Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 344
Filter
1.
Sci China Life Sci ; 67(7): 1455-1467, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38523236

ABSTRACT

Volatile sex pheromones are vital for sexual communication between males and females. Females of the American cockroach, Periplaneta americana, produce and emit two sex pheromone components, periplanone-A (PA) and periplanone-B (PB). Although PB is the major sex attractant and can attract males, how it interacts with PA in regulating sexual behaviors is still unknown. In this study, we found that in male cockroaches, PA counteracted PB attraction. We identified two odorant receptors (ORs), OR53 and OR100, as PB/PA and PA receptors, respectively. OR53 and OR100 were predominantly expressed in the antennae of sexually mature males, and their expression levels were regulated by the sex differentiation pathway and nutrition-responsive signals. Cellular localization of OR53 and OR100 in male antennae further revealed that two types of sensilla coordinate a complex two-pheromone-two-receptor pathway in regulating cockroach sexual behaviors. These findings indicate distinct functions of the two sex pheromone components, identify their receptors and possible regulatory mechanisms underlying the male-specific and age-dependent sexual behaviors, and can guide novel strategies for pest management.


Subject(s)
Periplaneta , Receptors, Odorant , Sex Attractants , Sexual Behavior, Animal , Animals , Male , Sex Attractants/metabolism , Female , Receptors, Odorant/metabolism , Receptors, Odorant/genetics , Periplaneta/metabolism , Periplaneta/physiology , Periplaneta/genetics , Sexual Behavior, Animal/physiology , Arthropod Antennae/metabolism , Arthropod Antennae/physiology , Animal Communication , Insect Proteins/metabolism , Insect Proteins/genetics , Receptors, Pheromone/metabolism , Receptors, Pheromone/genetics
2.
J Insect Physiol ; 152: 104597, 2024 01.
Article in English | MEDLINE | ID: mdl-38072185

ABSTRACT

Insects' thermoregulatory processes depend on thermosensation and further processing of thermal information in the nervous system. It is commonly known that thermosensation involves thermoreceptors, including members of the TRP receptor family, but the involvement of neurotransmitters in thermoregulatory pathways remains unstudied. We conducted test to determine whether octopamine, a biogenic amine that acts as a neurotransmitter and neurohormone in insects, is involved in TRP-induced thermoregulatory responses in Periplaneta americana. We used capsaicin, an activator of the heat-sensitive TRP channel, Painless, to induce thermoregulatory response in cockroaches. Then, we evaluated the behavioural (thermal preferences and grooming), physiological (heart rate) and biochemical responses of insects to capsaicin, octopamine and phentolamine - octopaminergic receptor blocker. Capsaicin, similar to octopamine, increased cockroaches' grooming activity and heart rate. Moreover, octopamine level and protein kinase A (PKA) activity significantly increased after capsaicin treatment. Blocking octopaminergic receptors with phentolamine diminished cockroaches' response to capsaicin - thermoregulatory behaviour, grooming and heart rate were abolished. The results indicate that octopamine is a neurotransmitter secreted in insects after the activation of heat receptors.


Subject(s)
Cockroaches , Periplaneta , Animals , Periplaneta/physiology , Capsaicin/metabolism , Capsaicin/pharmacology , Octopamine/pharmacology , Octopamine/metabolism , Phentolamine/pharmacology , Cockroaches/metabolism , Neurotransmitter Agents/metabolism
3.
Environ Entomol ; 51(6): 1086-1093, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36373594

ABSTRACT

Several families of parasitic Hymenoptera have evolved traits that allow them to exploit cockroach oothecae. Cockroaches may bury and conceal their oothecae to prevent parasitoid attack. However, these protective measures require additional investment by females. We hypothesized that gravid cockroaches would reduce parental care in the absence of oothecal parasitoids and increase care when parasitoids were detected. Behavior bioassays consisted of glass jars containing a gravid American cockroach, Periplaneta americana (L.) (Blattodea: Blattidae), expanded polystyrene (EPS), and a dog food pellet. A fruit fly (Drosophila melanogaster Meigen) (Diptera: Drosophilidae) or parasitoid Aprostocetus hagenowii (Ratzburg) (Hymenoptera: Eulophidae) was added for the fly and parasitoid treatments, respectively. There was no significant difference among treatments in the proportion of oothecae buried or in mean cover of oothecae with EPS particles. Cover had no effect on parasitism success or failure. Electroantennogram (EAG) assays using P. americana antennae were also conducted. The EAG responses to dead parasitoid stimuli (0.111-0.124 mV) were significantly (p < 0.05) greater than the negative control, but responses to living parasitoid stimuli (0.075-0.089 mV) were nonsignificant. These findings suggest that burial and concealment of oothecae is a general defensive behavior employed regardless of the presence or absence of a natural enemy. The results also indicate that gravid P. americana are unable to detect, and therefore, differentiate A. hagenowii from other insects and that A. hagenowii can successfully locate and parasitize oothecae completely concealed with EPS particles.


