Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 875
Filter
1.
Sci Rep ; 14(1): 13074, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38844784

ABSTRACT

While adaptive immune responses have been studied extensively in SLE (systemic lupus erythematosus), there is limited and contradictory evidence regarding the contribution of natural killer (NK) cells to disease pathogenesis. There is even less evidence about the role of NK cells in the more severe phenotype with juvenile-onset (J)SLE. In this study, analysis of the phenotype and function of NK cells in a large cohort of JSLE patients demonstrated that total NK cells, as well as perforin and granzyme A expressing NK cell populations, were significantly diminished in JSLE patients compared to age- and sex-matched healthy controls. The reduction in NK cell frequency was associated with increased disease activity, and transcriptomic analysis of NK populations from active and low disease activity JSLE patients versus healthy controls confirmed that disease activity was the main driver of differential NK cell gene expression. Pathway analysis of differentially expressed genes revealed an upregulation of interferon-α responses and a downregulation of exocytosis in active disease compared to healthy controls. Further gene set enrichment analysis also demonstrated an overrepresentation of the apoptosis pathway in active disease. This points to increased propensity for apoptosis as a potential factor contributing to NK cell deficiency in JSLE.


Subject(s)
Killer Cells, Natural , Lupus Erythematosus, Systemic , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/pathology , Female , Male , Adolescent , Child , Phenotype , Granzymes/metabolism , Granzymes/genetics , Perforin/metabolism , Perforin/genetics , Apoptosis/genetics , Transcriptome , Gene Expression Profiling , Case-Control Studies
2.
Front Immunol ; 15: 1392535, 2024.
Article in English | MEDLINE | ID: mdl-38846935

ABSTRACT

The pivotal role of Granzyme B (GzmB) in immune responses, initially tied to cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells, has extended across diverse cell types and disease models. A number of studies have challenged conventional notions, revealing GzmB activity beyond apoptosis, impacting autoimmune diseases, inflammatory disorders, cancer, and neurotoxicity. Notably, the diverse functions of GzmB unfold through Perforin-dependent and Perforin-independent mechanisms, offering clinical implications and therapeutic insights. This review underscores the multifaceted roles of GzmB, spanning immunological and pathological contexts, which call for further investigations to pave the way for innovative targeted therapies.


Subject(s)
Granzymes , Killer Cells, Natural , Perforin , T-Lymphocytes, Cytotoxic , Granzymes/metabolism , Humans , Perforin/metabolism , Animals , T-Lymphocytes, Cytotoxic/immunology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Autoimmune Diseases/immunology , Autoimmune Diseases/therapy , Neoplasms/immunology , Neoplasms/therapy
3.
Sci Rep ; 14(1): 12188, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806640

ABSTRACT

Natural killer (NK) cells are closely associated with malignant tumor progression and metastasis. However, studies on their relevance in colorectal cancer (CRC) are limited. We aimed to comprehensively analyze the absolute counts, phenotypes, and function of circulating NK cells in patients with CRC using multiparametric flow cytometry. The distribution of NK cell subsets in the peripheral circulation of patients with CRC was significantly altered relative to the control group. This is shown by the decreased frequency and absolute count of CD56dimCD16+ NK cells with antitumor effects, contrary to the increased frequency of CD56bright NK and CD56dimCD16- NK cells with poor or ineffective antitumor effects. NK cells in patients with CRC were functionally impaired, with decreased intracellular interferon (IFN)-γ secretion and a significantly lower percentage of cell surface granzyme B and perforin expression. In addition, IFN-γ expression decreased significantly with the tumor stage progression. Based on a comprehensive analysis of the absolute counts, phenotypes, and functional markers of NK cells, we found an altered subset distribution and impaired function of circulating NK cells in patients with CRC.


Subject(s)
Colorectal Neoplasms , Granzymes , Interferon-gamma , Killer Cells, Natural , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/blood , Male , Female , Middle Aged , Interferon-gamma/metabolism , Aged , Granzymes/metabolism , Perforin/metabolism , CD56 Antigen/metabolism , Flow Cytometry , Adult
4.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167219, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38734321

