Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 278
Filter
1.
PLoS One ; 19(5): e0303610, 2024.
Article in English | MEDLINE | ID: mdl-38758931

ABSTRACT

We have previously shown that polygenic risk scores (PRS) can improve risk stratification of peripheral artery disease (PAD) in a large, retrospective cohort. Here, we evaluate the potential of PRS in improving the detection of PAD and prediction of major adverse cardiovascular and cerebrovascular events (MACCE) and adverse events (AE) in an institutional patient cohort. We created a cohort of 278 patients (52 cases and 226 controls) and fit a PAD-specific PRS based on the weighted sum of risk alleles. We built traditional clinical risk models and machine learning (ML) models using clinical and genetic variables to detect PAD, MACCE, and AE. The models' performances were measured using the area under the curve (AUC), net reclassification index (NRI), integrated discrimination improvement (IDI), and Brier score. We also evaluated the clinical utility of our PAD model using decision curve analysis (DCA). We found a modest, but not statistically significant improvement in the PAD detection model's performance with the inclusion of PRS from 0.902 (95% CI: 0.846-0.957) (clinical variables only) to 0.909 (95% CI: 0.856-0.961) (clinical variables with PRS). The PRS inclusion significantly improved risk re-classification of PAD with an NRI of 0.07 (95% CI: 0.002-0.137), p = 0.04. For our ML model predicting MACCE, the addition of PRS did not significantly improve the AUC, however, NRI analysis demonstrated significant improvement in risk re-classification (p = 2e-05). Decision curve analysis showed higher net benefit of our combined PRS-clinical model across all thresholds of PAD detection. Including PRS to a clinical PAD-risk model was associated with improvement in risk stratification and clinical utility, although we did not see a significant change in AUC. This result underscores the potential clinical utility of incorporating PRS data into clinical risk models for prevalent PAD and the need for use of evaluation metrics that can discern the clinical impact of using new biomarkers in smaller populations.


Subject(s)
Peripheral Arterial Disease , Humans , Peripheral Arterial Disease/genetics , Peripheral Arterial Disease/diagnosis , Female , Male , Aged , Middle Aged , Risk Assessment/methods , Risk Factors , Machine Learning , Cardiovascular Diseases/genetics , Cardiovascular Diseases/diagnosis , Retrospective Studies , Multifactorial Inheritance/genetics , Case-Control Studies , Area Under Curve , Genetic Risk Score
3.
Int J Mol Sci ; 25(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38674087

ABSTRACT

Vascular diseases, including peripheral arterial disease (PAD), pulmonary arterial hypertension, and atherosclerosis, significantly impact global health due to their intricate relationship with vascular remodeling. This process, characterized by structural alterations in resistance vessels, is a hallmark of heightened vascular resistance seen in these disorders. The influence of environmental estrogenic endocrine disruptors (EEDs) on the vasculature suggests a potential exacerbation of these alterations. Our study employs an integrative approach, combining data mining with bioinformatics, to unravel the interactions between EEDs and vascular remodeling genes in the context of PAD. We explore the molecular dynamics by which EED exposure may alter vascular function in PAD patients. The investigation highlights the profound effect of EEDs on pivotal genes such as ID3, LY6E, FOS, PTP4A1, NAMPT, GADD45A, PDGF-BB, and NFKB, all of which play significant roles in PAD pathophysiology. The insights gained from our study enhance the understanding of genomic alterations induced by EEDs in vascular remodeling processes. Such knowledge is invaluable for developing strategies to prevent and manage vascular diseases, potentially mitigating the impact of harmful environmental pollutants like EEDs on conditions such as PAD.


Subject(s)
Computational Biology , Endocrine Disruptors , Gene Regulatory Networks , Peripheral Arterial Disease , Vascular Remodeling , Humans , Peripheral Arterial Disease/genetics , Computational Biology/methods , Vascular Remodeling/genetics , Vascular Remodeling/drug effects , Estrogens/metabolism
4.
Sci Rep ; 14(1): 8615, 2024 04 14.
Article in English | MEDLINE | ID: mdl-38616192

