Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.597
Filter
1.
J Cell Mol Med ; 28(13): e18505, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39001579

ABSTRACT

Hypoxia-ischaemia (HI) can induce the death of cerebrovascular constituent cells through oxidative stress. Hydrogen is a powerful antioxidant which can activate the antioxidant system. A hypoxia-ischaemia brain damage (HIBD) model was established in 7-day-old SD rats. Rats were treated with different doses of hydrogen-rich water (HRW), and brain pericyte oxidative stress damage, cerebrovascular function and brain tissue damage were assessed. Meanwhile, in vitro-cultured pericytes were subjected to oxygen-glucose deprivation and treated with different concentrations of HRW. Oxidative injury was measured and the molecular mechanism of how HRW alleviated oxidative injury of pericytes was also examined. The results showed that HRW significantly attenuated HI-induced oxidative stress in the brain pericytes of neonatal rats, partly through the Nrf2-HO-1 pathway, further improving cerebrovascular function and reducing brain injury and dysfunction. Furthermore, HRW is superior to a single-cell death inhibitor for apoptosis, ferroptosis, parthanatos, necroptosis and autophagy and can better inhibit HI-induced pericyte death. The liver and kidney functions of rats were not affected by present used HRW dose. This study elucidates the role and mechanism of hydrogen in treating HIBD from the perspective of pericytes, providing new theoretical evidence and mechanistic references for the clinical application of hydrogen in neonatal HIE.


Subject(s)
Animals, Newborn , Brain , Hydrogen , Hypoxia-Ischemia, Brain , Oxidative Stress , Pericytes , Rats, Sprague-Dawley , Animals , Pericytes/drug effects , Pericytes/metabolism , Hydrogen/pharmacology , Hypoxia-Ischemia, Brain/pathology , Hypoxia-Ischemia, Brain/metabolism , Hypoxia-Ischemia, Brain/drug therapy , Rats , Oxidative Stress/drug effects , Brain/pathology , Brain/drug effects , Brain/metabolism , NF-E2-Related Factor 2/metabolism , Apoptosis/drug effects , Disease Models, Animal , Antioxidants/pharmacology
2.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000224

ABSTRACT

Pericytes are a distinct type of cells interacting with endothelial cells in blood vessels and contributing to endothelial barrier integrity. Furthermore, pericytes show mesenchymal stem cell properties. Muscle-derived pericytes can demonstrate both angiogenic and myogenic capabilities. It is well known that regenerative abilities and muscle stem cell potential decline during aging, leading to sarcopenia. Therefore, this study aimed to investigate the potential of pericytes in supporting muscle differentiation and angiogenesis in elderly individuals and in patients affected by Ullrich congenital muscular dystrophy or by Bethlem myopathy, two inherited conditions caused by mutations in collagen VI genes and sharing similarities with the progressive skeletal muscle changes observed during aging. The study characterized pericytes from different age groups and from individuals with collagen VI deficiency by mass spectrometry-based proteomic and bioinformatic analyses. The findings revealed that aged pericytes display metabolic changes comparable to those seen in aging skeletal muscle, as well as a decline in their stem potential, reduced protein synthesis, and alterations in focal adhesion and contractility, pointing to a decrease in their ability to form blood vessels. Strikingly, pericytes from young patients with collagen VI deficiency showed similar characteristics to aged pericytes, but were found to still handle oxidative stress effectively together with an enhanced angiogenic capacity.


Subject(s)
Collagen Type VI , Pericytes , Proteome , Humans , Pericytes/metabolism , Collagen Type VI/metabolism , Collagen Type VI/genetics , Proteome/metabolism , Cells, Cultured , Adult , Middle Aged , Aged , Aging/metabolism , Proteomics/methods , Male , Female , Oxidative Stress , Cell Differentiation
3.
Neuron ; 112(13): 2081-2083, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38964282

ABSTRACT

Preterm infants can face lasting neurodevelopmental challenges due to hypoxia-induced injury of the cerebral white matter. In this issue of Neuron, Ren et al.1 identify microvascular pericytes as unexpected targets for growth hormone signaling, which enhances angiogenesis and remyelination after hypoxic injury in the developing mouse brain.