Subject(s)
Cockroaches , Coleoptera , Hymenoptera , Periplaneta , Female , Animals , Dogs , Periplaneta/parasitology , Periplaneta/physiology , Drosophila melanogaster , Host-Parasite Interactions
4.
Article in English | MEDLINE | ID: mdl-36224473

ABSTRACT

Photoreceptors with different spectral sensitivities serve different physiological and behavioral roles. We hypothesized that such functional evolutionary optimization could also include differences in phototransduction dynamics. We recorded elementary responses to light, quantum bumps (QBs), of broadband green-sensitive and ultraviolet (UV)-sensitive photoreceptors in the cockroach, Periplaneta americana, compound eyes using intracellular recordings. In addition to control photoreceptors, we used photoreceptors from cockroaches whose green opsin 1 (GO1) or UV opsin expression was suppressed by RNA interference. In the control broadband and UV-sensitive photoreceptors average input resistances were similar, but the membrane capacitance, a proxy for membrane area, was smaller in the broadband photoreceptors. QBs recorded in the broadband photoreceptors had comparatively short latencies, high amplitudes and short durations. Absolute sensitivities of both opsin knockdown photoreceptors were significantly lower than in wild type, and, unexpectedly, their latency was significantly longer while the amplitudes were not changed. Morphologic examination of GO1 knockdown photoreceptors did not find significant differences in rhabdom size compared to wild type. Our results differ from previous findings in Drosophila melanogaster rhodopsin mutants characterized by progressive rhabdomere degeneration, where QB amplitudes were larger but phototransduction latency was not changed compared to wild type.


Subject(s)
Cockroaches , Periplaneta , Animals , Periplaneta/physiology , Opsins/genetics , Opsins/metabolism , Photoreceptor Cells, Invertebrate/physiology , Drosophila melanogaster/metabolism , Light Signal Transduction
5.
Acta Biomater ; 147: 102-119, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35649508

ABSTRACT

Insect antennae are hollow, blood-filled fibers with complex shape. Muscles in the two basal segments control antennal movement, but the rest (flagellum) is muscle-free. The insect can controllably flex, twist, and maneuver its antennae laterally. To explain this behavior, we performed a comparative study of structural and tensile properties of the antennae of Periplaneta americana (American cockroach), Manduca sexta (Carolina hawkmoth), and Vanessa cardui (painted lady butterfly). These antennae demonstrate a range of distinguishable tensile properties, responding either as brittle or strain-adaptive fibers that stiffen when stretched. Scanning electron microscopy and high-speed imaging of antennal breakup during stretching revealed complex coupling of blood pressure and cuticle deformation in antennae. A generalized Lamé theory of solid mechanics was developed to include the force-driven deformation of blood-filled antennal tubes. We validated the theory against experiments with artificial antennae with no adjustable parameters. Blood pressure increased when the insect inflated its antennae or decreased below ambient pressure when an external tensile load was applied to the antenna. The pressure-cuticle coupling can be controlled through changes of the blood volume in the antennal lumen. In insects that do not fill the antennal lumen with blood, this blood pressure control is lacking, and the antennae react only by muscular activation. We suggest that the principles we have discovered for insect antennae apply to other appendages that share a leg-derived ancestry. Our work offers promising new applications for multifunctional fiber-based microfluidics that could transport fluids and be manipulated by the same fluid on demand. STATEMENT OF SIGNIFICANCE: Insect antennae are blood-filled, segmented fibers with muscles in the two basal segments. The long terminal segment is muscle-free but can be flexed. To explain this behavior, we examined structure-function relationships of antennae of cockroaches, hawkmoths, and butterflies. Hawkmoth antennae behaved as brittle fibers, but butterfly and cockroach antennae showed strain-adaptive behavior like fibers that stiffen when stretched. Videomicroscopy of antennal breakup during stretching revealed complex coupling of blood pressure and cuticle deformation. Our solid mechanics model explains this behavior. Because antennae are leg-derived appendages, we suggest that the principles we found apply to other appendages of leg-derived ancestry. Our work offers new applications for multifunctional fiber-based microfluidics that could transport fluids and be manipulated by the fluid on demand.