ABSTRACT

Chronic infections induce CD4+ T-cells with cytotoxic functions (CD4 CTLs); at present, it is still unknown whether latent tuberculosis (LTB) and active tuberculosis (ATB) induce CD4 CTLs. Plasma and cells from four patient groups-uninfected contact (UC), LTB, and ATB (divided as sensitive [DS-TB]- or resistant [DR-TB]-drug)-were evaluated by flow cytometry, q-PCR, and proteomics. The data showed that ATB patients had an increased frequency of CD4+ T-cells and a decreased frequency of CD8+ T-cells. The latter displays an exhausted-like profile characterized by CD39, CD279, and TIM-3 expression. ATB had a high frequency of CD4 + perforin+ cells, suggesting a CD4 CTL profile. The expression (at the transcriptional level) of granzyme A, granzyme B, granulysin, and perforin, as well as the genes T-bet (Tbx21) and NKG2D (Klrk1), in enriched CD4+ T-cells, confirmed the cytotoxic signature of CD4+ T-cells during ATB (which was stronger in DS-TB than in DR-TB). Moreover, proteomic analysis revealed the presence of HSP70 (in DS-TB) and annexin A5 (in DR-TB), which are molecules that have been associated with favoring the CD4 CTL profile. Finally, we found that lipids from Mycobacterium tuberculosis increased the presence of CD4 CTLs in DR-TB patients. Our data suggest that ATB is characterized by exhausted-like CD8+ T-cells, which, together with a specific microenvironment, favor the presence of CD4 CTLs.


Subject(s)
CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Granzymes , Hepatitis A Virus Cellular Receptor 2 , Perforin , Tuberculosis , Humans , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Male , Granzymes/metabolism , Granzymes/genetics , Granzymes/immunology , Perforin/metabolism , Perforin/genetics , Perforin/immunology , Adult , Female , Hepatitis A Virus Cellular Receptor 2/metabolism , Hepatitis A Virus Cellular Receptor 2/immunology , Tuberculosis/immunology , Tuberculosis/microbiology , Latent Tuberculosis/immunology , Latent Tuberculosis/microbiology , Middle Aged , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism , Mycobacterium tuberculosis/immunology , T-Box Domain Proteins/metabolism , T-Box Domain Proteins/genetics , T-Box Domain Proteins/immunology , Antigens, CD/metabolism , Antigens, CD/immunology , Antigens, CD/genetics , NK Cell Lectin-Like Receptor Subfamily K/metabolism , NK Cell Lectin-Like Receptor Subfamily K/immunology , NK Cell Lectin-Like Receptor Subfamily K/genetics , Proteomics/methods , Antigens, Differentiation, T-Lymphocyte , Apyrase
5.
PLoS One ; 19(5): e0303945, 2024.
Article in English | MEDLINE | ID: mdl-38776335

ABSTRACT

Killer cell lectin-like receptor G1 (KLRG1) has traditionally been regarded as an inhibitory receptor of T cell exhaustion in chronic infection and inflammation. However, its exact role in hepatitis B virus (HBV) infection remains elusive. CD8+ T cells from 190 patients with chronic hepatitis B were analyzed ex vivo for checkpoint and apoptosis markers, transcription factors, cytokines and subtypes in 190 patients with chronic hepatitis B. KLRG1+ and KLRG1- CD8+ T cells were sorted for transcriptome analysis. The impact of the KLRG1-E-cadherin pathway on the suppression of HBV replication mediated by virus-specific T cells was validated in vitro. As expected, HBV-specific CD8+ T cells expressed higher levels of KLRG1 and showed an exhausted molecular phenotype and function. However, despite being enriched for the inhibitory molecules, thymocyte selection-associated high mobility group box protein (TOX), eomesodermin (EOMES), and Helios, CD8+ T cells expressing KLRG1 produced significant levels of tumour necrosis factor (TNF)-α, interferon (IFN)-γ, perforin, and granzyme B, demonstrating not exhausted but active function. Consistent with the in vitro phenotypic assay results, RNA sequencing (RNA-seq) data showed that signature effector T cell and exhausted T cell genes were enriched in KLRG1+ CD8+ T cells. Furthermore, in vitro testing confirmed that KLRG1-E-cadherin binding inhibits the antiviral efficacy of HBV-specific CD8+ T cells. Based on these findings, we concluded that KLRG1+ CD8+ T cells are not only a terminally exhausted subgroup but also exhibit functional diversity, despite inhibitory signs in HBV infection.