Subject(s)
Hypoxia, Brain , Myelin Sheath , Pericytes , Pericytes/metabolism , Myelin Sheath/metabolism , Animals , Hypoxia, Brain/metabolism , Mice , Humans , Animals, Newborn , Brain/metabolism
4.
J Gen Virol ; 105(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38995681

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is associated with neurological sequelae including haemorrhage, thrombosis and ischaemic necrosis and encephalitis. However, the mechanism by which this occurs is unclear. Neurological disease associated with COVID-19 has been proposed to occur following direct infection of the central nervous system and/or indirectly by local or systemic immune activation. We evaluated the expression of angiotensin-converting enzyme-2 and transmembrane protease, serine 2 (TMPRSS2) in brain tissue from five healthy human donors and observed low-level expression of these proteins in cells morphologically consistent with astrocytes, neurons and choroidal ependymal cells within the frontal cortex and medulla oblongata. Primary human astrocytes, neurons, choroid plexus epithelial cells and pericytes supported productive SARS-CoV-2 infection with ancestral, Alpha, Delta and Omicron variants. Infected cells supported the full viral life cycle, releasing infectious virus particles. In contrast, primary brain microvascular endothelial cells and microglia were refractory to SARS-CoV-2 infection. These data support a model whereby SARS-CoV-2 can infect human brain cells, and the mechanism of viral entry warrants further investigation.


Subject(s)
Angiotensin-Converting Enzyme 2 , Astrocytes , COVID-19 , Choroid Plexus , Epithelial Cells , Neurons , Pericytes , SARS-CoV-2 , Serine Endopeptidases , Humans , Pericytes/virology , SARS-CoV-2/physiology , Astrocytes/virology , Choroid Plexus/virology , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Neurons/virology , COVID-19/virology , COVID-19/pathology , Epithelial Cells/virology , Serine Endopeptidases/metabolism , Serine Endopeptidases/genetics , Cells, Cultured , Brain/virology , Brain/pathology , Central Nervous System/virology
5.
Zhonghua Xin Xue Guan Bing Za Zhi ; 52(7): 814-826, 2024 Jul 24.
Article in Chinese | MEDLINE | ID: mdl-39019831

ABSTRACT

Objective: To investigate the role and underlying mechanisms of methyltransferase (Mettl) 3 in the process of angiotensin Ⅱ (Ang Ⅱ)-induced pericyte-to-myofibroblast transdifferentiation and renal fibrosis. Methods: C57BL/6J mice were used, in cell experiments, mouse renal pericytes were isolated and cultured using magnetic bead sorting. These pericytes were then induced to transdifferentiate into myofibroblasts with 1×106 mmol/L Ang Ⅱ, which was the Ang Ⅱ group, while pericytes cultured in normal conditions served as the control group. Successful transdifferentiation was verified by immunofluorescence staining, Western blotting, and real-time reverse transcription PCR (RT-qPCR) for α-smooth muscle actin (α-SMA). The levels of m6A modifications and related enzymes (Mettl3, Mettl14), Wilms tumor 1-associated protein (WTAP), fat mass and obesity protein (FTO), ALKBH5, YTHDF1, YTHDF2, YTHDC1, YTHDC2, YTHDC3 were assessed by Dot blot, RT-qPCR and Western blot. Mettl3 expression was inhibited in cells using lentivirus-mediated Mettl3-shRNA transfection, creating sh-Mettl3 and Ang Ⅱ+sh-Mettl3 groups, while lentivirus empty vector transfection served as the negative control (Ang Ⅱ+sh-NC group). The impact of Ang Ⅱ on pericyte transdifferentiation was observed, and the expression of downstream phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway proteins, including PI3K, AKT, phosphorylated AKT at serine 473 (p-AKT (S473)), and phosphorylated AKT at threonine 308 (p-AKT (T308)), were examined. PI3K gene transcription was inhibited by co-culturing cells with actinomycin D, and the half-life of PI3K mRNA was calculated by measuring residual PI3K mRNA expression over different co-culture time. The reversibility of Mettl3 inhibition on Ang Ⅱ-induced pericyte-to-myofibroblast transdifferentiation was assessed by adding the AKT activator SC79 to the Ang Ⅱ+sh-Mettl3 group. In animal experiments, mice were divided into these groups: sham group (administered 0.9% sterile saline), Ang Ⅱ group (infused with Ang Ⅱ solution), sh-Mettl3 group (injected with Mettl3 shRNA lentivirus solution), Ang Ⅱ+sh-Mettl3 group (infused with Ang Ⅱ solution and injected with Mettl3 shRNA lentivirus solution), and Ang Ⅱ+sh-Mettl3+SC79 group (administered Ang Ⅱ solution and Mettl3 shRNA lentivirus, with an additional injection of SC79). Each group consisted of six subject mice. Blood pressure was measured using the tail-cuff method before and after surgery, and serum creatinine, urea, and urinary albumin levels were determined 4 weeks post-surgery. Kidney tissues were collected at 28 days and stained using hematoxylin-eosin (HE) and Masson's trichrome to assess the extent of renal fibrosis. Results: Primary renal pericytes were successfully obtained by magnetic bead sorting, and intervened with 1×106 mmol/L Ang Ⅱ for 48 hours to induce pericyte-to-myofibroblast transdifferentiation. Dot blot results indicated higher m6A modification levels in the Ang Ⅱ group compared to the control group (P<0.05). RT-qPCR and Western blot results showed upregulation of Mettl3 mRNA and protein levels in the Ang Ⅱ group compared to the control group (both P<0.05). In the Ang Ⅱ+sh-Mettl3 group, Mettl3 protein expression was lower than that in the Ang Ⅱ group, with reduced expression levels of α-SMA, vimentin, desmin, fibroblast agonist protein (FAPa) and type Ⅰ collagen (all P<0.05). Compared to the control group, PI3K mRNA expression level was elevated in the Ang Ⅱ group, along with increased p-AKT (S473) and p-AKT (T308) expressions. In the Ang Ⅱ+sh-Mettl3 group, PI3K mRNA expression and p-AKT (S473) and p-AKT (T308) levels were decreased (all P<0.05). The half-life of PI3K mRNA was shorter in the Ang Ⅱ+sh-Mettl3 group than that in the Ang Ⅱ+sh-NC group (2.34 h vs. 3.42 h). The ameliorative effect of Mettl3 inhibition on Ang Ⅱ-induced pericyte-to-myofibroblast transdifferentiation was reversible by SC79. Animal experiments showed higher blood pressure, serum creatinine, urea, and 24-hour urinary protein levels, and a larger fibrosis area in the Ang Ⅱ group compared to the sham group (all P<0.05). The fibrosis area was smaller in the Ang Ⅱ+sh-Mettl3 group than that in the Ang Ⅱ group (P<0.05), but increased again upon addition of SC79. Conclusion: Mettl3-mediated RNA m6A epigenetic regulation is involved in Ang Ⅱ-induced pericyte-to-myofibroblast transdifferentiation and renal fibrosis, potentially by affecting PI3K stability and regulating the PI3K/AKT signaling pathway.