Subject(s)
Butterflies , Periplaneta , Animals , Arthropod Antennae/physiology , Blood Pressure , Humans , Insecta , Movement , Periplaneta/physiology
6.
J Neurophysiol ; 128(1): 263-277, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35730751

ABSTRACT

Of many light adaptation mechanisms optimizing photoreceptor functioning in the compound eyes of insects, those modifying the single-photon response, the quantum bump (QB), remain least studied. Here, by recording from photoreceptors of the blow fly Protophormia terraenovae, the hover fly Volucella pellucens, and the cockroach Periplaneta americana, we investigated mechanisms of rapid light adaptation by examining how properties of QBs change after light stimulation and multiquantal impulse responses during repetitive stimulation. In P. terraenovae, light stimulation reduced latencies, characteristic durations, and amplitudes of QBs in an intensity- and duration-dependent manner. In P. americana, only QB amplitudes decreased consistently. In both species, time constants of QB parameters' recovery increased with the strength and duration of stimulation, reaching ∼30 s after bright prolonged 10-s pulses. In the blow fly, changes in QB amplitudes during recovery correlated with changes in half-widths but not latencies, suggesting at least two separate mechanisms of light adaptation: acceleration of QB onset by sensitizing transduction channels and acceleration of transduction channel inactivation causing QB shortening and decrease. In the cockroach, light adaptation reduced QB amplitude by apparently lowering the transduction channel availability. Impulse response data in the blow fly and cockroach were consistent with the inferences from the QB recovery experiments. However, in the hover fly V. pellucens, impulse response latencies and durations decreased simultaneously, whereas amplitudes decreased little, even when bright flashes were applied at high frequencies. These findings indicate the existence of dissimilar mechanisms of light adaptation in the microvilli of different species.NEW & NOTEWORTHY By studying light adaptation of elementary responses in photoreceptors of the blow fly and the cockroach we found three distinct mechanisms. In the blow fly, one mechanism speeds quantum bump onset and another accelerates quantum bump inactivation, decreasing its size. In the cockroach, quantum bump amplitude decreases without changes in kinetics, indicating decreased availability of transduction channels. The findings can be explained by expression of different transduction channels in the flies and cockroaches.


Subject(s)
Diptera , Periplaneta , Adaptation, Ocular , Animals , Periplaneta/physiology , Photoreceptor Cells, Invertebrate/physiology , Reaction Time
7.
Medicine (Baltimore) ; 101(51): e32039, 2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36595847

ABSTRACT

Fibrosis is the end stage of many chronic inflammatory diseases and eventually leads to organ failure. Periplaneta americana (P. americana) is referred to as "the product of flesh and blood" in traditional Chinese medicine and has a wide range of therapeutic effects. Owing to the growing interest in this insect for its application in the treatment of tissue injury-healing disorders that induce organ fibrosis, it has attracted the interest of researchers. A literature search was performed using core collections of electronic databases, such as PubMed, Web of Science, China National Knowledge Infrastructure, and Wanfang, using the keywords given below and terms such as pharmacological and biochemical details of this insect. P. americana extracts presented a wide range of therapeutic and biological activities, including antifibrotic, antiinflammatory, antioxidative, and tissue repair activities. Emerging evidence suggests that P. americana extracts may improve scarring, pulmonary fibrosis, liver fibrosis, and kidney fibrosis through the regulation of fibroblast activation, cytokine secretion, and deposition of fibrin, indicating the potential role of P. americana as a therapeutic option for organ fibrosis. P. americana is a potential therapeutic agent for treating fibrosis. Further studies are required for a more in-depth characterization of the antifibrogenic mechanism of P. americana prior to its clinical application in the treatment of organ fibrosis. (Fig. 1).


Subject(s)
Cockroaches , Periplaneta , Animals , Humans , Periplaneta/chemistry , Periplaneta/physiology , Fibrosis , Liver Cirrhosis , Wound Healing
8.
Elife ; 102021 09 23.
Article in English | MEDLINE | ID: mdl-34554087

ABSTRACT

Local interneurons (LNs) mediate complex interactions within the antennal lobe, the primary olfactory system of insects, and the functional analog of the vertebrate olfactory bulb. In the cockroach Periplaneta americana, as in other insects, several types of LNs with distinctive physiological and morphological properties can be defined. Here, we combined whole-cell patch-clamp recordings and Ca2+ imaging of individual LNs to analyze the role of spiking and nonspiking LNs in inter- and intraglomerular signaling during olfactory information processing. Spiking GABAergic LNs reacted to odorant stimulation with a uniform rise in [Ca2+]i in the ramifications of all innervated glomeruli. In contrast, in nonspiking LNs, glomerular Ca2+ signals were odorant specific and varied between glomeruli, resulting in distinct, glomerulus-specific tuning curves. The cell type-specific differences in Ca2+ dynamics support the idea that spiking LNs play a primary role in interglomerular signaling, while they assign nonspiking LNs an essential role in intraglomerular signaling.