Subject(s)
CD8-Positive T-Lymphocytes , Hepatitis B virus , Hepatitis B, Chronic , Lectins, C-Type , Receptors, Immunologic , Humans , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Lectins, C-Type/metabolism , Lectins, C-Type/genetics , Receptors, Immunologic/metabolism , Hepatitis B, Chronic/immunology , Hepatitis B, Chronic/virology , Female , Male , Hepatitis B virus/immunology , Adult , Middle Aged , Virus Replication , Cadherins/metabolism , Cadherins/genetics , Perforin/metabolism , Perforin/genetics
6.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791196

ABSTRACT

Fish germ cell transplantation holds great potential for conserving endangered species, improving cultured fish breeds, and exploring reproductive techniques. However, low transplantation efficiency is a common issue in heterotransplantation. This study transplanted fat greenling (Hexagrammos otakii) spermatogonia into the testes of spotted sea bass (Lateolabrax maculatus) to investigate factors that might affect the colonization and fixation of heterologous transplanted germ cells. Results indicated that transplanted fat greenling spermatogonia cells were successfully detected in the early transplantation phase in spotted sea bass. Their numbers gradually decreased over time, and after 10 days post-transplantation, more than 90% of the transplanted cells underwent apoptosis. Transcriptome sequencing analysis of the testes of spotted sea bass and fat greenling spermatogonia on days 1 and 10 post-transplantation revealed that this apoptosis process involved many immune-related genes and their associated signaling pathways. Acute immune rejection marker genes prf1 and gzmb were detected in the spotted sea bass testes, while immune tolerance genes lck and zap-70 were expressed in the fat greenling spermatogonia. Additionally, differential expression of prf1 and gzmb genes was screened from spotted sea bass, with experimental evidence indicating that PRF1 and GZMB protein from spotted sea bass primarily induce apoptosis in transplanted fat greenling spermatogonia via the mitochondrial apoptosis pathway, at the protein level. This suggests that the difficulties in heterotransplantation are primarily related to acute immune rejection, with PRF1 and GZMB playing significant roles.


Subject(s)
Bass , Spermatogonia , Animals , Spermatogonia/metabolism , Male , Bass/genetics , Bass/immunology , Testis/metabolism , Apoptosis , Perforin/metabolism , Perforin/genetics , Fish Proteins/genetics , Fish Proteins/metabolism , Graft Rejection/immunology
7.
J Control Release ; 369: 658-667, 2024 May.
Article in English | MEDLINE | ID: mdl-38604384

ABSTRACT

Granzyme B (GrB)-based immunotherapy is of interest for cancer treatment. However, insufficient cellular uptake and a lack of targeting remain challenges to make use of GrB for solid tumour therapy. As GrB induced cell death requires the help of perforin (PFN), we designed a system (nGPM) for the co-delivery of GrB and PFN. Therefore, GrB and PFN were loaded in a porous polymeric nanocapsule rich in acetylcholine analogues and matrix metalloproteinase-2 (MMP-2) responsive peptides. The neutrally charged nGPM nanocapsules showed as long circulating time and accumulated at the tumour sites. Once in the tumour the outside shell of nanocapsules became degraded by overexpressed MMP-2 proteases, resulting in the release of GrB and PFN. We found that the PFN complex formed small pores on the surface of tumour cells which allow GrB to enter the cytoplasm of tumour cells inducing cell apoptosis and tumour suppression significantly.


Subject(s)
Granzymes , Nanocapsules , Perforin , Granzymes/metabolism , Nanocapsules/chemistry , Animals , Perforin/metabolism , Humans , Cell Line, Tumor , Neoplasms/drug therapy , Neoplasms/therapy , Neoplasms/immunology , Apoptosis/drug effects , Matrix Metalloproteinase 2/metabolism , Immunotherapy/methods , Mice, Inbred BALB C , Female , Mice
8.
Clin Rheumatol ; 43(6): 2027-2034, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38625643

ABSTRACT

OBJECTIVES: Gout is characterized by hyperuricemia and recurrent inflammatory episodes caused by intra-articular crystal deposition of monosodium urate (MSU). There is a clear relationship between gout and metabolic syndrome. Recent evidence indicates that perforin plays a role in regulating glucose homeostasis and provides protection in diet-induced non-alcoholic steatohepatitis models. However, the impact of perforin on immune inflammation in gout remains unclear. METHODS: We induced acute gout models in both wild-type (WT) mice and Prf1null mice by administering intra-articular injections of MSU crystals. We compared the ankle joint swelling and the histological score between the two groups. Furthermore, we investigated underlying mechanisms through in vitro co-culture experiments involving CD8 T cells and macrophages. RESULTS: In this study, Prf1null mice showed significantly more pronounced ankle swelling with increased inflammatory cell infiltrations compared with WT mice 24 h after local MSU injection. Moreover, MSU-induced Prf1null mice exhibited increased accumulation of CD8 T cells but not NK cells. Perforin-deficient CD8 T cells displayed reduced cytotoxicity towards bone marrow-derived M0 and M1 macrophages and promoted TNF-α secretion from macrophage. CONCLUSIONS: Perforin from CD8 T cells limits joint inflammation in mice with acute gout by downregulating macrophage-mediated inflammation. Key Points • Perforin deficiency increased swelling in the ankle joints of mice upon MSU injection. • Perforin deficiency is associated with increased immune cell recruitment and severe joint damage in gout. • Perforin regulated CD8 T cell accumulation in gout and promoted CD8 T cell cytotoxicity towards M0 and M1 macrophages. • CD8 T cell-derived perforin regulated pro-inflammatory cytokine secretion of macrophage.