ABSTRACT

Diabetes mellitus (DM) is a significant risk factor for peripheral arterial disease (PAD), and PAD is an independent predictor of cardiovascular disorders (CVDs). Growing evidence suggests that long non-coding RNAs (lncRNAs) significantly contribute to disease development and underlying complications, particularly affecting smooth muscle cells (SMCs). So far, no study has focused on transcriptome analysis of lncRNAs in PAD patients with and without DM. Tissue samples were obtained from our Vascular Biobank. Due to the sample's heterogeneity, expression analysis of lncRNAs in whole tissue detected only ACTA2-AS1 with a 4.9-fold increase in PAD patients with DM. In contrast, transcriptomics of SMCs revealed 28 lncRNAs significantly differentially expressed between PAD with and without DM (FDR < 0.1). Sixteen lncRNAs were of unknown function, six were described in cancer, one connected with macrophages polarisation, and four were associated with CVDs, mainly with SMC function and phenotypic switch (NEAT1, MIR100HG, HIF1A-AS3, and MRI29B2CHG). The enrichment analysis detected additional lncRNAs H19, CARMN, FTX, and MEG3 linked with DM. Our study revealed several lncRNAs in diabetic PAD patients associated with the physiological function of SMCs. These lncRNAs might serve as potential therapeutic targets to improve the function of SMCs within the diseased tissue and, thus, the clinical outcome.


Subject(s)
Diabetes Mellitus , Diabetic Neuropathies , Peripheral Arterial Disease , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Peripheral Arterial Disease/genetics , Myocytes, Smooth Muscle , Gene Expression Profiling
6.
Arterioscler Thromb Vasc Biol ; 44(5): 1114-1123, 2024 May.
Article in English | MEDLINE | ID: mdl-38545784

ABSTRACT

BACKGROUND: Hundreds of biomarkers for peripheral artery disease (PAD) have been reported in the literature; however, the observational nature of these studies limits causal inference due to the potential of reverse causality and residual confounding. We sought to evaluate the potential causal impact of putative PAD biomarkers identified in human observational studies through genetic causal inference methods. METHODS: Putative circulating PAD biomarkers were identified from human observational studies through a comprehensive literature search based on terms related to PAD using PubMed, Cochrane, and Embase. Genetic instruments were generated from publicly available genome-wide association studies of circulating biomarkers. Two-sample Mendelian randomization was used to test the association of genetically determined biomarker levels with PAD using summary statistics from a genome-wide association study of 31 307 individuals with and 211 753 individuals without PAD in the Veterans Affairs Million Veteran Program and replicated in data from FinnGen comprised of 11 924 individuals with and 288 638 individuals without PAD. RESULTS: We identified 204 unique circulating biomarkers for PAD from the observational literature, of which 173 were genetically instrumented using genome-wide association study results. After accounting for multiple testing (false discovery rate, <0.05), 10 of 173 (5.8%) biomarkers had significant associations with PAD. These 10 biomarkers represented categories including plasma lipoprotein regulation, lipid homeostasis, and protein-lipid complex remodeling. Observational literature highlighted different pathways including inflammatory response, negative regulation of multicellular organismal processes, and regulation of response to external stimuli. CONCLUSIONS: Integrating human observational studies and genetic causal inference highlights several key pathways in PAD pathophysiology. This work demonstrates that a substantial portion of biomarkers identified in observational studies are not well supported by human genetic evidence and emphasizes the importance of triangulating evidence to understand PAD pathophysiology. Although the identified biomarkers offer insights into atherosclerotic development in the lower limb, their specificity to PAD compared with more widespread atherosclerosis requires further study.


Subject(s)
Biomarkers , Genome-Wide Association Study , Mendelian Randomization Analysis , Peripheral Arterial Disease , Humans , Peripheral Arterial Disease/genetics , Peripheral Arterial Disease/blood , Peripheral Arterial Disease/diagnosis , Biomarkers/blood , Observational Studies as Topic , Genetic Predisposition to Disease , Risk Factors , Polymorphism, Single Nucleotide , Predictive Value of Tests
7.
Front Endocrinol (Lausanne) ; 15: 1345605, 2024.
Article in English | MEDLINE | ID: mdl-38435749

ABSTRACT

Background: Previous observational studies have demonstrated a correlation between metabolic syndrome related diseases and an elevated susceptibility to ulcers of lower limb. It has been suggested that this causal relationship may be influenced by the presence of peripheral artery disease (PAD). Nevertheless, the precise contribution of these factors as determinants of ulcers of lower limb remains largely unexplored. Method: This research incorporated information on hypertension, BMI, hyperuricemia, type 2 diabetes, PAD, and ulcers of lower limb sourced from the GWAS database. Univariate Mendelian randomization (SVMR) and multivariate Mendelian randomization (MVMR) methods were employed to assess the association between metabolic syndrome related diseases, including hypertension, obesity, hyperuricemia, and type 2 diabetes, as well as to investigate whether this association was influenced by PAD. Results: Univariate Mendelian randomization analysis showed that genetically predicted hypertension, BMI, and type 2 diabetes were associated with an increased risk of PAD and ulcers of lower limb, and PAD was associated with an increased risk of ulcers of lower limb, but there is no causal relationship between hyperuricemia and ulcers of lower limb. The results of multivariate Mendelian randomization showed that PAD mediated the causal relationship between hypertension, obesity and ulcers of lower limb, but the relationship between type 2 diabetes and ulcers of lower limb was not mediated by PAD. Conclusion: Hypertension, BMI and type 2 diabetes can increase the risk of ulcers of lower limb, and PAD can be used as a mediator of hypertension and obesity leading to ulcers of lower limb, These findings may inform prevention and intervention strategies directed toward metabolic syndrome and ulcers of lower limb.