Subject(s)
Angiotensin II , Cell Transdifferentiation , Methyltransferases , Mice, Inbred C57BL , Myofibroblasts , Pericytes , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Pericytes/metabolism , Methyltransferases/metabolism , Mice , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Angiotensin II/pharmacology , Myofibroblasts/metabolism , Kidney , Cells, Cultured
6.
Commun Biol ; 7(1): 693, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844781

ABSTRACT

Pericyte dysfunction, with excessive migration, hyperproliferation, and differentiation into smooth muscle-like cells contributes to vascular remodeling in Pulmonary Arterial Hypertension (PAH). Augmented expression and action of growth factors trigger these pathological changes. Endogenous factors opposing such alterations are barely known. Here, we examine whether and how the endothelial hormone C-type natriuretic peptide (CNP), signaling through the cyclic guanosine monophosphate (cGMP) -producing guanylyl cyclase B (GC-B) receptor, attenuates the pericyte dysfunction observed in PAH. The results demonstrate that CNP/GC-B/cGMP signaling is preserved in lung pericytes from patients with PAH and prevents their growth factor-induced proliferation, migration, and transdifferentiation. The anti-proliferative effect of CNP is mediated by cGMP-dependent protein kinase I and inhibition of the Phosphoinositide 3-kinase (PI3K)/AKT pathway, ultimately leading to the nuclear stabilization and activation of the Forkhead Box O 3 (FoxO3) transcription factor. Augmentation of the CNP/GC-B/cGMP/FoxO3 signaling pathway might be a target for novel therapeutics in the field of PAH.


Subject(s)
Cell Proliferation , Cyclic GMP , Forkhead Box Protein O3 , Natriuretic Peptide, C-Type , Pericytes , Signal Transduction , Humans , Pericytes/metabolism , Pericytes/pathology , Natriuretic Peptide, C-Type/metabolism , Cyclic GMP/metabolism , Forkhead Box Protein O3/metabolism , Forkhead Box Protein O3/genetics , Male , Female , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/pathology , Middle Aged , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Adult , Receptors, Atrial Natriuretic Factor/metabolism , Receptors, Atrial Natriuretic Factor/genetics , Cells, Cultured
7.
J Clin Invest ; 134(14)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38885342

ABSTRACT

While inflammation is beneficial for insulin secretion during homeostasis, its transformation adversely affects ß cells and contributes to diabetes. However, the regulation of islet inflammation for maintaining glucose homeostasis remains largely unknown. Here, we identified pericytes as pivotal regulators of islet immune and ß cell function in health. Islets and pancreatic pericytes express various cytokines in healthy humans and mice. To interfere with the pericytic inflammatory response, we selectively inhibited the TLR/MyD88 pathway in these cells in transgenic mice. The loss of MyD88 impaired pericytic cytokine production. Furthermore, MyD88-deficient mice exhibited skewed islet inflammation with fewer cells, an impaired macrophage phenotype, and reduced IL-1ß production. This aberrant pericyte-orchestrated islet inflammation was associated with ß cell dedifferentiation and impaired glucose response. Additionally, we found that Cxcl1, a pericytic MyD88-dependent cytokine, promoted immune IL-1ß production. Treatment with either Cxcl1 or IL-1ß restored the mature ß cell phenotype and glucose response in transgenic mice, suggesting a potential mechanism through which pericytes and immune cells regulate glucose homeostasis. Our study revealed pericyte-orchestrated islet inflammation as a crucial element in glucose regulation, implicating this process as a potential therapeutic target for diabetes.