Subject(s)
Arthropod Antennae/innervation , Calcium Signaling , GABAergic Neurons/physiology , Interneurons/physiology , Olfactory Bulb/physiology , Olfactory Pathways/physiology , Periplaneta/physiology , Smell , Action Potentials , Animals , Odorants , Time Factors
9.
Insect Biochem Mol Biol ; 131: 103551, 2021 04.
Article in English | MEDLINE | ID: mdl-33556555

ABSTRACT

Matrix metalloproteinases (MMPs) are the major proteinases that process or degrade numerous extracellular matrix (ECM) components and are evolutionarily conserved from nematodes to humans. During molting in insects, the old cuticle is removed and replaced by a new counterpart. Although the regulatory mechanisms of hormones and nutrients in molting have been well studied, very little is known about the roles of ECM-modifying enzymes in this process. Here, we found that MMPs are necessary for imaginal molting of the American cockroach, Periplaneta americana. Inhibition of Mmp activity via inhibitor treatment led to the failure of eclosion and wing expansion. Five Mmps genes were identified from the P. americana genome, and PaMmp2 played the dominant roles during molting. Further microscopic investigations showed that newly formed adult cuticles were attenuated and that then chitin content was reduced upon Mmp inhibition. Transcriptomic analysis of the integument demonstrated that multiple signaling and metabolic pathways were changed. Microscopic investigation of the wings showed that epithelial cells were restrained together because they were incapable of degrading the ECM upon Mmp inhibition. Transcriptomic analysis of the wing identified dozens of possible genes functioned in wing expansion. This is the first study to show the essential roles of Mmps in the nymph-adult transition of hemimetabolous insects.


Subject(s)
Matrix Metalloproteinases , Periplaneta , Wings, Animal , Animals , Chitin/metabolism , Gene Expression Profiling , Genes, Insect , Larva/metabolism , Matrix Metalloproteinases/genetics , Matrix Metalloproteinases/metabolism , Metamorphosis, Biological , Molting , Nymph/metabolism , Periplaneta/embryology , Periplaneta/genetics , Periplaneta/metabolism , Periplaneta/physiology , Wings, Animal/embryology , Wings, Animal/metabolism
10.
PLoS Comput Biol ; 16(11): e1008427, 2020 11.
Article in English | MEDLINE | ID: mdl-33196643

ABSTRACT

Phototransduction reactions in the rhabdomeric photoreceptor are profoundly stochastic due to the small number of participating molecules and small reaction space. The resulting quantum bumps (QBs) vary in their timing (latency), amplitudes and durations, and these variabilities within each cell are not correlated. Using modeling and electrophysiological recordings, we investigated how the QB properties depend on the cascade speed and how they influence signal transfer. Parametric analysis in the model supported by experimental data revealed that faster cascades elicit larger and narrower QBs with faster onsets and smaller variabilities than slower cascades. Latency dispersion was stronger affected by modification of upstream than downstream activation parameters. The variability caused by downstream modifications closely matched the experimental variability. Frequency response modeling showed that corner frequency is a reciprocal function of the characteristic duration of the multiphoton response, which, in turn, is a non-linear function of QB duration and latency dispersion. All QB variabilities contributed noise but only latency dispersion slowed and spread multiphoton responses, lowering the corner frequency. Using the discovered QB correlations, we evaluated transduction noise for dissimilar species and two extreme adaptation states, and compared it to photon noise. The noise emitted by the cascade was non-additive and depended non-linearly on the interaction between the QB duration and the three QB variabilities. Increased QB duration strongly suppressed both noise and corner frequency. This trade-off might be acceptable for nocturnal but not diurnal species because corner frequency is the principal determinant of information capacity. To offset the increase in noise accompanying the QB narrowing during light adaptation and the response-expanding effect of latency dispersion, the cascade accelerates. This explains the widespread evolutionary tendency of diurnal fliers to have fast phototransduction, especially after light adaptation, which thus appears to be a common adaptation to contain stochasticity, improve SNR and expand the bandwidth.


