Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 237
Filter
1.
Elife ; 122024 May 14.
Article in English | MEDLINE | ID: mdl-38742628

ABSTRACT

Peripheral neurons are heterogeneous and functionally diverse, but all share the capability to switch to a pro-regenerative state after nerve injury. Despite the assumption that the injury response is similar among neuronal subtypes, functional recovery may differ. Understanding the distinct intrinsic regenerative properties between neurons may help to improve the quality of regeneration, prioritizing the growth of axon subpopulations to their targets. Here, we present a comparative analysis of regeneration across four key peripheral neuron populations: motoneurons, proprioceptors, cutaneous mechanoreceptors, and nociceptors. Using Cre/Ai9 mice that allow fluorescent labeling of neuronal subtypes, we found that nociceptors showed the greater regeneration after a sciatic crush, followed by motoneurons, mechanoreceptors, and, finally, proprioceptors. By breeding these Cre mice with Ribotag mice, we isolated specific translatomes and defined the regenerative response of these neuronal subtypes after axotomy. Only 20% of the regulated genes were common, revealing a diverse response to injury among neurons, which was also supported by the differential influence of neurotrophins among neuron subtypes. Among differentially regulated genes, we proposed MED12 as a specific regulator of the regeneration of proprioceptors. Altogether, we demonstrate that the intrinsic regenerative capacity differs between peripheral neuron subtypes, opening the door to selectively modulate these responses.


Subject(s)
Peripheral Nerve Injuries , Animals , Mice , Peripheral Nerve Injuries/genetics , Peripheral Nerve Injuries/metabolism , Nerve Regeneration/physiology , Motor Neurons/physiology , Nociceptors/physiology , Nociceptors/metabolism , Sequence Analysis, RNA , Mechanoreceptors/physiology , Mechanoreceptors/metabolism , Axotomy , Male , Sciatic Nerve/injuries , Neurons/physiology
2.
Int J Mol Sci ; 25(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38542483

ABSTRACT

With the development of single-cell sequencing technology, the cellular composition of more and more tissues is being elucidated. As the whole nervous system has been extensively studied, the cellular composition of the peripheral nerve has gradually been revealed. By summarizing the current sequencing data, we compile the heterogeneities of cells that have been reported in the peripheral nerves, mainly the sciatic nerve. The cellular variability of Schwann cells, fibroblasts, immune cells, and endothelial cells during development and disease has been discussed in this review. The discovery of the architecture of peripheral nerves after injury benefits the understanding of cellular complexity in the nervous system, as well as the construction of tissue engineering nerves for nerve repair and axon regeneration.


Subject(s)
Axons , Peripheral Nerve Injuries , Humans , Axons/physiology , Endothelial Cells , Nerve Regeneration/physiology , Schwann Cells/physiology , Sciatic Nerve/injuries , Peripheral Nerve Injuries/genetics
3.
Neurotherapeutics ; 21(1): e00309, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38241164

ABSTRACT

The primary sensory neurons of the dorsal root ganglia (DRG) are subject to transcriptional alterations following peripheral nerve injury. These alterations are believed to play a pivotal role in the genesis of neuropathic pain. Alternative RNA splicing is a process that generates multiple transcript variants from a single gene, significantly contributing to the complexity of the transcriptome. However, little is known about the functional significance and control of alternative RNA splicing in injured DRG after spinal nerve ligation (SNL). In our study, we conducted a comprehensive transcriptome profiling and bioinformatic analysis to approach and identified a neuron-specific isoform of an RNA splicing regulator, RNA-binding Fox1 (Rbfox1, also known as A2BP1), as a crucial regulator of alternative RNA splicing in injured DRG after SNL. Notably, Rbfox1 expression is markedly reduced in injured DRG following peripheral nerve injury. Restoring this reduction effectively mitigates nociceptive hypersensitivity. Conversely, mimicking the downregulation of Rbfox1 expression generates neuropathic pain symptoms. Mechanistically, we uncovered that Rbfox1 may be a key factor influencing alternative RNA splicing of neuron-glial related cell adhesion molecule (NrCAM), a key neuronal cell adhesion molecule. In injured DRG after SNL, the downregulation of Rbfox1amplifies the insertion of exon 10 in Nrcam transcripts, leading to an increase in long Nrcam variants (L-Nrcam) and a corresponding decrease in short Nrcam variants (S-Nrcam) within injured DRG. In summary, our study supports the essential role of Rbfox1 in neuropathic pain within DRG, probably via the regulation of Nrcam splicing. These findings suggest that Rbfox1 could be a potential target for neuropathic pain therapy.