Subject(s)
Inflammation , Interleukin-1beta , Myeloid Differentiation Factor 88 , Pericytes , Signal Transduction , Animals , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Mice , Pericytes/metabolism , Pericytes/pathology , Pericytes/immunology , Humans , Inflammation/pathology , Inflammation/metabolism , Inflammation/genetics , Inflammation/immunology , Interleukin-1beta/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Mice, Transgenic , Toll-Like Receptors/metabolism , Toll-Like Receptors/genetics , Chemokine CXCL1/metabolism , Chemokine CXCL1/genetics , Islets of Langerhans/immunology , Islets of Langerhans/metabolism , Islets of Langerhans/pathology , Mice, Knockout , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Insulin-Secreting Cells/immunology , Male , Glucose/metabolism
8.
Nat Neurosci ; 27(7): 1285-1298, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38849523

ABSTRACT

Fibrotic scar tissue formation occurs in humans and mice. The fibrotic scar impairs tissue regeneration and functional recovery. However, the origin of scar-forming fibroblasts is unclear. Here, we show that stromal fibroblasts forming the fibrotic scar derive from two populations of perivascular cells after spinal cord injury (SCI) in adult mice of both sexes. We anatomically and transcriptionally identify the two cell populations as pericytes and perivascular fibroblasts. Fibroblasts and pericytes are enriched in the white and gray matter regions of the spinal cord, respectively. Both cell populations are recruited in response to SCI and inflammation. However, their contribution to fibrotic scar tissue depends on the location of the lesion. Upon injury, pericytes and perivascular fibroblasts become activated and transcriptionally converge on the generation of stromal myofibroblasts. Our results show that pericytes and perivascular fibroblasts contribute to the fibrotic scar in a region-dependent manner.


Subject(s)
Cicatrix , Fibroblasts , Fibrosis , Pericytes , Spinal Cord Injuries , Animals , Fibroblasts/pathology , Fibroblasts/metabolism , Fibrosis/pathology , Spinal Cord Injuries/pathology , Mice , Pericytes/pathology , Pericytes/metabolism , Male , Female , Cicatrix/pathology , Mice, Inbred C57BL , Stromal Cells/pathology
9.
ACS Biomater Sci Eng ; 10(7): 4388-4399, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38856968

ABSTRACT

In this study, fibrous polyurethane (PU) materials with average fiber diameter of 200, 500, and 1000 nm were produced using a solution blow spinning (SBS) process. The effects of the rotation speed of the collector (in the range of 200-25 000 rpm) on the fiber alignment and diameter were investigated. The results showed that fiber alignment was influenced by the rotation speed of the collector, and such alignment was possible when the fiber diameter was within a specific range. Homogeneously oriented fibers were obtained only for a fiber diameter ≥500 nm. Moreover, the changes in fiber orientation and fiber diameter (resulting from changes in the rotation speed of the collector) were more noticeable for materials with an average fiber diameter of 1000 nm in comparison to 500 nm, which suggests that the larger the fiber diameter, the better the controlled architectures that can be obtained. The porosity of the produced scaffolds was about 65-70%, except for materials with a fiber diameter of 1000 nm and aligned fibers, which had a higher porosity (76%). Thus, the scaffold pore size increased with increasing fiber diameter but decreased with increasing fiber alignment. The mechanical properties of fibrous materials strongly depend on the direction of stretching, whereby the fiber orientation influences the mechanical strength only for materials with a fiber diameter of 1000 nm. Furthermore, the fiber diameter and alignment affected the pericyte growth. Significant differences in cell growth were observed after 7 days of cell culture between materials with a fiber diameter of 1000 nm (cell coverage 96-99%) and those with a fiber diameter of 500 nm (cell coverage 70-90%). By appropriately setting the SBS process parameters, scaffolds can be easily adapted to the cell requirements, which is of great importance in producing complex 3D structures for guided tissue regeneration.