Subject(s)
CD8-Positive T-Lymphocytes , Disease Models, Animal , Gout , Inflammation , Macrophages , Perforin , Uric Acid , Animals , CD8-Positive T-Lymphocytes/immunology , Mice , Macrophages/metabolism , Macrophages/immunology , Perforin/metabolism , Gout/immunology , Gout/metabolism , Mice, Inbred C57BL , Mice, Knockout , Male , Tumor Necrosis Factor-alpha/metabolism , Pore Forming Cytotoxic Proteins
9.
Mol Biol Evol ; 41(5)2024 May 03.
Article in English | MEDLINE | ID: mdl-38676945

ABSTRACT

Gene duplication is a major force driving evolutionary innovation. A classic example is generating new animal toxins via duplication of physiological protein-encoding genes and recruitment into venom. While this process drives the innovation of many animal venoms, reverse recruitment of toxins into nonvenomous cells remains unresolved. Using comparative genomics, we find members of the Membrane Attack Complex and Perforin Family (MAC) have been recruited into venom-injecting cells (cnidocytes), in soft and stony corals and sea anemones, suggesting that the ancestral MAC was a cnidocyte expressed toxin. Further investigation into the model sea anemone Nematostella vectensis reveals that three members have undergone Nematostella-specific duplications leading to their reverse recruitment into endomesodermal cells. Furthermore, simultaneous knockdown of all three endomesodermally expressed MACs leads to mis-development, supporting that these paralogs have nonvenomous function. By resolving the evolutionary history and function of MACs in Nematostella, we provide the first proof for reverse recruitment from venom to organismal development.


Subject(s)
Evolution, Molecular , Perforin , Sea Anemones , Animals , Sea Anemones/genetics , Perforin/metabolism , Perforin/genetics , Gene Duplication , Cnidarian Venoms/genetics , Cnidarian Venoms/metabolism , Phylogeny , Multigene Family
10.
J Immunol ; 212(11): 1722-1732, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38607279

ABSTRACT

An imbalance between proinflammatory and regulatory processes underlies autoimmune disease pathogenesis. We have shown that acute relapses of multiple sclerosis are characterized by a deficit in the immune suppressive ability of CD8+ T cells. These cells play an important immune regulatory role, mediated in part through cytotoxicity (perforin [PRF]/granzyme [GZM]) and IFNγ secretion. In this study, we further investigated the importance of IFNγ-, GZMB-, PRF1-, and LYST-associated pathways in CD8+ T cell-mediated suppression. Using the CRISPR-Cas9 ribonucleoprotein transfection system, we first optimized efficient gene knockout while maintaining high viability in primary bulk human CD8+ T cells. Knockout was confirmed through quantitative real-time PCR assays in all cases, combined with flow cytometry where appropriate, as well as confirmation of insertions and/or deletions at genomic target sites. We observed that the knockout of IFNγ, GZMB, PRF1, or LYST, but not the knockout of IL4 or IL5, resulted in significantly diminished in vitro suppressive ability in these cells. Collectively, these results reveal a pivotal role for these pathways in CD8+ T cell-mediated immune suppression and provide important insights into the biology of human CD8+ T cell-mediated suppression that could be targeted for immunotherapeutic intervention.