Subject(s)
Insecta/physiology , Light Signal Transduction/physiology , Models, Biological , Photoreceptor Cells, Invertebrate/physiology , Animals , Biological Evolution , Computational Biology , Computer Simulation , Electrophysiological Phenomena , Kinetics , Microvilli/physiology , Nonlinear Dynamics , Periplaneta/physiology , Photoreceptor Cells, Vertebrate/physiology , Quantum Theory , Signal-To-Noise Ratio , Stochastic Processes
11.
Arthropod Struct Dev ; 58: 100970, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32702647

ABSTRACT

Posture and walking require support of the body weight, which is thought to be detected by sensory receptors in the legs. Specificity in sensory encoding occurs through the numerical distribution, size and response range of sense organs. We have studied campaniform sensilla, receptors that detect forces as strains in the insect exoskeleton. The sites of mechanotransduction (cuticular caps) were imaged by light and confocal microscopy in four species (stick insects, cockroaches, blow flies and Drosophila). The numbers of receptors and cap diameters were determined in projection images. Similar groups of receptors are present in the legs of each species (flies lack Group 2 on the anterior trochanter). The number of receptors is generally related to the body weight but similar numbers are found in blow flies and Drosophila, despite a 30 fold difference in their weight. Imaging data indicate that the gradient (range) of cap sizes may more closely correlate with the body weight: the range of cap sizes is larger in blow flies than in Drosophila but similar to that found in juvenile cockroaches. These studies support the idea that morphological properties of force-detecting sensory receptors in the legs may be tuned to reflect the body weight.


Subject(s)
Insecta/physiology , Animals , Biomechanical Phenomena , Body Weight , Calliphoridae/growth & development , Calliphoridae/physiology , Drosophila melanogaster/physiology , Extremities/physiology , Female , Larva/growth & development , Larva/physiology , Periplaneta/physiology , Sensilla/physiology , Walking
12.
Article in English | MEDLINE | ID: mdl-32285147

ABSTRACT

Visual signal transmission by Drosophila melanogaster photoreceptors is mediated by a Gq protein that activates a phospholipase C (PLC). Mutations and deficiencies in expression of either of these proteins cause severe defects in phototransduction. Here we investigated whether these proteins are also involved in the cockroach, Periplaneta americana, phototransduction by silencing Gq α-subunit (Gqα) and phosphoinositide-specific phospholipase C (PLC) by RNA interference and observing responses to single photons (quantum bumps, QB). We found (1) non-specific decreases in membrane resistance, membrane capacitance and absolute sensitivity in the photoreceptors of both Gqα and PLC knockdowns, and (2) small changes in QB statistics. Despite significant decreases in expressions of Gq and PLC mRNA, the changes in QB properties were surprisingly modest, with mean latencies increasing by ~ 10%, and without significant decrease in their amplitudes. To better understand our results, we used a mathematical model of the phototransduction cascade. By modifying the Gq and PLC abundances, and diffusion rates for Gq, we found that QB latencies and amplitudes deteriorated noticeably only after large decreases in the protein levels, especially when Gq diffusion was slow. Also, reduction in Gq but not PLC lowered quantum efficiency. These results suggest that expression of the proteins may be redundant.


Subject(s)
Periplaneta/physiology , Animals , Electrophysiological Phenomena , GTP-Binding Protein alpha Subunits, Gq-G11/antagonists & inhibitors , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Light Signal Transduction , Photons , Photoreceptor Cells, Invertebrate/physiology , Type C Phospholipases/antagonists & inhibitors , Type C Phospholipases/genetics , Type C Phospholipases/metabolism
13.
Gene ; 743: 144610, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32205235

ABSTRACT

The American cockroach (Periplaneta americana), which is one of the most ancient insects in the world, is characterized by incomplete metamorphosis. So far, no one has studied the microRNA profile of P. americana and the changes in the expression of microRNAs on different developmental stages. In this study, we sequenced the small RNAs (sRNA) of four samples at four post-embryonic developmental stages. A total of 35 conserved known mature miRNAs and 134 novel mature miRNAs were identified. After differential expression analysis, we noticed there were more miRNA expressed differentially during early post-embryonic stages. We also found about one-third of known miRNAs were significantly dynamic. After a cross-species comparative analysis, we identified two miRNAs (miR-1000 and miR-932) that may be important for morphogenesis, olfactory, learning, and memory. In addition, unlike hetero-metabolous insects, miRNAs still played an important role in late post-embryonic stages in holo-metabolous insects. In conclusion, our results underline the significance of miRNA expression in post-embryonic developmental stages of the American cockroach and push forward the understanding of gene expression modulation by miRNAs in cockroach. This would also contribute to the study of gene expression regulation by miRNAs during metamorphosis development.