Subject(s)
Neuralgia , Peripheral Nerve Injuries , Humans , Peripheral Nerve Injuries/complications , Peripheral Nerve Injuries/genetics , Peripheral Nerve Injuries/metabolism , Alternative Splicing , Neuralgia/genetics , Neuralgia/metabolism , Cell Adhesion Molecules/metabolism , Sensory Receptor Cells/metabolism , Ganglia, Spinal/metabolism
4.
Pain ; 165(6): 1404-1412, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38147413

ABSTRACT

ABSTRACT: It is not known why some patients develop persistent pain after nerve trauma while others do not. Among multiple risk factors for the development of persistent posttrauma and postsurgical pain, a neuropathic mechanism due to iatrogenic nerve lesion has been proposed as the major cause of these conditions. Because there is some evidence that the human leukocyte antigen (HLA) system plays a role in persistent postsurgical pain, this study aimed to identify the genetic risk factors, specifically among HLA loci, associated with chronic neuropathic pain after traumatic nerve injuries and surgery in the upper extremities. Blood samples were taken to investigate the contribution of HLA alleles (ie, HLA-A, HLA-B, HLA-DRB1, HLA-DQB1, and HLA-DPB1) in a group of patients with persistent neuropathic pain (n = 70) and a group of patients with neuropathy without pain (n = 61). All subjects had intraoperatively verified nerve damage in the upper extremity. They underwent bedside clinical neurological examination to identify the neuropathic pain component according to the present grading system of neuropathic pain. Statistical analyses on the allele and haplotype were conducted using the BIGDAWG package. We found that the HLA haplotype A*02:01-B*15:01-C*03:04-DRB1*04:01-DQB1*03:02 was associated with an increased risk of developing persistent neuropathic pain in the upper extremity (OR = 9.31 [95% CI 1.28-406.45], P < 0.05). No significant associations were found on an allele level when correcting for multiple testing. Further studies are needed to investigate whether this association is on a haplotypic level or if certain alleles may be causing the association.


Subject(s)
HLA Antigens , Haplotypes , Neuralgia , Humans , Neuralgia/genetics , Neuralgia/etiology , Male , Female , Middle Aged , Adult , HLA Antigens/genetics , Peripheral Nerve Injuries/genetics , Aged , Genetic Predisposition to Disease/genetics , Young Adult , Pain, Postoperative/genetics , Pain, Postoperative/etiology , Risk Factors
5.
J Pain ; 25(1): 101-117, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37524222

ABSTRACT

Mechanisms underlying neuropathic pain (NP) are complex with multiple genes, their interactions, environmental and epigenetic factors being implicated. Transcriptional changes in the trigeminal (TG) and dorsal root (DRG) ganglia have been implicated in the development and maintenance of NP. Despite efforts to unravel molecular mechanisms of NP, many remain unknown. Also, most of the studies focused on the spinal system. Although the spinal and trigeminal systems share some of the molecular mechanisms, differences exist. We used RNA-sequencing technology to identify differentially expressed genes (DEGs) in the TG and DRG at baseline and 3 time points following the infraorbital or sciatic nerve injuries, respectively. Pathway analysis and comparison analysis were performed to identify differentially expressed pathways. Additionally, upstream regulator effects were investigated in the two systems. DEG (differentially expressed genes) analyses identified 3,225 genes to be differentially expressed between TG and DRG in naïve animals, 1,828 genes 4 days post injury, 5,644 at day 8 and 9,777 DEGs at 21 days postinjury. A comparison of top enriched canonical pathways revealed that a number of signaling pathway was significantly inhibited in the TG and activated in the DRG at 21 days postinjury. Finally, CORT upstream regulator was predicted to be inhibited in the TG while expression levels of the CSF1 upstream regulator were significantly elevated in the DRG at 21 days postinjury. This study provides a basis for further in-depth studies investigating transcriptional changes, pathways, and upstream regulation in TG and DRG in rats exposed to peripheral nerve injuries. PERSPECTIVE: Although trigeminal and dorsal root ganglia are homologs of each other, they respond differently to nerve injury and therefore treatment. Activation/inhibition of number of biological pathways appear to be ganglion/system specific suggesting that different approaches might be required to successfully treat neuropathies induced by injuries in spinal and trigeminal systems.