Subject(s)
CD8-Positive T-Lymphocytes , Granzymes , Interferon-gamma , Perforin , Humans , CD8-Positive T-Lymphocytes/immunology , Interferon-gamma/immunology , Interferon-gamma/metabolism , Perforin/genetics , Perforin/metabolism , Granzymes/metabolism , Granzymes/genetics , CRISPR-Cas Systems , Multiple Sclerosis/immunology , Multiple Sclerosis/genetics , Gene Knockout Techniques , Cells, Cultured
11.
Aging (Albany NY) ; 16(7): 5887-5904, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38517396

ABSTRACT

Acute kidney injury (AKI) is associated with immune cell activation and inflammation. However, the putative pathogenic mechanisms of this injury have not been thoroughly investigated. Natural killer (NK) cells play an important role in immune regulation; however, whether NK cells regulate AKI remains unclear. Cordyceps sinensis (CS), a modern Chinese patented medicine preparation, has been widely used in treating patients with chronic kidney disease (CKD) owing to its anti-inflammatory effects and maintenance of immune homeostasis. Whether 2'-deoxyadenosine, a major active component in CS, can ameliorate renal AKI by regulating immunity, particularly in NK cells, has not been reported. This study is the first to demonstrate how NK cells promote AKI by releasing perforin, interferon-gamma (IFN-γ) and other inflammatory factors in vivo and in vitro. Differential gene expression between AKI and normal tissues was assessed using bioinformatic analyses. Quantitative real-time PCR, western blotting, and immunohistochemical staining were used to detect target protein mRNA and protein expression. Levels of inflammatory factors were measured using enzyme-linked immunosorbent assay. We found the high doses of the 2'-deoxyadenosine treatment significantly alleviated FA-induced renal damage in vivo, and alleviated the NK cells of renal injury by activating the STING/IRF3 pathway to inhibit perforin release in vitro. The results showed that 2'-deoxyadenosine could mitigate AKI by downregulating the activity of NK cells (by decreasing the expressions of perforin and IFN-γ) and inhibiting the stimulator of interferon genes and phosphorylated IFN regulatory factor 3. This may provide valuable evidence supporting the clinical use of CS in treating patients with AKI.


Subject(s)
Acute Kidney Injury , Cordyceps , Interferon Regulatory Factor-3 , Killer Cells, Natural , Membrane Proteins , Perforin , Signal Transduction , Acute Kidney Injury/metabolism , Acute Kidney Injury/drug therapy , Acute Kidney Injury/prevention & control , Killer Cells, Natural/drug effects , Killer Cells, Natural/metabolism , Animals , Cordyceps/chemistry , Perforin/metabolism , Interferon Regulatory Factor-3/metabolism , Mice , Signal Transduction/drug effects , Membrane Proteins/metabolism , Membrane Proteins/genetics , Male , Interferon-gamma/metabolism , Mice, Inbred C57BL
12.
J Immunol ; 212(7): 1105-1112, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38345346

ABSTRACT

Genetic defects in the ability to deliver effective perforin have been reported in patients with hemophagocytic lymphohistiocytosis. We tested the hypothesis that a primary perforin deficiency might also be causal in severe SARS-CoV-2 infection. We recruited 54 volunteers confirmed as being SARS-CoV-2-infected by RT-PCR and admitted to intensive care units or non-intensive care units and age- and sex-matched healthy controls. Compared with healthy controls, the percentage of perforin-expressing CD3-CD56+ NK cells quantified by flow cytometry was low in COVID-19 patients (69.9 ± 17.7 versus 78.6 ± 14.6%, p = 0.026). There was no correlation between the proportions of perforin-positive NK cells and T8 lymphocytes. Moreover, the frequency of NK cells producing perforin was neither linked to disease severity nor predictive of death. Although IL-6 is known to downregulate perforin production in NK cells, we did not find any link between perforin expression and IL-6 plasma level. However, we unveiled a negative correlation between the degranulation marker CD107a and perforin expression in NK cells (r = -0.488, p = 10-4). PRF1 gene expression and the frequency of NK cells harboring perforin were normal in patients 1 y after acute SARS-CoV-2 infection. A primary perforin defect does not seem to be a driver of COVID-19 because NK perforin expression is 1) linked neither to T8 perforin expression nor to disease severity, 2) inversely correlated with NK degranulation, and 3) normalized at distance from acute infection. Thus, the cause of low frequency of perforin-positive NK cells appears, rather, to be consumption.


Subject(s)
COVID-19 , Interleukin-6 , Humans , Perforin/metabolism , Interleukin-6/metabolism , COVID-19/metabolism , SARS-CoV-2/metabolism , Killer Cells, Natural/metabolism
13.
Open Biol ; 14(2): 230456, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38412963

