Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 94(2): 727-45, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21257041

ABSTRACT

Feeding rations with low dietary cation-anion difference (DCAD) to dairy cows during late gestation is a common strategy to prevent periparturient hypocalcemia. Although the efficacy of low-DCAD rations in reducing the incidence of clinical hypocalcemia is well documented, potentially deleterious effects have not been explored in detail. The objective of the study presented here was to determine the effect of fully compensated metabolic acidosis on calcium and phosphorus homeostasis, insulin responsiveness, and insulin sensitivity as well as on protein metabolism. Twenty multiparous Holstein-Friesian dairy cows were assigned to 1 of 2 treatment groups and fed a low-DCAD ration (DCAD = -9 mEq/100g, group L) or a control ration (DCAD = +11 mEq/100g, group C) for the last 3 wk before the expected calving date. Blood and urine samples were obtained periodically between 14 d before to 14 d after calving. Intravenous glucose tolerance tests and 24-h volumetric urine collection were conducted before calving as well as 7 and 14 d postpartum. Cows fed the low-DCAD ration had lower urine pH and higher net acid excretion, but unchanged blood pH and bicarbonate concentration before calving. Protein-corrected plasma Ca concentration 1 d postpartum was higher in cows on the low-DCAD diet when compared with control animals. Urinary Ca and P excretion was positively associated with urine net acid excretion and negatively associated with urine pH. Whereas metabolic acidosis resulted in a 6-fold increase in urinary Ca excretion, the effect on renal P excretion was negligible. A more pronounced decline of plasma protein and globulin concentration in the periparturient period was observed in cows on the low-DCAD diets resulting in significantly lower total protein and globulin concentrations after calving in cows on low-DCAD diets. Intravenous glucose tolerance tests conducted before and after calving did not reveal group differences in insulin response or insulin sensitivity. Our results indicate that fully compensated metabolic acidosis increased the Ca flux resulting in increased urinary calcium excretion before calving and increased plasma Ca concentration on the day after calving, whereas the effect on P homeostasis was unlikely to be clinically relevant. The clinical relevance of the effect of metabolic acidosis on the plasma protein and globulin concentration is unclear but warrants further investigation.


Subject(s)
Animal Nutritional Physiological Phenomena , Anions/analysis , Cations/analysis , Cattle/physiology , Diet/veterinary , Homeostasis/physiology , Peripartum Period/physiology , Acid-Base Equilibrium/physiology , Animal Feed/analysis , Animals , Calcium/blood , Calcium/urine , Cattle/blood , Cattle/urine , Female , Glucose Tolerance Test/veterinary , Lactation/physiology , Milk/metabolism , Peripartum Period/blood , Peripartum Period/urine , Phosphorus/blood , Phosphorus/urine , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...