Subject(s)
Neuralgia , Peripheral Nerve Injuries , Rats , Animals , Ganglia, Spinal/metabolism , Transcriptome , Trigeminal Ganglion/metabolism , Peripheral Nerve Injuries/genetics , Peripheral Nerve Injuries/metabolism , Neuralgia/genetics , Neuralgia/metabolism
6.
Cell Rep ; 42(12): 113551, 2023 12 26.
Article in English | MEDLINE | ID: mdl-38048224

ABSTRACT

The retrosplenial cortex (RSC) is a vital area for storing remote memory and has recently been found to undergo broad changes after peripheral nerve injury. However, little is known about the role of RSC in pain regulation. Here, we examine the involvement of RSC in the pain of mice with nerve injury. Notably, reducing the activities of calcium-/calmodulin-dependent protein kinase type II-positive splenial neurons chemogenetically increases paw withdrawal threshold and extends thermal withdrawal latency in mice with nerve injury. The single-cell or single-nucleus RNA-sequencing results predict enhanced excitatory synaptic transmissions in RSC induced by nerve injury. Local infusion of 1-naphthyl acetyl spermine into RSC to decrease the excitatory synaptic transmissions relieves pain and induces conditioned place preference. Our data indicate that RSC is critical for regulating physiological and neuropathic pain. The cell type-dependent transcriptomic information would help understand the molecular basis of neuropathic pain.


Subject(s)
Neuralgia , Peripheral Nerve Injuries , Mice , Animals , Gyrus Cinguli/physiology , Peripheral Nerve Injuries/genetics , Peripheral Nerve Injuries/metabolism , Neurons/metabolism , Gene Expression Profiling , Neuralgia/genetics , Neuralgia/metabolism
7.
Cell Rep ; 42(11): 113282, 2023 11 28.
Article in English | MEDLINE | ID: mdl-38007688

ABSTRACT

Schwann cells respond to acute axon damage by transiently transdifferentiating into specialized repair cells that restore sensorimotor function. However, the molecular systems controlling repair cell formation and function are not well defined, and consequently, it is unclear whether this form of cellular plasticity has a role in peripheral neuropathies. Here, we identify Mitf as a transcriptional sensor of axon damage under the control of Nrg-ErbB-PI3K-PI5K-mTorc2 signaling. Mitf regulates a core transcriptional program for generating functional repair Schwann cells following injury and during peripheral neuropathies caused by CMT4J and CMT4D. In the absence of Mitf, core genes for epithelial-to-mesenchymal transition, metabolism, and dedifferentiation are misexpressed, and nerve repair is disrupted. Our findings demonstrate that Schwann cells monitor axonal health using a phosphoinositide signaling system that controls Mitf nuclear localization, which is critical for activating cellular plasticity and counteracting neural disease.


Subject(s)
Peripheral Nerve Injuries , Peripheral Nervous System Diseases , Humans , Peripheral Nervous System Diseases/metabolism , Schwann Cells/metabolism , Axons/metabolism , Signal Transduction/physiology , Cell Plasticity , Nerve Regeneration/physiology , Peripheral Nerve Injuries/genetics , Peripheral Nerve Injuries/metabolism , Sciatic Nerve/metabolism
8.
Cell Mol Neurobiol ; 43(8): 4363-4375, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37922116

ABSTRACT

The spontaneous regeneration capacity of peripheral nerves is fundamentally reduced with advancing age, leading to severe and long-term functional loss. The cellular and molecular basis underlying incomplete and delayed recovery of aging peripheral nerves is still murky. Here, we collected sciatic nerves of aged rats at 1d, 4d, and 7d after nerve injury, systematically analyzed the transcriptional changes of injured sciatic nerves, and examined the differences of injury responses between aged rats and young rats. RNA sequencing revealed that sciatic nerves of aged and young rats exhibit distinctive expression patterns after nerve injury. Acute and vigorous immune responses, including motivated B cell receptor signaling pathway, occurred in injured sciatic nerves of both aged and young rats. Different from young rats, aged rats have more CD8+ T cells and B cells in normal state and the elevation of M2 macrophages seemed to be more robust in sciatic nerves, especially at later time points after nerve injury. Young rats, on the other hand, showed strong and early up-regulation of cell cycle-related genes. These identified unique transcriptional signatures of aged and young rats help the understanding of aged-associated injury responses in the wound microenvironments and provide essential basis for the treatment of regeneration deficits in aged population.