Subject(s)
Gene Expression Regulation, Developmental , Metamorphosis, Biological/genetics , MicroRNAs/metabolism , Periplaneta/physiology , Animals , Cognition , Female , Gene Expression Profiling , Larva/genetics , Larva/growth & development , Male , MicroRNAs/genetics , MicroRNAs/isolation & purification , Sequence Analysis, RNA
14.
Appl Environ Microbiol ; 86(8)2020 04 01.
Article in English | MEDLINE | ID: mdl-32060023

ABSTRACT

Beneficial gut microbes can facilitate insect growth on diverse diets. The omnivorous American cockroach, Periplaneta americana (Insecta: Blattodea), thrives on a diet rich in plant polysaccharides and harbors a species-rich gut microbiota responsive to host diet. Bacteroidetes are among the most abundant taxa in P. americana and other cockroaches, based on cultivation-independent gut community profiling, and these potentially polysaccharolytic bacteria may contribute to host diet processing. Eleven Bacteroidetes isolates were cultivated from P. americana digestive tracts, and phylogenomic analyses suggest that they were new Bacteroides, Dysgonomonas, Paludibacter, and Parabacteroides species distinct from those previously isolated from other insects, humans, and environmental sources. In addition, complete genomes were generated for each isolate, and polysaccharide utilization loci (PULs) and several non-PUL-associated carbohydrate-active enzyme (CAZyme)-coding genes that putatively target starch, pectin, and/or cellulose were annotated in each of the isolate genomes. Type IX secretion system (T9SS)- and CAZyme-coding genes tagged with the corresponding T9SS recognition and export C-terminal domain were observed in some isolates, suggesting that these CAZymes were deployed via non-PUL outer membrane translocons. Additionally, single-substrate growth and enzymatic assays confirmed genomic predictions that a subset of the Bacteroides and Dysgonomonas isolates could degrade starch, pectin, and/or cellulose and grow in the presence of these substrates as a single sugar source. Plant polysaccharides enrich P. americana diets, and many of these gut isolates are well equipped to exploit host dietary inputs and potentially contribute to gut community and host nutrient accessibility.IMPORTANCE Gut microbes are increasingly being recognized as critical contributors to nutrient accessibility in animals. The globally distributed omnivorous American cockroach (Periplaneta americana) harbors many bacterial phyla (e.g., Bacteroidetes) that are abundant in vertebrates. P. americana thrives on a highly diverse plant-enriched diet, making this insect a rich potential source of uncharacterized polysaccharolytic bacteria. We have cultivated, completely sequenced, and functionally characterized several novel Bacteroidetes species that are endemic to the P. americana gut, and many of these isolates can degrade simple and complex polysaccharides. Cultivation and genomic characterization of these Bacteroidetes isolates further enable deeper insight into how these taxa participate in polysaccharide metabolism and, more broadly, how they affect animal health and development.


Subject(s)
Bacteroidetes/physiology , Periplaneta/physiology , Polysaccharides/metabolism , Symbiosis , Animals , Bacteroidetes/classification , Diet , Periplaneta/microbiology
15.
Sci Rep ; 10(1): 1995, 2020 02 06.
Article in English | MEDLINE | ID: mdl-32029781

ABSTRACT

In the common pest cockroach, Periplaneta americana, behavioural responses to the sex and aggregation pheromones change in an age-dependent manner. Nymphs are attracted by the aggregation pheromone periplanolide-E (PLD-E) but not by the sex pheromone periplanone-B (PB) in faeces. Adults display prominent behaviours to PB but not to PLD-E. Despite the significant behavioural differences depending on postembryonic developmental stages, peripheral codings of the sex and aggregation pheromones have not been studied in the nymph of any insects as far as we know. In this study, we morphologically and electrophysiologically identified antennal sensilla that respond to PB and PLD-E in nymphal cockroaches. Although nymphs lacked the sex pheromone-responsive single-walled B (sw-B) sensilla identified in adult males, we found PB-responsive sensory neurons (PB-SNs) within newly identified sw-A2 sensilla, which exhibit different shapes but have the same olfactory pores as sw-B sensilla. Interestingly, PLD-E-responsive sensory neurons (PLD-E-SNs) were also identified in the same sensillar type, but PB and PLD-E were independently detected by different SNs. Both PB-SNs and PLD-E-SNs showed high sensitivity to their respective pheromones. The hemimetabolous insect nymph has an ability to detect these pheromones, suggesting that behaviours elicited by pheromones might be established in brain centres depending on postembryonic development.