Subject(s)
Pericytes , Polyurethanes , Tissue Scaffolds , Polyurethanes/chemistry , Tissue Scaffolds/chemistry , Pericytes/cytology , Pericytes/physiology , Porosity , Animals , Cell Proliferation , Tissue Engineering/methods , Materials Testing
10.
Elife ; 122024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856719

ABSTRACT

Erectile dysfunction (ED) affects a significant proportion of men aged 40-70 and is caused by cavernous tissue dysfunction. Presently, the most common treatment for ED is phosphodiesterase 5 inhibitors; however, this is less effective in patients with severe vascular disease such as diabetic ED. Therefore, there is a need for development of new treatment, which requires a better understanding of the cavernous microenvironment and cell-cell communications under diabetic condition. Pericytes are vital in penile erection; however, their dysfunction due to diabetes remains unclear. In this study, we performed single-cell RNA sequencing to understand the cellular landscape of cavernous tissues and cell type-specific transcriptional changes in diabetic ED. We found a decreased expression of genes associated with collagen or extracellular matrix organization and angiogenesis in diabetic fibroblasts, chondrocytes, myofibroblasts, valve-related lymphatic endothelial cells, and pericytes. Moreover, the newly identified pericyte-specific marker, Limb Bud-Heart (Lbh), in mouse and human cavernous tissues, clearly distinguishing pericytes from smooth muscle cells. Cell-cell interaction analysis revealed that pericytes are involved in angiogenesis, adhesion, and migration by communicating with other cell types in the corpus cavernosum; however, these interactions were highly reduced under diabetic conditions. Lbh expression is low in diabetic pericytes, and overexpression of LBH prevents erectile function by regulating neurovascular regeneration. Furthermore, the LBH-interacting proteins (Crystallin Alpha B and Vimentin) were identified in mouse cavernous pericytes through LC-MS/MS analysis, indicating that their interactions were critical for maintaining pericyte function. Thus, our study reveals novel targets and insights into the pathogenesis of ED in patients with diabetes.


Subject(s)
Erectile Dysfunction , Penis , Pericytes , Single-Cell Analysis , Male , Pericytes/metabolism , Erectile Dysfunction/genetics , Erectile Dysfunction/metabolism , Animals , Mice , Humans , Penis/metabolism , Gene Expression Profiling , Transcriptome , Mice, Inbred C57BL , Single-Cell Gene Expression Analysis
11.
Open Biol ; 14(6): 230349, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38862017

ABSTRACT

Coronavirus disease 2019 (COVID-19) was initially considered a primarily respiratory disease but is now known to affect other organs including the heart and brain. A major route by which COVID-19 impacts different organs is via the vascular system. We studied the impact of apolipoprotein E (APOE) genotype and inflammation on vascular infectivity by pseudo-typed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viruses in mouse and human cultured endothelial cells and pericytes. Possessing the APOE4 allele or having existing systemic inflammation is known to enhance the severity of COVID-19. Using targeted replacement human APOE3 and APOE4 mice and inflammation induced by bacterial lipopolysaccharide (LPS), we investigated infection by SARS-CoV-2. Here, we show that infectivity was higher in murine cerebrovascular pericytes compared to endothelial cells and higher in cultures expressing APOE4. Furthermore, increasing the inflammatory state of the cells by prior incubation with LPS increased infectivity into human and mouse pericytes and human endothelial cells. Our findings provide insights into the mechanisms underlying severe COVID-19 infection, highlighting how risk factors such as APOE4 genotype and prior inflammation may exacerbate disease severity by augmenting the virus's ability to infect vascular cells.


Subject(s)
COVID-19 , Endothelial Cells , Pericytes , SARS-CoV-2 , Pericytes/virology , Pericytes/metabolism , Pericytes/pathology , Humans , Animals , SARS-CoV-2/physiology , SARS-CoV-2/pathogenicity , COVID-19/virology , COVID-19/pathology , Mice , Endothelial Cells/virology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Risk Factors , Lipopolysaccharides/pharmacology , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Apolipoprotein E3/genetics , Apolipoprotein E3/metabolism , Inflammation/virology , Inflammation/pathology
12.
Nat Commun ; 15(1): 4758, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902234

ABSTRACT

To uncover molecular changes underlying blood-brain-barrier dysfunction in Alzheimer's disease, we performed single nucleus RNA sequencing in 24 Alzheimer's disease and control brains and focused on vascular and astrocyte clusters as main cell types of blood-brain-barrier gliovascular-unit. The majority of the vascular transcriptional changes were in pericytes. Of the vascular molecular targets predicted to interact with astrocytic ligands, SMAD3, upregulated in Alzheimer's disease pericytes, has the highest number of ligands including VEGFA, downregulated in Alzheimer's disease astrocytes. We validated these findings with external datasets comprising 4,730 pericyte and 150,664 astrocyte nuclei. Blood SMAD3 levels are associated with Alzheimer's disease-related neuroimaging outcomes. We determined inverse relationships between pericytic SMAD3 and astrocytic VEGFA in human iPSC and zebrafish models. Here, we detect vast transcriptome changes in Alzheimer's disease at the gliovascular-unit, prioritize perturbed pericytic SMAD3-astrocytic VEGFA interactions, and validate these in cross-species models to provide a molecular mechanism of blood-brain-barrier disintegrity in Alzheimer's disease.