Subject(s)
Diabetes Mellitus, Type 2 , Hypertension , Hyperuricemia , Metabolic Diseases , Metabolic Syndrome , Peripheral Arterial Disease , Humans , Metabolic Syndrome/complications , Metabolic Syndrome/epidemiology , Metabolic Syndrome/genetics , Mendelian Randomization Analysis , Ulcer , Hyperuricemia/complications , Hyperuricemia/epidemiology , Hyperuricemia/genetics , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Peripheral Arterial Disease/complications , Peripheral Arterial Disease/epidemiology , Peripheral Arterial Disease/genetics , Lower Extremity , Obesity
8.
Int Wound J ; 21(2): e14748, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38358067

ABSTRACT

Diabetic foot ulcers (DFU), diabetic peripheral neuropathy (DPN) and peripheral arterial disease (PAD) are common complications of diabetes mellitus, while diabetic peripheral neuropathy and peripheral arterial disease contribute to the pathogenesis of diabetic foot ulcers, and the pathogenic mechanisms between these three diseases still need further investigation. The keywords 'diabetic foot ulcer', 'diabetic peripheral neuropathy' and 'atherosclerosis' were used to search for related gene sets in the GEO database. Differentially expressed genes (DEGs) were screened and analysed for GO, KEGG and enrichR functional enrichment. Potential three disease biomarkers were identified by SVM-SVM-RFE and LASSO regression analysis. The results were also validated using external datasets and discriminability was measured by area under the ROC curve (AUC). Finally, biomarkers and co-upregulated genes were analysed through the GSEA and Attie Laboratories diabetes databases. A total of 11 shared genes (KRT16, CD24, SAMD9L, SRGAP2, FGL2, GPR34, DDIT4, NFE2L3, FBLN5, ANXA3 and CPA3), two biomarkers (SAMD9L and FGL2) and one co-upregulated gene (CD24) were screened. GO and KEGG pathway analysis of DEGs, enrichr enrichment analysis of shared differential genes and GSEA analysis of biomarkers showed that these significant genes were mainly focused on vasoregulatory, inflammatory-oxidative stress and immunomodulatory pathways. In this study, we used bioinformatics to investigate the intrinsic relationship and potential mechanisms of three common lower extremity complications of diabetes and identified two pivotal genes using the LASSO model and the SVM-RFE algorithm, which will further help clinicians to understand the relationship between diabetic complications, improve the diagnosis and treatment of diabetic foot problems and help doctors to identify the potential risk factors of diabetic foot.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Foot , Diabetic Neuropathies , Foot Ulcer , Peripheral Arterial Disease , Humans , Diabetic Foot/diagnosis , Diabetic Neuropathies/genetics , Diabetic Neuropathies/complications , Diabetes Mellitus, Type 2/complications , Peripheral Arterial Disease/genetics , Peripheral Arterial Disease/complications , Biomarkers , Basic-Leucine Zipper Transcription Factors , Fibrinogen , GTPase-Activating Proteins
9.
J Am Heart Assoc ; 13(4): e030233, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38362853

ABSTRACT

BACKGROUND: Major depressive disorder (MDD) has been identified as a causal risk factor for multiple forms of cardiovascular disease. Although observational evidence has linked MDD to peripheral artery disease (PAD), causal evidence of this relationship is lacking. METHODS AND RESULTS: Inverse variance weighted 2-sample Mendelian randomization was used to test the association the between genetic liability for MDD and genetic liability for PAD. Genetic liability for MDD was associated with increased genetic liability for PAD (odds ratio [OR], 1.17 [95% CI, 1.06-1.29]; P=2.6×10-3). Genetic liability for MDD was also associated with increased genetically determined lifetime smoking (ß=0.11 [95% CI, 0.078-0.14]; P=1.2×10-12), decreased alcohol intake (ß=-0.078 [95% CI, -0.15 to 0]; P=0.043), and increased body mass index (ß=0.10 [95% CI, 0.02-0.19]; P=1.8×10-2), which in turn were associated with genetic liability for PAD (smoking: OR, 2.81 [95% CI, 2.28-3.47], P=9.8×10-22; alcohol: OR, 0.77 [95% CI, 0.66-0.88]; P=1.8×10-4; body mass index: OR, 1.61 [95% CI, 1.52-1.7]; P=1.3×10-57). Controlling for lifetime smoking index, alcohol intake, and body mass index with multivariable Mendelian randomization completely attenuated the association between genetic liability for MDD with genetic liability for PAD. CONCLUSIONS: This work provides evidence for a possible causal association between MDD and PAD that is dependent on intermediate risk factors, adding to the growing body of evidence suggesting that effective management and treatment of cardiovascular diseases may require a composite of physical and mental health interventions.