Subject(s)
Nymph/physiology , Periplaneta/physiology , Sensilla/metabolism , Sensory Receptor Cells/physiology , Sex Attractants/metabolism , Age Factors , Animals , Behavior, Animal , Female , Male , Nymph/cytology , Sensilla/cytology
16.
Proc Biol Sci ; 287(1921): 20192466, 2020 02 26.
Article in English | MEDLINE | ID: mdl-32097587

ABSTRACT

Once emitted, semiochemicals are exposed to reactive environmental factors that may alter them, thus disrupting chemical communication. Some species, however, might have adapted to detect environmentally mediated breakdown products of their natural chemicals as semiochemicals. We demonstrate that air, water vapour and ultraviolet (UV) radiation break down unsaturated cuticular hydrocarbons (CHCs) of Periplaneta americana (American cockroach), resulting in the emission of volatile organic compounds (VOCs). In behavioural assays, nymphs strongly avoided aggregating in shelters exposed to the breakdown VOCs from cuticular alkenes. The three treatments (air, water vapour, UV) produced the same VOCs, but at different time-courses and ratios. Fourteen VOCs from UV-exposed CHCs elicited electrophysiological responses in nymph antennae; 10 were identified as 2-nonanone, 1-pentanol, 1-octanol, 1-nonanol, tetradecanal, acetic acid, propanoic acid, butanoic acid, pentanoic acid and hexanoic acid. When short-chain fatty acids were tested as a mix and a blend of the alcohols and aldehyde was tested as a second mix, nymphs exhibited no preference for control or treated shelters. However, nymphs avoided shelters that were exposed to VOCs from the complete 10-compound mix. Conditioned shelters (occupied by cockroaches with faeces and CHCs deposited on the shelters), which are normally highly attractive to nymphs, were also avoided after UV exposure, confirming that breakdown products from deposited metabolites, including CHCs, mediate this behaviour. Our results demonstrate that common environmental agents degrade CHCs into behaviourally active volatile compounds that potentially may serve as necromones or epideictic pheromones, mediating group dissolution.


Subject(s)
Alkenes/metabolism , Behavior, Animal/physiology , Periplaneta/physiology , Pheromones/metabolism , Animals , Hydrocarbons/metabolism , Social Behavior , Volatile Organic Compounds
17.
J Exp Biol ; 223(Pt 3)2020 02 03.
Article in English | MEDLINE | ID: mdl-31932303

ABSTRACT

The general architecture of the olfactory system is highly conserved from insects to humans, but neuroanatomical and physiological differences can be observed across species. The American cockroach, inhabiting dark shelters with a rather stable olfactory landscape, is equipped with long antennae used for sampling the surrounding air-space for orientation and navigation. The antennae's exceptional length provides a wide spatial working range for odour detection; however, it is still largely unknown whether and how this is also used for mapping the structure of the olfactory environment. By selectively labelling antennal lobe projection neurons with a calcium-sensitive dye, we investigated the logic of olfactory coding in this hemimetabolous insect. We show that odour responses are stimulus specific and concentration dependent, and that structurally related odorants evoke physiologically similar responses. By using spatially confined stimuli, we show that proximal stimulations induce stronger and faster responses than distal ones. Spatially confined stimuli of the female pheromone periplanone B activate a subregion of the male macroglomerulus. Thus, we report that the combinatorial logic of odour coding deduced from holometabolous insects applies also to this hemimetabolous species. Furthermore, a fast decrease in sensitivity along the antenna, not supported by a proportionate decrease in sensillar density, suggests a neural architecture that strongly emphasizes neuronal inputs from the proximal portion of the antenna.


Subject(s)
Arthropod Antennae/physiology , Olfactory Perception/physiology , Orientation, Spatial/physiology , Periplaneta/physiology , Visual Perception/physiology , Animals , Odorants
18.
Invert Neurosci ; 20(1): 1, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31960127

ABSTRACT

Proteins encoded by nanchung, inactive, nompC and piezo genes have been shown to play crucial roles in the initial detection of mechanical force by various insect auditory neurons, nociceptors and touch receptors. Most of this previous research has been performed on the larval and adult fruit fly, Drosophila melanogaster. We identified and assembled all four homologous genes in transcriptomes from the cockroach, Periplaneta americana. Injection of long double-stranded RNA (dsRNA) into the adult cockroach abdomen successfully reduced the expression of each gene, as measured by quantitative PCR (RT-qPCR). A simple electrophysiological assay was used to record action potential firing in afferent nerves of cockroach femoral tactile spines in response to a standardized mechanical step displacement. Responses of nanchung knockdown animals were significantly reduced compared to matched sham-injected animals at 14 and 21 days after injection, and inactive knockdowns similarly at 21 days. In contrast, responses of nompC and piezo knockdowns were unchanged. Our results support a model in which Nanchung and Inactive proteins combine to form a part of the mechanotransduction mechanism in the cockroach tactile spine.