Subject(s)
Alzheimer Disease , Astrocytes , Blood-Brain Barrier , Pericytes , Smad3 Protein , Vascular Endothelial Growth Factor A , Zebrafish , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Humans , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Smad3 Protein/metabolism , Smad3 Protein/genetics , Astrocytes/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Animals , Pericytes/metabolism , Pericytes/pathology , Male , Induced Pluripotent Stem Cells/metabolism , Female , Aged , Transcriptome , Brain/metabolism , Brain/pathology , Brain/blood supply , Aged, 80 and over , Disease Models, Animal
13.
J Dent Res ; 103(7): 723-733, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38822570

ABSTRACT

A ligature-induced periodontitis model was established in wild-type and CD146CreERT2; RosatdTomato mice to explore the function of pericytes in alveolar bone formation. We found that during periodontitis progression and periodontal wound healing, CD146+/NG2+ pericytes were enriched in the periodontal tissue areas, which could migrate to the alveolar bone surface and colocalize with ALP+/OCN+ osteoblasts. Chemokine C-X-C motif receptor 4 (CXCR4) inhibition using AMD3100 blocked CD146-Cre+ pericyte migration and osteogenesis, as well as further exacerbated periodontitis-associated bone loss. Next, primary pericytes were sorted out by magnetic-activated cell sorting and demonstrated that C-X-C motif chemokine ligand 12 (CXCL12) promotes pericyte migration and osteogenesis via CXCL12-CXCR4-Rac1 signaling. Finally, the local administration of an adeno-associated virus for Rac1 overexpression in NG2+ pericytes promotes osteoblast differentiation of pericytes and increases alveolar bone volume in periodontitis. Thus, our results provided the evidence that pericytes may migrate and osteogenesis via the CXCL12-CXCR4-Rac1 axis during the pathological process of periodontitis.


Subject(s)
Cell Movement , Chemokine CXCL12 , Osteogenesis , Pericytes , Periodontitis , Receptors, CXCR4 , Animals , Osteogenesis/physiology , Cell Movement/physiology , Mice , Chemokine CXCL12/metabolism , Receptors, CXCR4/metabolism , Alveolar Bone Loss , Signal Transduction/physiology , rac1 GTP-Binding Protein/metabolism , Disease Models, Animal , CD146 Antigen , Osteoblasts , Cell Differentiation , Cyclams , Benzylamines
14.
Biomed Pharmacother ; 176: 116870, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850658

ABSTRACT

Intracranial atherosclerotic stenosis (ICAS) is a pathological condition characterized by progressive narrowing or complete blockage of intracranial blood vessels caused by plaque formation. This condition leads to reduced blood flow to the brain, resulting in cerebral ischemia and hypoxia. Ischemic stroke (IS) resulting from ICAS poses a significant global public health challenge, especially among East Asian populations. However, the underlying causes of the notable variations in prevalence among diverse populations, as well as the most effective strategies for preventing and treating the rupture and blockage of intracranial plaques, remain incompletely comprehended. Rupture of plaques, bleeding, and thrombosis serve as precipitating factors in the pathogenesis of luminal obstruction in intracranial arteries. Pericytes play a crucial role in the structure and function of blood vessels and face significant challenges in regulating the Vasa Vasorum (VV)and preventing intraplaque hemorrhage (IPH). This review aims to explore innovative therapeutic strategies that target the pathophysiological mechanisms of vulnerable plaques by modulating pericyte biological function. It also discusses the potential applications of pericytes in central nervous system (CNS) diseases and their prospects as a therapeutic intervention in the field of biological tissue engineering regeneration.


Subject(s)
Pericytes , Pericytes/pathology , Humans , Animals , Intracranial Arteriosclerosis/pathology , Intracranial Arteriosclerosis/physiopathology , Vasa Vasorum/pathology , Vasa Vasorum/physiopathology , Cerebral Arteries/pathology
15.
Sci Prog ; 107(2): 368504241257126, 2024.
Article in English | MEDLINE | ID: mdl-38863331

ABSTRACT

Pericytes (PCs) are versatile cells integral to the microcirculation wall, exhibiting specific stem cell traits. They are essential in modulating blood flow, ensuring vascular permeability, maintaining homeostasis, and aiding tissue repair process. Given their involvement in numerous disease-related pathological and physiological processes, the regulation of PCs has emerged as a focal point of research. Adenomyosis is characterized by the presence of active endometrial glands and stroma encased by an enlarged and proliferative myometrial layer, further accompanied by fibrosis and new blood vessel formation. This distinct pathological condition might be intricately linked with PCs. This article comprehensively reviews the markers associated with PCs, their contributions to angiogenesis, blood flow modulation, and fibrotic processes. Moreover, it provides a comprehensive overview of the current research on adenomyosis pathophysiology, emphasizing the potential correlation and future implications regarding PCs and the development of adenomyosis.


