showed a higher survival rate in the N. seriolae challenge following the intraperitoneal injection of rMsPRF1, with observed reductions in the tissue bacterial loads. Moreover, rMsPRF1 demonstrated a significant impact on the phagocytic and bactericidal activities of largemouth bass MO/MΦ cells, concurrently upregulating the expression of pro-inflammatory factors. These results demonstrate that MsPRF1 has a potential role in the immune response of largemouth bass against N. seriolae infection.


Subject(s)
Amino Acid Sequence , Bass , Fish Diseases , Fish Proteins , Nocardia , Perforin , Phylogeny , Animals , Bass/immunology , Bass/genetics , Fish Diseases/immunology , Perforin/genetics , Perforin/immunology , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/chemistry , Nocardia/immunology , Nocardia Infections/veterinary , Nocardia Infections/immunology , Gene Expression Regulation/immunology , Sequence Alignment/veterinary , Immunity, Innate/genetics , Gene Expression Profiling/veterinary , Base Sequence
20.
J Immunol ; 212(11): 1722-1732, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38607279

ABSTRACT

An imbalance between proinflammatory and regulatory processes underlies autoimmune disease pathogenesis. We have shown that acute relapses of multiple sclerosis are characterized by a deficit in the immune suppressive ability of CD8+ T cells. These cells play an important immune regulatory role, mediated in part through cytotoxicity (perforin [PRF]/granzyme [GZM]) and IFNγ secretion. In this study, we further investigated the importance of IFNγ-, GZMB-, PRF1-, and LYST-associated pathways in CD8+ T cell-mediated suppression. Using the CRISPR-Cas9 ribonucleoprotein transfection system, we first optimized efficient gene knockout while maintaining high viability in primary bulk human CD8+ T cells. Knockout was confirmed through quantitative real-time PCR assays in all cases, combined with flow cytometry where appropriate, as well as confirmation of insertions and/or deletions at genomic target sites. We observed that the knockout of IFNγ, GZMB, PRF1, or LYST, but not the knockout of IL4 or IL5, resulted in significantly diminished in vitro suppressive ability in these cells. Collectively, these results reveal a pivotal role for these pathways in CD8+ T cell-mediated immune suppression and provide important insights into the biology of human CD8+ T cell-mediated suppression that could be targeted for immunotherapeutic intervention.


Subject(s)
CD8-Positive T-Lymphocytes , Granzymes , Interferon-gamma , Perforin , Humans , CD8-Positive T-Lymphocytes/immunology , Interferon-gamma/immunology , Interferon-gamma/metabolism , Perforin/genetics , Perforin/metabolism , Granzymes/metabolism , Granzymes/genetics , CRISPR-Cas Systems , Multiple Sclerosis/immunology , Multiple Sclerosis/genetics , Gene Knockout Techniques , Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...