Subject(s)
Insect Proteins/metabolism , Mechanotransduction, Cellular/physiology , Periplaneta/physiology , Transient Receptor Potential Channels/metabolism , Animals , RNA Interference , Sensory Receptor Cells/metabolism
19.
J Neurophysiol ; 123(1): 120-133, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31721631

ABSTRACT

Visual transduction in rhabdomeric photoreceptors is compartmentalized and discretized. Signals of individual microvilli, the quantum bumps, are electrotonically summed, producing a graded response. Intrinsic dispersion of quantum bump latencies is thought to introduce noise and degrade signal transfer. Here, we found profound differences in the information rate and signaling bandwidth between in vitro patch-clamp and in vivo intracellular recordings of Periplaneta americana photoreceptors and traced them to the properties of quantum bumps and membrane resistance. Comparison of macroscopic and elementary light responses revealed differences in quantum bump summation and membrane resistance in vivo versus in vitro. Modeling of voltage bumps suggested that current bumps in vivo should be much bigger and faster than those actually recorded in vitro. Importantly, the group-average latency of dark-adapted photoreceptors was 30 ± 8 ms in intracellular (n = 34) versus 70 ± 19 ms in patch-clamp (n = 57) recordings. Duration of composite responses increased with mean latency because bump dispersion depended on mean latency. In vivo, latency dispersion broadened the composite response by 25% on average and slowed its onset. However, in the majority of photoreceptors, the characteristic durations of multiphoton impulse responses to 1-ms stimuli did not exceed the durations of mean voltage bumps. Consistently, we found strong associations between the latency and onset kinetics of the macroscopic response, on the one hand and the higher-frequency signal gain and information rate of the photoreceptor, on the other hand, indicating a direct connection between quantum bump latency and its dispersion and the signaling bandwidth.NEW & NOTEWORTHY When stimulated by light, microvilli of rhabdomeric photoreceptors produce discrete signals characterized by variable latencies. We show that this intrinsic latency dispersion restricts signaling bandwidth and information rate of photoreceptors in Periplaneta americana. Profound differences are found between the properties of photoreceptor responses in vivo and in vitro.


Subject(s)
Electrophysiological Phenomena/physiology , Light Signal Transduction/physiology , Periplaneta/physiology , Photoreceptor Cells, Invertebrate/physiology , Animals , Patch-Clamp Techniques
20.
J Neurosci ; 39(44): 8690-8704, 2019 10 30.
Article in English | MEDLINE | ID: mdl-31548236

ABSTRACT

The basic organization of the olfactory system has been the subject of extensive studies in vertebrates and invertebrates. In many animals, GABA-ergic neurons inhibit spike activities of higher-order olfactory neurons and help sparsening of their odor representations. In the cockroach, two different types of GABA-immunoreactive interneurons (calyceal giants [CGs]) mainly project to the base and lip regions of the calyces (input areas) of the mushroom body (MB), a second-order olfactory center. The base and lip regions receive axon terminals of two different types of projection neurons, which receive synapses from different classes of olfactory sensory neurons (OSNs), and receive dendrites of different classes of Kenyon cells, MB intrinsic neurons. We performed intracellular recordings from pairs of CGs and MB output neurons (MBONs) of male American cockroaches, the latter receiving synapses from Kenyon cells, and we found that a CG receives excitatory synapses from an MBON and that odor responses of the MBON are changed by current injection into the CG. Such feedback effects, however, were often weak or absent in pairs of neurons that belong to different streams, suggesting parallel organization of the recurrent pathways, although interactions between different streams were also evident. Cross-covariance analysis of the spike activities of CGs and MBONs suggested that odor stimulation produces synchronized spike activities in MBONs and then in CGs. We suggest that there are separate but interactive parallel streams to process odors detected by different OSNs throughout the olfactory processing system in cockroaches.SIGNIFICANCE STATEMENT Organizational principles of the olfactory system have been the subject of extensive studies. In cockroaches, signals from olfactory sensory neurons (OSNs) in two different classes of sensilla are sent to two different classes of projection neurons, which terminate in different areas of the mushroom body (MB), each area having dendrites of different classes of MB intrinsic neurons (Kenyon cells) and terminations of different classes of GABAergic neurons. Physiological and morphological assessments derived from simultaneous intracellular recordings/stainings from GABAergic neurons and MB output neurons suggested that GABAergic neurons play feedback roles and that odors detected by OSNs are processed in separate but interactive processing streams throughout the central olfactory system.


Subject(s)
GABAergic Neurons/physiology , Mushroom Bodies/physiology , Olfactory Receptor Neurons/physiology , Periplaneta/physiology , Smell/physiology , Animals , GABAergic Neurons/cytology , Interneurons/physiology , Male , Membrane Potentials , Mushroom Bodies/cytology , Odorants , Olfactory Pathways/cytology , Olfactory Pathways/physiology , Olfactory Receptor Neurons/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...