Subject(s)
Peripheral Nerve Injuries , Rats , Animals , Peripheral Nerve Injuries/genetics , CD8-Positive T-Lymphocytes , Sciatic Nerve , Macrophages , Nerve Regeneration
9.
J Biol Chem ; 299(12): 105444, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37949219

ABSTRACT

Peripheral glial Schwann cells switch to a repair state after nerve injury, proliferate to supply lost cell population, migrate to form regeneration tracks, and contribute to the generation of a permissive microenvironment for nerve regeneration. Exploring essential regulators of the repair responses of Schwann cells may benefit the clinical treatment for peripheral nerve injury. In the present study, we find that FOSL1, a AP-1 member that encodes transcription factor FOS Like 1, is highly expressed at the injured sites following peripheral nerve crush. Interfering FOSL1 decreases the proliferation rate and migration ability of Schwann cells, leading to impaired nerve regeneration. Mechanism investigations demonstrate that FOSL1 regulates Schwann cell proliferation and migration by directly binding to the promoter of EPH Receptor B2 (EPHB2) and promoting EPHB2 transcription. Collectively, our findings reveal the essential roles of FOSL1 in regulating the activation of Schwann cells and indicate that FOSL1 can be targeted as a novel therapeutic approach to orchestrate the regeneration and functional recovery of injured peripheral nerves.


Subject(s)
Peripheral Nerve Injuries , Schwann Cells , Nerve Regeneration/physiology , Peripheral Nerve Injuries/genetics , Peripheral Nerve Injuries/metabolism , Peripheral Nerves/metabolism , Schwann Cells/metabolism , Animals , Rats , Rats, Sprague-Dawley
10.
EMBO Mol Med ; 15(12): e17907, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-37860842

ABSTRACT

Following peripheral nerve injury, successful axonal growth and functional recovery require Schwann cell (SC) reprogramming into a reparative phenotype, a process dependent upon c-Jun transcription factor activation. Unfortunately, axonal regeneration is greatly impaired in aged organisms and following chronic denervation, which can lead to poor clinical outcomes. While diminished c-Jun expression in SCs has been associated with regenerative failure, it is unclear whether the inability to maintain a repair state is associated with the transition into an axonal growth inhibition phenotype. We here find that reparative SCs transition into a senescent phenotype, characterized by diminished c-Jun expression and secretion of inhibitory factors for axonal regeneration in aging and chronic denervation. In both conditions, the elimination of senescent SCs by systemic senolytic drug treatment or genetic targeting improved nerve regeneration and functional recovery, increased c-Jun expression and decreased nerve inflammation. This work provides the first characterization of senescent SCs and their influence on axonal regeneration in aging and chronic denervation, opening new avenues for enhancing regeneration and functional recovery after peripheral nerve injuries.


Subject(s)
Peripheral Nerve Injuries , Humans , Aged , Peripheral Nerve Injuries/therapy , Peripheral Nerve Injuries/genetics , Peripheral Nerve Injuries/metabolism , Schwann Cells/metabolism , Aging , Gene Expression Regulation , Denervation
11.
In Vitro Cell Dev Biol Anim ; 59(8): 596-605, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37783915

ABSTRACT

The recovery of peripheral nerve injury (PNI) is not ideal in clinic. Our previous study revealed that hypoxia treatment promoted PNI repair by inhibiting ferroptosis. The aim of this study was to investigate the underlying molecular mechanism of HIF-1α in hypoxia-PNI recovery. M6A dot blot was used to determine the total level of m6A modification. Besides, HIF-1α small interfering RNA (siRNA) or IGF2BP1 overexpression vector was transfected into dorsal root ganglion (DRG) neurons to alter the expression of HIF-1α and IGF2BP1. Subsequently, MeRIP-PCR analysis was applied to validate the m6A methylation level of SLC7A11. We demonstrated the hypoxia stimulated HIF-1α-dependent expression of IGF2BP1 and promoted the overall m6A methylation levels of DRG neurons. Overexpression of HIF-1α increased the expressions of neurotrophic factors including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and glial-derived neurotrophic factor (GDNF), which could be effectively reversed by siRNA knockdown of IGF2BP1. Moreover, upregulation of HIF-1α contributed to the m6A methylation level and mRNA stabilization of SLC7A11. This study revealed that the HIF-1α/IGF2BP1/SLC7A11 regulatory axis facilitated the recovery of injured DRG neurons. Our findings suggest a novel insight for the m6A methylation modification in PNI recovery.