ABSTRACT

Cytotoxic T lymphocytes (CTLs) are key effectors of the adaptive immune system that recognize and eliminate virally infected and cancerous cells. In naive CD8+ T cells, T-cell receptor (TCR) engagement drives a number of transcriptional, translational and proliferation changes over the course of hours and days leading to differentiation into CTLs. To gain a better insight into this mechanism, we compared the transcriptional profiles of naive CD8+ T cells to those of activated CTLs. To find new regulators of CTL function, we performed a selective clustered regularly interspaced short palindromic repeats (CRISPR) screen on upregulated genes and identified nuclear factor IL-3 (NFIL3) as a potential regulator of cytotoxicity. Although NFIL3 has established roles in several immune cells including natural killer, Treg, dendritic and CD4+ T cells, its function in CD8+ CTLs is less well understood. Using CRISPR/Cas9 editing, we found that removing NFIL3 in CTLs resulted in a marked decrease in cytotoxicity. We found that in CTLs lacking NFIL3 TCR-induced extracellular signal-regulated kinase phosphorylation, immune synapse formation and granule release were all intact while cytotoxicity was functionally impaired in vitro. Strikingly, NFIL3 controls the production of cytolytic proteins as well as effector cytokines. Thus, NFIL3 plays a cell intrinsic role in modulating cytolytic mechanisms in CTLs.


Subject(s)
CD8-Positive T-Lymphocytes , T-Lymphocytes, Cytotoxic , T-Lymphocytes, Cytotoxic/metabolism , Interleukin-3/metabolism , Perforin/metabolism , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism
14.
Int J Mol Sci ; 25(4)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38396930

ABSTRACT

We investigated the polarisation of CD68+ macrophages and perforin and granulysin distributions in kidney lymphocyte subsets of children with IgA vasculitis nephritis (IgAVN). Pro-inflammatory macrophage (M)1 (CD68/iNOS) or regulatory M2 (CD68/arginase-1) polarisation; spatial arrangement of macrophages and lymphocytes; and perforin and granulysin distribution in CD3+ and CD56+ cells were visulaised using double-labelled immunofluorescence. In contrast to the tubules, iNOS+ cells were more abundant than the arginase-1+ cells in the glomeruli. CD68+ macrophage numbers fluctuated in the glomeruli and were mostly labelled with iNOS. CD68+/arginase-1+ cells are abundant in the tubules. CD56+ cells, enclosed by CD68+ cells, were more abundant in the glomeruli than in the tubuli, and co-expressed NKp44. The glomerular and interstitial/intratubular CD56+ cells express perforin and granulysin, respectively. The CD3+ cells did not express perforin, while a minority expressed granulysin. Innate immunity, represented by M1 macrophages and CD56+ cells rich in perforin and granulysin, plays a pivotal role in the acute phase of IgAVN.


Subject(s)
Antigens, Differentiation, T-Lymphocyte , IgA Vasculitis , Killer Cells, Natural , Macrophage Activation , Macrophages , Nephritis , Perforin , Child , Humans , Arginase/metabolism , IgA Vasculitis/complications , Killer Cells, Natural/immunology , Macrophages/immunology , Nephritis/immunology , Perforin/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , Adolescent , Male , Female
15.
Nat Commun ; 15(1): 1405, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38360940

ABSTRACT

Mechanical force contributes to perforin pore formation at immune synapses, thus facilitating the cytotoxic T lymphocytes (CTL)-mediated killing of tumor cells in a unidirectional fashion. How such mechanical cues affect CTL evasion of perforin-mediated autolysis remains unclear. Here we show that activated CTLs use their softness to evade perforin-mediated autolysis, which, however, is shared by T leukemic cells to evade CTL killing. Downregulation of filamin A is identified to induce softness via ZAP70-mediated YAP Y357 phosphorylation and activation. Despite the requirements of YAP in both cell types for softness induction, CTLs are more resistant to YAP inhibitors than malignant T cells, potentially due to the higher expression of the drug-resistant transporter, MDR1, in CTLs. As a result, moderate inhibition of YAP stiffens malignant T cells but spares CTLs, thus allowing CTLs to cytolyze malignant cells without autolysis. Our findings thus hint a mechanical force-based immunotherapeutic strategy against T cell leukemia.


Subject(s)
Cytotoxicity, Immunologic , T-Lymphocytes, Cytotoxic , Perforin/genetics , Perforin/metabolism , Pore Forming Cytotoxic Proteins/genetics
16.
J Physiol Biochem ; 80(1): 219-233, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38091230