Subject(s)
Depressive Disorder, Major , Peripheral Arterial Disease , Humans , Depressive Disorder, Major/epidemiology , Depressive Disorder, Major/genetics , Peripheral Arterial Disease/diagnosis , Peripheral Arterial Disease/epidemiology , Peripheral Arterial Disease/genetics , Risk Factors , Smoking/adverse effects , Smoking/epidemiology , Alcohol Drinking/adverse effects , Alcohol Drinking/epidemiology , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Mendelian Randomization Analysis
10.
Thromb Res ; 236: 37-50, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38387302

ABSTRACT

INTRODUCTION: Peripheral arterial disease (PAD) affects approximately 236 million people worldwide. Therefore, this study aimed to investigate the relationship between CYP2C19 genotype polymorphisms and clopidogrel resistance (CR) following revascularization in patients with PAD. MATERIALS AND METHODS: In total, 345 patients who underwent PAD revascularization were monitored for five years and risk factors for ischemic events were identified. Platelet reactivity and CYP2C19 genotypes were measured, and patients were classified as normal, intermediate, or poor metabolizers based on their genotypes. The study endpoint was defined as an ischemic event, that encompassed major adverse cardiovascular or limb events, or all-cause death. RESULTS: In this study, ischemic events following PAD revascularization were associated with patient age, prior minor amputation, the Rutherford category before revascularization, indications for revascularization, index ankle-branchial index before revascularization, CYP2C19 phenotypes, and CR. Intermediate and poor metabolism, the Rutherford category before revascularization, and CR were independent risk factors for ischemic events in patients after PAD revascularization. Similarly, intermediate and poor metabolism, the Rutherford category before revascularization, and CR were independent risk factors for ischemic events in patients with PAD after revascularization within five years. Intermediate and poor metabolizers had a higher platelet reactivity and risk of CR than normal metabolizers. However, poor metabolizers had a higher platelet reactivity and risk of CR than intermediate metabolizers. Furthermore, the hazard ratio for ischemic events increased with platelet reactivity. This effect was more prevalent in intermediate and poor metabolizers than in normal metabolizers. CONCLUSIONS: Ischemic events in patients after PAD revascularization were affected by independent risk factors. Decreased clopidogrel metabolism increased the platelet reactivity and CR in patients after PAD revascularization. Furthermore, high platelet reactivity was associated with an increased risk of ischemic events in patients with intermediate and poor metabolism.


Subject(s)
Clopidogrel , Cytochrome P-450 CYP2C19 , Peripheral Arterial Disease , Platelet Aggregation Inhibitors , Humans , Clopidogrel/therapeutic use , Cytochrome P-450 CYP2C19/genetics , Cytochrome P-450 CYP2C19/metabolism , Genotype , Peripheral Arterial Disease/complications , Peripheral Arterial Disease/genetics , Peripheral Arterial Disease/surgery , Platelet Aggregation Inhibitors/therapeutic use , Prospective Studies , Ticlopidine , Cohort Studies
11.
Nature ; 627(8003): 347-357, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38374256

ABSTRACT

Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P < 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care.


Subject(s)
Diabetes Mellitus, Type 2 , Disease Progression , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Adipocytes/metabolism , Chromatin/genetics , Chromatin/metabolism , Coronary Artery Disease/complications , Coronary Artery Disease/genetics , Diabetes Mellitus, Type 2/classification , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/pathology , Diabetes Mellitus, Type 2/physiopathology , Diabetic Nephropathies/complications , Diabetic Nephropathies/genetics , Endothelial Cells/metabolism , Enteroendocrine Cells , Epigenomics , Genetic Predisposition to Disease/genetics , Islets of Langerhans/metabolism , Multifactorial Inheritance/genetics , Peripheral Arterial Disease/complications , Peripheral Arterial Disease/genetics , Single-Cell Analysis
12.
Diabetes Care ; 47(3): 435-443, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38181303