Subject(s)
Peripheral Nerve Injuries , Animals , Up-Regulation/genetics , Peripheral Nerve Injuries/genetics , RNA, Small Interfering , Hypoxia/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
12.
J Transl Med ; 21(1): 733, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37848983

ABSTRACT

BACKGROUND: Maintaining the repair phenotype of denervated Schwann cells in the injured distal nerve is crucial for promoting peripheral nerve regeneration. However, when chronically denervated, the capacity of Schwann cells to support repair and regeneration deteriorates, leading to peripheral nerve regeneration and poor functional recovery. Herein, we investigated whether neurotrophin-3 (NT-3) could sustain the reparative phenotype of Schwann cells and promote peripheral nerve regeneration after chronic denervation and aimed to uncover its potential molecular mechanisms. METHODS: Western blot was employed to investigate the relationship between the expression of c-Jun and the reparative phenotype of Schwann cells. The inducible expression of c-Jun by NT-3 was examined both in vitro and in vivo with western blot and immunofluorescence staining. A chronic denervation model was established to study the role of NT-3 in peripheral nerve regeneration. The number of regenerated distal axons, myelination of regenerated axons, reinnervation of neuromuscular junctions, and muscle fiber diameters of target muscles were used to evaluate peripheral nerve regeneration by immunofluorescence staining, transmission electron microscopy (TEM), and hematoxylin and eosin (H&E) staining. Adeno-associated virus (AAV) 2/9 carrying shRNA, small molecule inhibitors, and siRNA were employed to investigate whether NT-3 could signal through the TrkC/ERK pathway to maintain c-Jun expression and promote peripheral nerve regeneration after chronic denervation. RESULTS: After peripheral nerve injury, c-Jun expression progressively increased until week 5 and then began to decrease in the distal nerve following denervation. NT-3 upregulated the expression of c-Jun in denervated Schwann cells, both in vitro and in vivo. NT-3 promoted peripheral nerve regeneration after chronic denervation, mainly by upregulating or maintaining a high level of c-Jun rather than NT-3 itself. The TrkC receptor was consistently presented on denervated Schwann cells and served as NT-3 receptors following chronic denervation. NT-3 mainly upregulated c-Jun through the TrkC/ERK pathway. CONCLUSION: NT-3 promotes peripheral nerve regeneration by maintaining the repair phenotype of Schwann cells after chronic denervation via the TrkC/ERK/c-Jun pathway. It provides a potential target for the clinical treatment of peripheral nerve injury after chronic denervation.


Subject(s)
Nerve Regeneration , Neurotrophin 3 , Peripheral Nerve Injuries , Schwann Cells , Humans , Axons/metabolism , Denervation , MAP Kinase Signaling System , Nerve Regeneration/genetics , Nerve Regeneration/physiology , Neurotrophin 3/genetics , Neurotrophin 3/metabolism , Peripheral Nerve Injuries/genetics , Peripheral Nerve Injuries/metabolism , Peripheral Nerve Injuries/therapy , Receptor Protein-Tyrosine Kinases/metabolism , Schwann Cells/metabolism
13.
Sci Rep ; 13(1): 14762, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37679500