ABSTRACT

This study aimed to investigate the role of ERG in the HLX/STAT4/Perforin signaling axis, impacting natural killer (NK) cell cytotoxicity and myocardial infarction (MI) progression. NK cell cytotoxicity was assessed via co-culture and 51Cr release assays. Datasets GSE34198 and GSE97320 identified common differentially expressed genes in MI. NK cell gene expression was analyzed in MI patients and healthy individuals using qRT-PCR and Western blotting. ERG's regulation of HLX and STAT4's regulation of perforin were studied through computational tools (MEM) and ChIP experiments. HLX's influence on STAT4 was explored with the MG132 proteasome inhibitor. Findings were validated in a mouse MI model.ERG, a commonly upregulated gene, was identified in NK cells from MI patients and mice. ERG upregulated HLX, leading to STAT4 proteasomal degradation and reduced Perforin expression. Consequently, NK cell cytotoxicity decreased, promoting MI progression. ERG mediates the HLX/STAT4/Perforin axis to inhibit NK cell cytotoxicity, fostering MI progression. These results provide vital insights into MI's molecular mechanisms.


Subject(s)
Cytotoxicity, Immunologic , Killer Cells, Natural , Animals , Humans , Mice , Homeodomain Proteins , Killer Cells, Natural/metabolism , Perforin/genetics , Perforin/metabolism , Signal Transduction , STAT4 Transcription Factor/genetics , STAT4 Transcription Factor/metabolism , Transcription Factors/metabolism , Transcriptional Regulator ERG/metabolism
17.
J Cereb Blood Flow Metab ; 44(3): 367-383, 2024 03.
Article in English | MEDLINE | ID: mdl-37974301

ABSTRACT

The crosstalk between reactive astrocytes and infiltrated immune cells plays a critical role in maintaining blood-brain barrier (BBB) integrity. However, how astrocytes interact with immune cells and the effect of their interaction on BBB integrity after hemorrhagic stroke are still unclear. By performing RNA sequencing in astrocytes that were activated by interleukin-1α (IL-1α), tumor necrosis factor α (TNFα), and complement component 1q (C1q) treatment, we found CCL5 was among the top upregulated genes. Immunostaining and western blot results demonstrated that CCL5 was increased in mice brain after hemorrhagic stroke. Flow cytometry showed that knockout of astrocytic CCL5 reduced the infiltration of CD8+ but not CD4+ T and myeloid cells into the brain (p < 0.05). In addition, knockout CCL5 in astrocytes increased tight junction-related proteins ZO-1 and Occludin expression; reduced Evans blue leakage, perforin and granzyme B expression; improved neurobehavioral outcomes in hemorrhagic stroke mice (p < 0.05), while transplantation of CD8+ T cells reversed these protective effects. Moreover, co-culture of CD8+ T cells with bEnd.3 cells induced the apoptosis of bEnd.3 cells, which was rescued by inhibiting perforin. In conclusion, our study suggests that CCL5 mediated crosstalk between astrocytes and CD8+ T cells represents an important therapeutic target for protecting BBB in stroke.


Subject(s)
Blood-Brain Barrier , Chemokine CCL5 , Hemorrhagic Stroke , Animals , Mice , Astrocytes/metabolism , Blood-Brain Barrier/metabolism , CD8-Positive T-Lymphocytes , Cell Communication , Endothelial Cells/metabolism , Hemorrhagic Stroke/metabolism , Perforin/metabolism , Perforin/pharmacology , Chemokine CCL5/metabolism
18.
Exp Dermatol ; 33(1): e14982, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37994568

ABSTRACT

Regulatory T cells (Tregs) are involved in the suppression of activated T cells in generalized vitiligo (GV). The study was aimed to investigate resident memory (TRM)-Tregs and antigen-specific Tregs' numbers and functional defects in 25 GV patients and 20 controls. CD4+ & CD8+ TRM cell proliferation was assessed by BrDU assay; production of IL-10, TGF-ß, IFN-γ, perforin and granzyme B were assessed by ELISA and enumeration of TRM cells was done by flowcytometry. GV patients showed significantly increased frequency and absolute count of CD4+ & CD8+ TRM cells in lesional (L), perilesional (PL) and non-lesional (NL) skin compared to controls (p = 0.0003, p = 0.0029 & p = 0.0115, respectively & p = 0.0003, p = 0.003 & p = 0.086, respectively). Whereas, TRM-Treg (p < 0.0001 & p = 0.0015) and antigen-specific Tregs (p = 0.0014 & p = 0.003) exhibited significantly decreased frequency and absolute counts in L & PL skin. GV patients showed reduced suppression of CD8+ & CD4+ TRM cells (with increased IFN-γ, perforin & granzyme B) and decreased TRM-Tregs and antigen-specific Tregs (with decreased IL-10 & TGF-ß production) and reduced proliferation of SK-Mel-28 cells in co-culture systems. Immunohistochemistry revealed increased expression of TRM stimulating cytokines: IL-15 & IL-17A and reduced expression of TGF-ß & IL-10 in L, PL, NL skins compared to controls. These results for the first time suggest that decreased and impaired TRM-Tregs and antigen-specific Tregs are unable to suppress CD4+ & CD8+ TRMs' cytotoxic function and their proliferation due to decrease production of immunosuppressive cytokines (IL-10 & TGF-ß) and increased production of TRM based IFN-γ, perforin and granzyme B production, thus compromising the melanocyte survival in GV.