ABSTRACT

OBJECTIVE: To prospectively evaluate the association between modifiable lifestyle factors and peripheral artery disease (PAD) among individuals with type 2 diabetes (T2D). RESEARCH DESIGN AND METHODS: We included 14,543 individuals with T2D from the UK Biobank. We defined a weighted healthy lifestyle score using nonsmoking, regular physical activity, high-quality diet, moderate alcohol consumption, optimal waist-to-hip ratio, and adequate sleep duration, and categorized into unfavorable, intermediate, and favorable lifestyles. We created a genetic risk score (GRS) using 19 single nucleotide polymorphisms previously found to be associated with PAD. We modeled the association between lifestyle score and PAD, overall and stratified by PAD genetic susceptibility. RESULTS: After a median 13.5 years of follow-up, 628 incident cases of PAD were documented. A linear inverse association between the weighted lifestyle score and PAD was observed, with a hazard ratio (HR) (95% CI) of 0.27 (0.19, 0.38) for favorable compared with unfavorable lifestyle (Ptrend < 0.0001). An estimated 58.3% (45.0%, 69.1%) of PAD in this population could be potentially avoidable if all participants attained a favorable lifestyle. Moreover, the PAD GRS was associated with increased PAD risk (HR [95% CI] per SD increment: 1.13 [1.03, 1.23]). A favorable lifestyle was able to partially mitigate the excess risk of PAD associated with higher GRS, albeit as a nonsignificant interaction. Several biomarkers in the lipid metabolism, hepatic/renal function, and systemic inflammation pathways collectively explained 13.3% (8.5%, 20.1%) of the association between weighted lifestyle score and PAD. CONCLUSIONS: A favorable lifestyle was associated with lower risk of PAD among individuals with T2D, independent of genetic predisposition to PAD.


Subject(s)
Diabetes Mellitus, Type 2 , Peripheral Arterial Disease , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Prospective Studies , Risk Factors , Life Style , Genetic Predisposition to Disease , Peripheral Arterial Disease/epidemiology , Peripheral Arterial Disease/genetics
13.
Aging (Albany NY) ; 16(1): 762-778, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38198148

ABSTRACT

BACKGROUND: The causal relationship between gut microbiota and peripheral artery disease (PAD) is still not clear. In this research, we employed the Mendelian randomization (MR) technique to explore the potential causal connection between 211 gut microbiota species and PAD. We also investigated whether the causal effects operate in both directions. METHODS: We used Genome-wide Association Studies (GWAS) summary statistics data from the MiBioGen and FinnGen consortia to conduct a two-sample MR analysis to explore the causal link between gut microbiota and PAD. Sensitivity analysis is conducted to assess the robustness of the MR results. In addition to that, reverse MR analysis was performed to examine the inverse causal relationship. RESULTS: The inverse variance weighted (IVW) method provided evidence supporting a causal relationship between 9 specific gut microbiota taxa and PAD. The study findings indicated that family Family XI (OR=1.11, CI 1.00-1.24, P=0.048), genus Lachnoclostridium (OR=1.24, 1.02-1.50, P=0.033), and genus Lachnospiraceae UCG001 (OR=1.17, 1.01-1.35, P=0.031) are risk factors associated with PAD. class Actinobacteria (OR=0.84, 0.72-0.99, P=0.034), family Acidaminococcaceae (OR=0.80, 0.66-0.98, P=0.029), genus Coprococcus2 (OR=0.79, 0.64-0.98, P=0.029), genus Ruminococcaceae UCG004 (OR=0.84, 0.72-0.99, P=0.032), genus Ruminococcaceae UCG010 (OR=0.74, 0.58-0.96, P=0.022), and order NB1n (OR=0.88, 0.79-0.98, P=0.02) may be associated with the risk factors of PAD. Moreover, our analysis did not uncover any evidence of a reverse causal relationship between PAD and the nine specific gut microbiota taxa investigated. CONCLUSIONS: Our MR research has confirmed the potential causal relationship between gut microbiota and PAD while also identifying specific gut bacterial communities associated with PAD.


Subject(s)
Gastrointestinal Microbiome , Peripheral Arterial Disease , Humans , Gastrointestinal Microbiome/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Peripheral Arterial Disease/genetics , Causality
14.
Arterioscler Thromb Vasc Biol ; 44(2): 423-434, 2024 02.
Article in English | MEDLINE | ID: mdl-38059352