ABSTRACT

Sigma-1 Receptor has been shown to localize to sites of peripheral nerve injury and back pain. Radioligand probes have been developed to localize Sigma-1 Receptor and thus image pain source. However, in non-pain conditions, Sigma-1 Receptor expression has also been demonstrated in the central nervous system and dorsal root ganglion. This work aimed to study Sigma-1 Receptor expression in a microglial cell population in the lumbar spine following peripheral nerve injury. A publicly available transcriptomic dataset of 102,691 L4/5 mouse microglial cells from a sciatic-sural nerve spared nerve injury model and 93,027 age and sex matched cells from a sham model was used. At each of three time points-postoperative day 3, postoperative day 14, and postoperative month 5-gene expression data was recorded for both spared nerve injury and Sham cell groups. For all cells, 27,998 genes were sequenced. All cells were clustered into 12 distinct subclusters and gene set enrichment pathway analysis was performed. For both the spared nerve injury and Sham groups, Sigma-1 Receptor expression significantly decreased at each time point following surgery. At the 5-month postoperative time point, only one of twelve subclusters showed significantly increased Sigma-1 Receptor expression in spared nerve injury cells as compared to Sham cells (p = 0.0064). Pathway analysis of this cluster showed a significantly increased expression of the inflammatory response pathway in the spared nerve injury cells relative to Sham cells at the 5-month time point (p = 6.74e-05). A distinct subcluster of L4/5 microglia was identified which overexpress Sigma-1 Receptor following peripheral nerve injury consistent with neuropathic pain inflammatory response functioning. This indicates that upregulated Sigma-1 Receptor in the central nervous system characterizes post-acute peripheral nerve injury and may be further developed for clinical use in the differentiation between low back pain secondary to peripheral nerve injury and low back pain not associated with peripheral nerve injury in cases where the pain cannot be localized.


Subject(s)
Low Back Pain , Peripheral Nerve Injuries , Animals , Mice , Peripheral Nerve Injuries/genetics , Microglia , Spinal Cord , Sigma-1 Receptor
14.
PLoS One ; 18(8): e0289956, 2023.
Article in English | MEDLINE | ID: mdl-37616240

ABSTRACT

Hyaluronic acid (HA) is ubiquitously found in biological tissues and mediates wound healing mechanisms after injury by promoting cell migration and proliferation. With the development of tissue-engineered neural therapeutics, including off-the-shelf grafts for peripheral nerve repair, HA is an attractive material for clinical use because of its various biological roles. HA-based biomaterials have been carefully engineered to elicit specific in vivo host responses, however an important design feature that should be considered in these scaffolds is endogenous degradation. Hyaluronidases (HYALs) are the complementary enzymes that are responsible for HA turnover. Although HYAL expression has been widely characterized in various tissues, including the central nervous system, and for different pathologies, there remains a lack of knowledge of HYAL mediated turnover in peripheral nerve tissue. In this work, gene expression of two hyaluronidases, HYAL1 and HYAL2, and HA-binding receptor, CD44, were studied in two injury models: rat sciatic nerve crush and critical gap transection. HYAL2 and CD44 were shown to be upregulated 3 days after crush injury, whereas HYAL1 was upregulated at 3 weeks, which collectively demonstrate temporal patterning of HA breakdown. Additionally, differences were observed between HYAL and HA expression at 3 weeks when compared for both nerve injury models. The activity of HYAL in peripheral nerve tissue was determined to be approximately 0.11 µmol/min, which could be used to further model HA-based biomaterial breakdown for peripheral nerve applications. Overall, this work provides a landscape of HA turnover in peripheral nerve that can be used for future neural applications.


Subject(s)
Peripheral Nerve Injuries , Animals , Rats , Peripheral Nerve Injuries/genetics , Hyaluronoglucosaminidase/genetics , Sciatic Nerve , Biocompatible Materials , Cell Movement , Hyaluronic Acid
15.
Gene ; 882: 147655, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37479098

ABSTRACT

Neuropathic pain is a severe and debilitating condition caused by damage to the peripheral nerve or central nervous system. Although several mechanisms have been identified, the underlying pathophysiology of neuropathic pain is still not fully understood. Unfortunately, few effective therapies are available for this condition. Therefore, there is an urgent need to investigate the underlying mechanisms of neuropathic pain to develop more effective treatments. Long non-coding RNAs (lncRNAs) have recently gained attention due to their potential to modulate protein expression through various mechanisms. LncRNAs have been implicated in many diseases, including neuropathic pain. This study aimed to identify a novel lncRNA involved in neuropathic pain progression. The lncRNA microarray analysis showed that lncRNA Upregulated in Liver Cancer (HULC) was significantly upregulated in spinal cord tissue of sciatic nerve injury (SNI) rats. Further experiments confirmed that HULC promoted neuropathic pain progression and aggravated H2O2-induced Schwann cell injury. Mechanistically, Sine Oculis Homeobox 1 (SIX1) regulated the transcriptional expression of HULC, and both SIX1 and HULC were involved in neuropathic pain and Schwann cell injury. The results of our research indicate the existence of a previously unknown SIX1/HULC axis that plays a significant role in the development and progression of neuropathic pain, shedding light on the complex mechanisms that underlie this debilitating condition. These findings offer novel insights into the molecular pathways involved in neuropathic pain. This study underscores the potential of targeting lncRNAs as a viable approach to alleviate the suffering of patients with neuropathic pain.