Subject(s)
Adenomyosis , Pericytes , Adenomyosis/pathology , Adenomyosis/physiopathology , Pericytes/pathology , Humans , Female , Neovascularization, Pathologic/pathology , Animals , Fibrosis/pathology , Endometrium/pathology , Endometrium/blood supply , Myometrium/pathology , Biomarkers/metabolism
16.
Stem Cell Reports ; 19(7): 946-956, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38876110

ABSTRACT

Functionality of the blood-brain barrier (BBB) relies on the interaction between endothelial cells (ECs), pericytes, and astrocytes to regulate molecule transport within the central nervous system. Most experimental models for the BBB rely on freshly isolated primary brain cells. Here, we explored human induced pluripotent stem cells (hiPSCs) as a cellular source for astrocytes in a 3D vessel-on-chip (VoC) model. Self-organized microvascular networks were formed by combining hiPSC-derived ECs, human brain vascular pericytes, and hiPSC-derived astrocytes within a fibrin hydrogel. The hiPSC-ECs and pericytes showed close interactions, but, somewhat unexpectedly, addition of astrocytes disrupted microvascular network formation. However, continuous fluid perfusion or activation of cyclic AMP (cAMP) signaling rescued the vascular organization and decreased vascular permeability. Nevertheless, astrocytes did not affect the expression of proteins related to junction formation, transport, or extracellular matrix, indicating that, despite other claims, hiPSC-derived ECs do not entirely acquire a BBB-like identity in the 3D VoC model.


Subject(s)
Astrocytes , Blood-Brain Barrier , Endothelial Cells , Induced Pluripotent Stem Cells , Astrocytes/metabolism , Astrocytes/cytology , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/cytology , Endothelial Cells/cytology , Endothelial Cells/metabolism , Pericytes/cytology , Pericytes/metabolism , Cell Differentiation , Lab-On-A-Chip Devices , Cells, Cultured , Hydrogels , Cyclic AMP/metabolism , Models, Biological
17.
Int J Mol Sci ; 25(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38928202

ABSTRACT

Blood-brain barrier (BBB) dysfunction is a key feature in neuroimmunological and neurodegenerative diseases. In this study, we developed a microfluidic human BBB-on-a-chip to model barrier dysfunction and immune cell migration using immortalized TY10 brain endothelial cells, pericytes, and astrocytes. It was found that immortalized TY10 brain endothelial cells developed a microvascular structure under flow. Pericytes were localized on the basal side surrounding the TY10 microvascular structure, showing an in vivo-like structure. Barrier integrity increased under co-culture with pericytes. In addition, both ethylenediaminetetraacetic acid (EDTA) and anti-Claudin-5 (CLDN5) neutralizing antibody caused a decrease in the transendothelial electrical resistance (TEER). EDTA caused the leakage of 20 kDa dextran, suggesting different effects on the BBB based on the mechanism of action, whereas anti-CLDN5 antibody did not cause leakage. In the tri-culture model, human T cells migrated through endothelial vessels towards basal C-X-C motif chemokine ligand 12 (CXCL12). The live-imaging analysis confirmed the extravasation of fluorescence-labelled T cells in a CXCL12-concentration- and time-dependent manner. Our BBB model had an in vivo-like structure and successfully represented barrier dysfunction and transendothelial T cell migration. In addition, our study suggests that the inhibition of CLDN5 attenuates the BBB in humans. This platform has various potential uses in relation to the BBB in both drug discovery research and in elucidating the mechanisms of central nervous system diseases.


Subject(s)
Blood-Brain Barrier , Cell Movement , Endothelial Cells , Lab-On-A-Chip Devices , Humans , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Cell Movement/drug effects , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Drug Discovery/methods , Coculture Techniques , Pericytes/metabolism , Pericytes/drug effects , Claudin-5/metabolism , Astrocytes/metabolism , Astrocytes/drug effects , Chemokine CXCL12/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/drug effects
18.
Int J Mol Sci ; 25(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38928298

ABSTRACT

Pericytes are multipotent cells embedded within the vascular system, primarily surrounding capillaries and microvessels where they closely interact with endothelial cells. These cells are known for their intriguing properties due to their heterogeneity in tissue distribution, origin, and multifunctional capabilities. Specifically, pericytes are essential in regulating blood flow, promoting angiogenesis, and supporting tissue homeostasis and regeneration. These multifaceted roles draw on pericytes' remarkable ability to respond to biochemical cues, interact with neighboring cells, and adapt to changing environmental conditions. This review aims to summarize existing knowledge on pericytes, emphasizing their versatility and involvement in vascular integrity and tissue health. In particular, a comprehensive view of the major signaling pathways, such as PDGFß/ PDGFRß, TGF-ß, FOXO and VEGF, along with their downstream targets, which coordinate the behavior of pericytes in preserving vascular integrity and promoting tissue regeneration, will be discussed. In this light, a deeper understanding of the complex signaling networks defining the phenotype of pericytes in healthy tissues is crucial for the development of targeted therapies in vascular and degenerative diseases.