Subject(s)
Vitiligo , Humans , Vitiligo/metabolism , T-Lymphocytes, Regulatory , Granzymes/metabolism , Interleukin-10/metabolism , Perforin/metabolism , Memory T Cells , Melanocytes , Cytokines/metabolism , Transforming Growth Factor beta/metabolism , Antigens , CD8-Positive T-Lymphocytes
19.
Int Immunopharmacol ; 126: 111231, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38016349

ABSTRACT

OBJECTIVE: This study investigated CX3CR1 expression in human peripheral blood T lymphocytes and their subsets, exploring changes in SLE patients and its diagnostic potential. METHODS: Peripheral blood samples from 31 healthy controls and 50 SLE patients were collected. RNA-Seq data from SLE patient PBMCs were used to analyze CX3CR1 expression in T cells. Flow cytometry determined CX3CR1-expressing T lymphocyte subset proportions in SLE patients and healthy controls. Subset composition and presence of GZMB, GPR56, and perforin in CX3CR1+ T lymphocytes were analyzed. T cell-clinical indicator correlations were assessed. ROC curves explored CX3CR1's diagnostic potential for SLE. RESULTS: CX3CR1+CD8+ T cells exhibited higher GPR56, perforin, and GZMB expression than other T cell subsets. The proportion of CX3CR1+ was higher in TEMRA and lower in Tn and TCM. PMA activation reduced CX3CR1+ T cell proportions. Both RNA-Seq and flow cytometry revealed elevated CX3CR1+ T cell proportions in SLE patients. Significantly lower perforin+ and GPR56+ proportions were observed in CX3CR1+CD8+ T cells in SLE patients. CX3CR1+ T cells correlated with clinical indicators. CONCLUSION: CX3CR1+ T cells display cytotoxic features, with heightened expression in CD8+ T cells, particularly in adult SLE patients. Increased CX3CR1 expression in SLE patient T cells suggests its potential as an adjunctive diagnostic marker for SLE.


Subject(s)
Antineoplastic Agents , Lupus Erythematosus, Systemic , Adult , Humans , Perforin/genetics , Perforin/metabolism , Up-Regulation , T-Lymphocyte Subsets , CD8-Positive T-Lymphocytes , Antineoplastic Agents/metabolism , Flow Cytometry , CX3C Chemokine Receptor 1/metabolism
20.
Cell Immunol ; 395-396: 104797, 2024.
Article in English | MEDLINE | ID: mdl-38157646

ABSTRACT

Vγ9Vδ2 T lymphocytes are programmed for broad antimicrobial responses with rapid production of Th1 cytokines even before birth, and thus thought to play key roles against pathogens in infants. The process regulating Vδ2 cell acquisition of cytotoxic potential shortly after birth remains understudied. We observed that perforin production in cord blood Vδ2 cells correlates with phenotypes defined by the concomitant assessment of PD-1 and CD56. Bulk RNA sequencing of sorted Vδ2 cell fractions indicated that transcripts related to cytotoxic activity and NK function are enriched in the subset with the highest proportion of perforin+ cells. Among differentially expressed transcripts, IRF8, previously linked to CD8 T cell effector differentiation and NK maturation, has the potential to mediate Vδ2 cell differentiation towards cytotoxic effectors. Our current and past results support the hypothesis that distinct mechanisms regulate Vδ2 cell cytotoxic function before and after birth, possibly linked to different levels of microbial exposure.


Subject(s)
CD56 Antigen , CD8-Positive T-Lymphocytes , Cytotoxicity, Immunologic , Programmed Cell Death 1 Receptor , Receptors, Antigen, T-Cell, gamma-delta , T-Lymphocyte Subsets , Humans , CD8-Positive T-Lymphocytes/immunology , Cytokines/metabolism , Fetal Blood , Perforin/genetics , Perforin/metabolism , Programmed Cell Death 1 Receptor/metabolism , Receptors, Antigen, T-Cell, gamma-delta/metabolism , T-Lymphocyte Subsets/immunology , CD56 Antigen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...