Subject(s)
Neuralgia , Peripheral Nerve Injuries , RNA, Long Noncoding , Rats , Animals , RNA, Long Noncoding/metabolism , Hydrogen Peroxide/metabolism , Schwann Cells , Peripheral Nerve Injuries/genetics , Neuralgia/genetics , Neuralgia/metabolism , Oxidative Stress , Sciatic Nerve
16.
Sci Adv ; 9(30): eadi0286, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37506203

ABSTRACT

Polypyrimidine tract binding protein 1 (PTBP1) is thought to be expressed only at embryonic stages in central neurons. Its down-regulation triggers neuronal differentiation in precursor and non-neuronal cells, an approach recently tested for generation of neurons de novo for amelioration of neurodegenerative disorders. Moreover, PTBP1 is replaced by its paralog PTBP2 in mature central neurons. Unexpectedly, we found that both proteins are coexpressed in adult sensory and motor neurons, with PTBP2 restricted mainly to the nucleus, while PTBP1 also shows axonal localization. Levels of axonal PTBP1 increased markedly after peripheral nerve injury, and it associates in axons with mRNAs involved in injury responses and nerve regeneration, including importin ß1 (KPNB1) and RHOA. Perturbation of PTBP1 affects local translation in axons, nociceptor neuron regeneration and both thermal and mechanical sensation. Thus, PTBP1 has functional roles in adult axons. Hence, caution is required before considering targeting of PTBP1 for therapeutic purposes.


Subject(s)
Axons , Nerve Regeneration , Neurons , Peripheral Nerve Injuries , Adult , Humans , Axons/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Interneurons/metabolism , Nerve Regeneration/genetics , Neurons/metabolism , Peripheral Nerve Injuries/genetics , Peripheral Nerve Injuries/metabolism
17.
Pain ; 164(10): 2196-2215, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37318015

ABSTRACT

ABSTRACT: Dorsal root ganglia (DRG) neurons have been well described for their role in driving both acute and chronic pain. Although nerve injury is known to cause transcriptional dysregulation, how this differs across neuronal subtypes and the impact of sex is unclear. Here, we study the deep transcriptional profiles of multiple murine DRG populations in early and late pain states while considering sex. We have exploited currently available transgenics to label numerous subpopulations for fluorescent-activated cell sorting and subsequent transcriptomic analysis. Using bulk tissue samples, we are able to circumvent the issues of low transcript coverage and drop-outs seen with single-cell data sets. This increases our power to detect novel and even subtle changes in gene expression within neuronal subtypes and discuss sexual dimorphism at the neuronal subtype level. We have curated this resource into an accessible database for other researchers ( https://livedataoxford.shinyapps.io/drg-directory/ ). We see both stereotyped and unique subtype signatures in injured states after nerve injury at both an early and late timepoint. Although all populations contribute to a general injury signature, subtype enrichment changes can also be seen. Within populations, there is not a strong intersection of sex and injury, but previously unknown sex differences in naïve states-particularly in Aß-RA + Aδ-low threshold mechanoreceptors-still contribute to differences in injured neurons.


Subject(s)
Neuralgia , Peripheral Nerve Injuries , Mice , Female , Male , Animals , RNA-Seq , Neuralgia/metabolism , Sensory Receptor Cells/metabolism , Mechanoreceptors , Peripheral Nerve Injuries/genetics , Peripheral Nerve Injuries/metabolism , Ganglia, Spinal/metabolism
18.
Sci Rep ; 13(1): 8856, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37258605

ABSTRACT

The cellular and molecular underpinnings of Wallerian degeneration have been robustly explored in laboratory models of successful nerve regeneration. In contrast, there is limited interrogation of failed regeneration, which is the challenge facing clinical practice. Specifically, we lack insight on the pathophysiologic mechanisms that lead to the formation of neuromas-in-continuity (NIC). To address this knowledge gap, we have developed and validated a novel basic science model of rapid-stretch nerve injury, which provides a biofidelic injury with NIC development and incomplete neurologic recovery. In this study, we applied next-generation RNA sequencing to elucidate the temporal transcriptional landscape of pathophysiologic nerve regeneration. To corroborate genetic analysis, nerves were subject to immunofluorescent staining for transcripts representative of the prominent biological pathways identified. Pathophysiologic nerve regeneration produces substantially altered genetic profiles both temporally and in the mature neuroma microenvironment, in contrast to the coordinated genetic signatures of Wallerian degeneration and successful regeneration. To our knowledge, this study presents as the first transcriptional study of NIC pathophysiology and has identified cellular death, fibrosis, neurodegeneration, metabolism, and unresolved inflammatory signatures that diverge from pathways elaborated by traditional models of successful nerve regeneration.