Subject(s)
Homeostasis , Pericytes , Signal Transduction , Pericytes/metabolism , Pericytes/physiology , Humans , Animals , Neovascularization, Physiologic , Receptor, Platelet-Derived Growth Factor beta/metabolism
19.
Mol Cell Proteomics ; 23(6): 100782, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705386

ABSTRACT

Cellular communication within the brain is imperative for maintaining homeostasis and mounting effective responses to pathological triggers like hypoxia. However, a comprehensive understanding of the precise composition and dynamic release of secreted molecules has remained elusive, confined primarily to investigations using isolated monocultures. To overcome these limitations, we utilized the potential of TurboID, a non-toxic biotin ligation enzyme, to capture and enrich secreted proteins specifically originating from human brain pericytes in spheroid cocultures with human endothelial cells and astrocytes. This approach allowed us to characterize the pericyte secretome within a more physiologically relevant multicellular setting encompassing the constituents of the blood-brain barrier. Through a combination of mass spectrometry and multiplex immunoassays, we identified a wide spectrum of different secreted proteins by pericytes. Our findings demonstrate that the pericytes secretome is profoundly shaped by their intercellular communication with other blood-brain barrier-residing cells. Moreover, we identified substantial differences in the secretory profiles between hypoxic and normoxic pericytes. Mass spectrometry analysis showed that hypoxic pericytes in coculture increase their release of signals related to protein secretion, mTOR signaling, and the complement system, while hypoxic pericytes in monocultures showed an upregulation in proliferative pathways including G2M checkpoints, E2F-, and Myc-targets. In addition, hypoxic pericytes show an upregulation of proangiogenic proteins such as VEGFA but display downregulation of canonical proinflammatory cytokines such as CXCL1, MCP-1, and CXCL6. Understanding the specific composition of secreted proteins in the multicellular brain microvasculature is crucial for advancing our knowledge of brain homeostasis and the mechanisms underlying pathology. This study has implications for the identification of targeted therapeutic strategies aimed at modulating microvascular signaling in brain pathologies associated with hypoxia.


Subject(s)
Cell Hypoxia , Coculture Techniques , Pericytes , Spheroids, Cellular , Pericytes/metabolism , Humans , Spheroids, Cellular/metabolism , Secretome/metabolism , Endothelial Cells/metabolism , Astrocytes/metabolism , Proteomics/methods , Cell Communication , Blood-Brain Barrier/metabolism , Cells, Cultured , Brain/metabolism , Mass Spectrometry , Signal Transduction
20.
J Med Virol ; 96(5): e29671, 2024 May.
Article in English | MEDLINE | ID: mdl-38747003

ABSTRACT

The coronavirus disease of 2019 (COVID-19) pandemic has led to more than 700 million confirmed cases and nearly 7 million deaths. Although severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus mainly infects the respiratory system, neurological complications are widely reported in both acute infection and long-COVID cases. Despite the success of vaccines and antiviral treatments, neuroinvasiveness of SARS-CoV-2 remains an important question, which is also centered on the mystery of whether the virus is capable of breaching the barriers into the central nervous system. By studying the K18-hACE2 infection model, we observed clear evidence of microvascular damage and breakdown of the blood-brain barrier (BBB). Mechanistically, SARS-CoV-2 infection caused pericyte damage, tight junction loss, endothelial activation and vascular inflammation, which together drive microvascular injury and BBB impairment. In addition, the blood-cerebrospinal fluid barrier at the choroid plexus was also impaired after infection. Therefore, cerebrovascular and choroid plexus dysfunctions are important aspects of COVID-19 and may contribute to neurological complications both acutely and in long COVID.


Subject(s)
Blood-Brain Barrier , COVID-19 , Choroid Plexus , SARS-CoV-2 , Blood-Brain Barrier/virology , Animals , Choroid Plexus/virology , Choroid Plexus/pathology , COVID-19/virology , COVID-19/pathology , COVID-19/complications , COVID-19/physiopathology , Mice , Tight Junctions/virology , Disease Models, Animal , Angiotensin-Converting Enzyme 2/metabolism , Inflammation/virology , Humans , Pericytes/virology , Pericytes/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...