ABSTRACT

BACKGROUND: Identifying patients with the optimal risk:benefit for ticagrelor is challenging. The aim was to identify ticagrelor-responsive platelet transcripts as biomarkers of platelet function and cardiovascular risk. METHODS: Healthy volunteers (n=58, discovery; n=49, validation) were exposed to 4 weeks of ticagrelor with platelet RNA data, platelet function, and self-reported bleeding measured pre-/post-ticagrelor. RNA sequencing was used to discover platelet genes affected by ticagrelor, and a subset of the most informative was summarized into a composite score and tested for validation. This score was further analyzed (1) in CD34+ megakaryocytes exposed to an P2Y12 inhibitor in vitro, (2) with baseline platelet function in healthy controls, (3) in peripheral artery disease patients (n=139) versus patient controls (n=30) without atherosclerosis, and (4) in patients with peripheral artery disease for correlation with atherosclerosis severity and risk of incident major adverse cardiovascular and limb events. RESULTS: Ticagrelor exposure differentially expressed 3409 platelet transcripts. Of these, 111 were prioritized to calculate a Ticagrelor Exposure Signature score, which ticagrelor reproducibly increased in discovery and validation cohorts. Ticagrelor's effects on platelets transcripts positively correlated with effects of P2Y12 inhibition in primary megakaryocytes. In healthy controls, higher baseline scores correlated with lower baseline platelet function and with minor bleeding while receiving ticagrelor. In patients, lower scores independently associated with both the presence and extent of atherosclerosis and incident ischemic events. CONCLUSIONS: Ticagrelor-responsive platelet transcripts are a biomarker for platelet function and cardiovascular risk and may have clinical utility for selecting patients with optimal risk:benefit for ticagrelor use.


Subject(s)
Acute Coronary Syndrome , Peripheral Arterial Disease , Humans , Ticagrelor/therapeutic use , Platelet Aggregation Inhibitors/adverse effects , Clopidogrel , Purinergic P2Y Receptor Antagonists/adverse effects , Adenosine/adverse effects , Hemorrhage/chemically induced , Peripheral Arterial Disease/drug therapy , Peripheral Arterial Disease/genetics , Peripheral Arterial Disease/chemically induced , Biomarkers , Treatment Outcome , Acute Coronary Syndrome/complications
15.
Eur Heart J ; 44(47): 4953-4964, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-37950632

ABSTRACT

BACKGROUND AND AIMS: Anti-inflammatory trials have shown considerable benefits for cardiovascular disease. High neutrophil counts, an easily accessible inflammation biomarker, are associated with atherosclerosis in experimental studies. This study aimed to investigate the associations between neutrophil counts and risk of nine cardiovascular endpoints using observational and genetic approaches. METHODS: Observational studies were conducted in the Copenhagen General Population Study (n = 101 730). Genetic studies were firstly performed using one-sample Mendelian randomization (MR) with individual-level data from the UK Biobank (n = 365 913); secondly, two-sample MR analyses were performed using summary-level data from the Blood Cell Consortium (n = 563 085). Outcomes included ischaemic heart disease, myocardial infarction, peripheral arterial disease, ischaemic cerebrovascular disease, ischaemic stroke, vascular-related dementia, vascular dementia, heart failure, and atrial fibrillation. RESULTS: Observational analyses showed associations between high neutrophil counts with high risks of all outcomes. In the UK Biobank, odds ratios (95% confidence intervals) per 1-SD higher genetically predicted neutrophil counts were 1.15 (1.08, 1.21) for ischaemic heart disease, 1.22 (1.12, 1.34) for myocardial infarction, and 1.19 (1.04, 1.36) for peripheral arterial disease; similar results were observed in men and women separately. In two-sample MR, corresponding estimates were 1.14 (1.05, 1.23) for ischaemic heart disease and 1.11 (1.02, 1.20) for myocardial infarction; multiple sensitivity analyses showed consistent results. No robust associations in two-sample MR analyses were found for other types of leucocytes. CONCLUSIONS: Observational and genetically determined high neutrophil counts were associated with atherosclerotic cardiovascular disease, supporting that high blood neutrophil counts is a causal risk factor for atherosclerotic cardiovascular disease.


Subject(s)
Atherosclerosis , Brain Ischemia , Cardiovascular Diseases , Coronary Artery Disease , Myocardial Infarction , Myocardial Ischemia , Peripheral Arterial Disease , Stroke , Male , Humans , Female , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/genetics , Neutrophils , Brain Ischemia/complications , Stroke/epidemiology , Myocardial Infarction/epidemiology , Myocardial Ischemia/complications , Atherosclerosis/complications , Peripheral Arterial Disease/epidemiology , Peripheral Arterial Disease/genetics , Peripheral Arterial Disease/complications , Coronary Artery Disease/complications , Mendelian Randomization Analysis , Genome-Wide Association Study , Polymorphism, Single Nucleotide
16.
Methodist Debakey Cardiovasc J ; 19(5): 47-57, 2023.
Article in English | MEDLINE | ID: mdl-38028966