Subject(s)
Nerve Tissue , Neuroma , Peripheral Nerve Injuries , Humans , Transcriptome , Wallerian Degeneration/metabolism , Nerve Regeneration/genetics , Nerve Tissue/metabolism , Neuroma/pathology , Sequence Analysis, RNA , Sciatic Nerve/injuries , Peripheral Nerve Injuries/genetics , Peripheral Nerve Injuries/pathology , Tumor Microenvironment
19.
Exp Neurol ; 360: 114296, 2023 02.
Article in English | MEDLINE | ID: mdl-36503041

ABSTRACT

DNAX activating protein of 12 kDa (DAP12)-deficiency mice showed impaired differentiation of oligodendrocytes and reduced myelin in the central nervous system. Whether DAP12 is expressed by Schwann cells and its roles in the peripheral nervous system (PNS) remains unknown. In this study, expression of DAP12 was detected in Schwann cells in vivo and in vitro. The DAP12-knockout (KO) mice showed age-related motor deficits and thinner myelin in the sciatic nerve than WT mice but significantly faster clinical recovery after sciatic nerve crush injury. In sciatic nerves of DAP12 KO and WT mice, proteomic profiles analysis identified 158 differentially expressed proteins (DEPs) at 8-week-old, 29 DEPs at 54-week-old and 33 DEPs at two weeks after crush injury. Typically, of the DEPs at 54-week-old, up-regulated Lgmn and down-regulated RecK and Yap1 were associated with myelin loss in the sciatic nerve of DAP12 KO mice. Upregulation of nicotinamide nucleotide transhydrogenase and haptoglobin were associated with the accumulation of macrophages in the crushed sciatic nerve of DAP12 KO mice. After crush injury, there were significantly more M1 macrophages at one-week and more M2 macrophages at two-week in sciatic nerve of DAP12 KO mice than WT mice, indicating that DAP12 deletion promotes the phenotype conversion of macrophages from M1 to M2. Collectively, our findings suggest that DAP12 may exert dual roles in the PNS including promoting the physiological myelin formation and maintenance of Schwann cells but delaying nerve repair after injury by modulating the recruitment of macrophages and phenotype conversion.


Subject(s)
Crush Injuries , Peripheral Nerve Injuries , Mice , Animals , Proteomics , Sciatic Nerve/injuries , Nerve Crush , Peripheral Nerve Injuries/genetics , Schwann Cells , Nerve Regeneration/physiology
20.
Mol Neurobiol ; 60(1): 329-341, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36261692

ABSTRACT

Transcription factors are master regulators of various cellular processes under diverse physiological and pathological conditions. Many transcription factors that are differentially expressed after injury to peripheral nerves play important roles in nerve regeneration. Considering that rapid and timely regrowth of injured axons is a prerequisite for successful target reinnervation, here, we compile transcription factors that mediates axon elongation, including axon growth suppressor Klf4 and axon growth promoters c-Myc, Sox11, STAT3, Atf3, c-Jun, Smad1, C/EBPδ, and p53. Besides neuronal changes, Schwann cell phenotype modulation is also critical for nerve regeneration. The activation of Schwann cells at early time points post injury provides a permissive microenvironment whereas the re-differentiation of Schwann cells at later time points supports myelin sheath formation. Hence, c-Jun and Sox2, two critical drivers for Schwann cell reprogramming, as well as Krox-20 and Sox10, two essential regulators of Schwann cell myelination, are reviewed. These transcription factors may serve as promising targets for promoting the functional recovery of injured peripheral nerves.


Subject(s)
Myelin Sheath , Peripheral Nerve Injuries , Humans , Myelin Sheath/pathology , Nerve Regeneration/physiology , Schwann Cells/pathology , Peripheral Nerves , Gene Expression Regulation , Axons/pathology , Peripheral Nerve Injuries/genetics , Peripheral Nerve Injuries/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...