ABSTRACT

Peripheral arterial disease (PAD) represents a global health concern with a rising prevalence attributed to factors such as obesity, diabetes, aging, and smoking. Among patients with PAD, chronic limb-threatening ischemia (CLTI) is the most severe manifestation, associated with substantial morbidity and mortality. While revascularization remains the primary therapy for CLTI, not all patients are candidates for such interventions, highlighting the need for alternative approaches. Impaired angiogenesis, the growth of new blood vessels, is a central feature of PAD, and despite decades of research, effective clinical treatments remain elusive. Epigenetics, the study of heritable changes in gene expression, has gained prominence in understanding PAD pathogenesis. Here, we explore the role of epigenetic regulation in angiogenesis within the context of PAD, with a focus on long non-coding RNAs and fibroblast-endothelial cell transdifferentiation. Additionally, we discuss the interplay between metabolic control and epigenetic regulation, providing insights into potential novel therapeutic avenues for improving PAD treatments. This review aims to offer a concise update on the application of epigenetics in angiogenesis and PAD research, inspiring further investigations in this promising field.


Subject(s)
Epigenesis, Genetic , Peripheral Arterial Disease , Humans , Peripheral Arterial Disease/genetics , Ischemia/genetics
17.
Atherosclerosis ; 385: 117343, 2023 11.
Article in English | MEDLINE | ID: mdl-37871404

ABSTRACT

BACKGROUND AND AIMS: Peripheral arterial disease (PAD) is a leading cause of morbimortality worldwide. Lipocalin-2 (LCN2) has been associated with higher risk of amputation or mortality in PAD and might be involved in muscle regeneration. Our aim is to unravel the role of LCN2 in skeletal muscle repair and PAD. METHODS AND RESULTS: WT and Lcn2-/- mice underwent hindlimb ischemia. Blood and crural muscles were analyzed at the inflammatory and regenerative phases. At day 2, Lcn2-/- male mice, but not females, showed increased blood and soleus muscle neutrophils, and elevated circulating pro-inflammatory monocytes (p < 0.05), while locally, total infiltrating macrophages were reduced (p < 0.05). Moreover, Lcn2-/- soleus displayed an elevation of Cxcl1 (p < 0.001), and Cxcr2 (p < 0.01 in males), and a decrease in Ccl5 (p < 0.05). At day 15, Lcn2 deficiency delayed muscle recovery, with higher density of regenerating myocytes (p < 0.04) and arterioles (αSMA+, p < 0.025). Reverse target prediction analysis identified miR-138-5p as a potential regulator of LCN2, showing an inverse correlation with Lcn2 mRNA in skeletal muscles (rho = -0.58, p < 0.01). In vitro, miR-138-5p mimic reduced Lcn2 expression and luciferase activity in murine macrophages (p < 0.05). Finally, in human serum miR-138-5p was inversely correlated with LCN2 (p ≤ 0.001 adjusted, n = 318), and associated with PAD (Odds ratio 0.634, p = 0.02, adjusted, PAD n = 264, control n = 54). CONCLUSIONS: This study suggests a possible dual role of LCN2 in acute and chronic conditions, with a probable role in restraining inflammation early after skeletal muscle ischemia, while being associated with vascular damage in PAD, and identifies miR-138-5p as one potential post-transcriptional regulator of LCN2.


Subject(s)
MicroRNAs , Peripheral Arterial Disease , Animals , Humans , Male , Mice , Arterioles/metabolism , Disease Models, Animal , Hindlimb/metabolism , Ischemia/genetics , Lipocalin-2/genetics , Lipocalin-2/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Peripheral Arterial Disease/genetics
18.
Arterioscler Thromb Vasc Biol ; 43(10): 2023-2029, 2023 10.
Article in English | MEDLINE | ID: mdl-37675635

ABSTRACT

BACKGROUND: We hypothesized that transcriptomic profiling of muscle satellite cells in peripheral artery disease (PAD) would identify damage-related pathways contributing to skeletal muscle myopathy. We identified a potential role for ferroptosis-a form of programmed lytic cell death by iron-mediated lipid peroxidation-as one such pathway. Ferroptosis promotes myopathy in ischemic cardiac muscle but has an unknown role in PAD. METHODS: Muscle satellite cells from donors with PAD were obtained during surgery. cDNA libraries were processed for single-cell RNA sequencing using the 10X Genomics platform. Protein expression was confirmed based on pathways inferred by transcriptomic analysis. RESULTS: Unsupervised cluster analysis of over 25 000 cells aggregated from 8 donor samples yielded distinct cell populations grouped by a shared unique transcriptional fingerprint. Quiescent cells were diminished in ischemic muscle while myofibroblasts and apoptotic cells were prominent. Differential gene expression demonstrated a surprising increase in genes associated with iron transport and oxidative stress and a decrease in GPX4 (glutathione peroxidase 4) in ischemic PAD-derived cells. Release of the danger signal HMGB1 (high mobility group box-1) correlated with ferroptotic markers including surface transferrin receptor and were higher in ischemia. Furthermore, lipid peroxidation in muscle satellite cells was modulated by ferrostatin, a ferroptosis inhibitor. Histology confirmed iron deposition and lipofuscin, an inducer of ferroptosis in PAD-affected muscle. CONCLUSIONS: This report presents a novel finding that genes known to be involved in ferroptosis are differentially expressed in human skeletal muscle affected by PAD. Targeting ferroptosis may be a novel therapeutic strategy to reduce PAD myopathy.


Subject(s)
Ferroptosis , Muscular Diseases , Peripheral Arterial Disease , Satellite Cells, Skeletal Muscle , Humans , Ferroptosis/genetics , Satellite Cells, Skeletal Muscle/metabolism , Transcriptome , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Lipid Peroxidation/physiology , Iron/metabolism , Peripheral Arterial Disease/genetics , Ischemia
19.
Circ Res ; 133(2): 158-176, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37325935

ABSTRACT

BACKGROUND: Chronic kidney disease (CKD) accelerates the development of atherosclerosis, decreases muscle function, and increases the risk of amputation or death in patients with peripheral artery disease (PAD). However, the mechanisms underlying this pathobiology are ill-defined. Recent work has indicated that tryptophan-derived uremic solutes, which are ligands for AHR (aryl hydrocarbon receptor), are associated with limb amputation in PAD. Herein, we examined the role of AHR activation in the myopathy of PAD and CKD. METHODS: AHR-related gene expression was evaluated in skeletal muscle obtained from mice and human PAD patients with and without CKD. AHRmKO (skeletal muscle-specific AHR knockout) mice with and without CKD were subjected to femoral artery ligation, and a battery of assessments were performed to evaluate vascular, muscle, and mitochondrial health. Single-nuclei RNA sequencing was performed to explore intercellular communication. Expression of the constitutively active AHR was used to isolate the role of AHR in mice without CKD. RESULTS: PAD patients and mice with CKD displayed significantly higher mRNA expression of classical AHR-dependent genes (Cyp1a1, Cyp1b1, and Aldh3a1) when compared with either muscle from the PAD condition with normal renal function (P<0.05 for all 3 genes) or nonischemic controls. AHRmKO significantly improved limb perfusion recovery and arteriogenesis, preserved vasculogenic paracrine signaling from myofibers, increased muscle mass and strength, as well as enhanced mitochondrial function in an experimental model of PAD/CKD. Moreover, viral-mediated skeletal muscle-specific expression of a constitutively active AHR in mice with normal kidney function exacerbated the ischemic myopathy evidenced by smaller muscle masses, reduced contractile function, histopathology, altered vasculogenic signaling, and lower mitochondrial respiratory function. CONCLUSIONS: These findings establish AHR activation in muscle as a pivotal regulator of the ischemic limb pathology in CKD. Further, the totality of the results provides support for testing of clinical interventions that diminish AHR signaling in these conditions.


Subject(s)
Muscular Diseases , Peripheral Arterial Disease , Renal Insufficiency, Chronic , Animals , Humans , Mice , Ischemia/metabolism , Mice, Knockout , Muscle, Skeletal/metabolism , Muscular Diseases/metabolism , Peripheral Arterial Disease/genetics , Peripheral Arterial Disease/metabolism , Receptors, Aryl Hydrocarbon/genetics , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/metabolism
20.
Hum Genet ; 142(7): 965-980, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37341850

ABSTRACT

Type 2 diabetes (T2D) is a critical risk factor for peripheral artery disease (PAD). However, the sex differences in genetic basis, causality, and underlying mechanisms of the two diseases are still unclear. Using sex-stratified and ethnic-based GWAS summary, we explored the genetic correlation and causal relationship between T2D and PAD in both ethnicities and sexes by linkage disequilibrium score regression, LAVA and six Mendelian Randomization approaches. We observed stronger genetic correlations between T2D and PAD in females than males in East Asians and Europeans. East Asian females exhibit higher causal effects of T2D on PAD than males. The gene-level analysis found KCNJ11 and ANK1 genes associated with the cross-trait of T2D and PAD in both sexes. Our study provides genetic evidence for the sex difference of genetic correlations and causal relationships between PAD and T2D, indicating the importance of using sex-specific strategies for monitoring PAD in T2D patients.


Subject(s)
Diabetes Mellitus, Type 2 , Peripheral Arterial Disease , Female , Humans , Male , Diabetes Mellitus, Type 2/genetics , East Asian People , European People , Genome-Wide Association Study , Mendelian Randomization Analysis , Peripheral Arterial Disease/genetics , Peripheral Arterial Disease/complications , Polymorphism, Single Nucleotide , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...