Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 183: 1784-1793, 2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34051253

ABSTRACT

Naturally occurring peroxidases are important for living organisms and have manifold utility in industries. However, lack of stability in harsh reaction conditions hinders wide applicability of such enzymes. Thus, suitable alternative is vital which can endure severe reaction conditions. As a substitute of natural peroxidase, herein, biopolymer-based polyelectrolyte complexes (PECs) coordinated with Fen+ is proposed as macromolecular peroxidase mimicking systems. Three PECs were engineered via complexation of protonated chitosan and alginate with Fe2+ (Fe2+-PEC), Fe3+ (Fe3+-PEC), and Fe3O4 (Fe3O4-PEC), respectively. Computational study showed the Fe3+-PEC was highly stable with abundant electrostatic and intramolecular hydrogen bonding interactions. The versatility of the Fe-PECs as artificial peroxidase biocatalysts was probed by two types of peroxidase assays - ABTS oxidation in buffer systems (pH 4.0 and 7.0) and pyrogallol oxidation in organic solvents (acetonitrile, ethyl acetate and toluene). Overall, Fe3+-PEC showed remarkably high peroxidase activity both in aqueous buffers and in organic solvents, whereas, Fe3O4-PEC showed least catalytic activity. Finally, as a proof of concept, the ability of the biocatalyst to carry out deep oxidative desulphurization was demonstrated envisaging removal of dibenzothiophene from model fossil fuel in a sustainable way.


Subject(s)
Biopolymers/chemistry , Ferric Compounds/chemical synthesis , Peroxidase/chemical synthesis , Thiophenes/analysis , Alginates/chemistry , Biocatalysis , Catalysis , Chitosan/chemistry , Ferric Compounds/chemistry , Gasoline , Hydrogen Bonding , Hydrogen-Ion Concentration , Peroxidase/chemistry
2.
Biomed Res Int ; 2019: 7127869, 2019.
Article in English | MEDLINE | ID: mdl-31032360

ABSTRACT

Natural enzyme mimics have attracted considerable attention due to leakage of enzymes and their easy denaturation during their storage and immobilization procedure. Here in this study, for the first time, a new iron oxide hydroxide, ferrihydrite - Fe1.44O0.32 (OH) 3.68 magnetic nanoparticles were synthesized by bacterial strain named Comamonas testosteroni. The characterization of the produced magnetic nanoparticles was confirmed by transmission electron microscopy (TEM), Fourier-transform spectroscopy (FTIR), X-ray diffraction (XRD), and magnetization hysteresis loops. Further, these extracted nanoparticles were proven to have biogenic magnetic behavior and to exhibit enhanced peroxidase-like activity. It is capable of catalyzing the oxidation of 3, 3', 5, 5'-Tetramethylbenzidine (TMB) by H2O2 to produce blue color (typical color reactions). Catalysis was examined to follow Michaelis-Menton kinetics and the good affinity to both H2O2 and TMB. The K m value of the Fe1.44O0.32 (OH) 3.68 with H2O2 and TMB as the substrate was 0.0775 and 0.0155 mM, respectively, which were lower than that of the natural enzyme (HRP). Experiments of electron spin resonance (ESR) spectroscopy proved that the BMNPs could catalyze H2O2 to produce hydroxyl radicals. As a new peroxidase mimetic, the BMNPs were exhibited to offer a simple, sensitive, and selective colorimetric method for determination of H2O2 and glucose and efficiently catalyze the detection of glucose in real blood samples.


Subject(s)
Comamonas testosteroni/chemistry , Glucose/chemistry , Hydrogen Peroxide/chemistry , Peroxidase/chemistry , Benzidines/chemistry , Biomimetics , Biosensing Techniques , Catalysis , Electron Spin Resonance Spectroscopy , Ferric Compounds/chemical synthesis , Ferric Compounds/chemistry , Ferric Compounds/pharmacology , Glucose/isolation & purification , Hydrogen Peroxide/isolation & purification , Kinetics , Magnetite Nanoparticles , Microscopy, Electron, Transmission , Oxidation-Reduction/drug effects , Peroxidase/chemical synthesis , Peroxidase/pharmacology , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
3.
Nat Commun ; 8(1): 358, 2017 08 25.
Article in English | MEDLINE | ID: mdl-28842561

ABSTRACT

Although catalytic mechanisms in natural enzymes are well understood, achieving the diverse palette of reaction chemistries in re-engineered native proteins has proved challenging. Wholesale modification of natural enzymes is potentially compromised by their intrinsic complexity, which often obscures the underlying principles governing biocatalytic efficiency. The maquette approach can circumvent this complexity by combining a robust de novo designed chassis with a design process that avoids atomistic mimicry of natural proteins. Here, we apply this method to the construction of a highly efficient, promiscuous, and thermostable artificial enzyme that catalyzes a diverse array of substrate oxidations coupled to the reduction of H2O2. The maquette exhibits kinetics that match and even surpass those of certain natural peroxidases, retains its activity at elevated temperature and in the presence of organic solvents, and provides a simple platform for interrogating catalytic intermediates common to natural heme-containing enzymes.Catalytic mechanisms of enzymes are well understood, but achieving diverse reaction chemistries in re-engineered proteins can be difficult. Here the authors show a highly efficient and thermostable artificial enzyme that catalyzes a diverse array of substrate oxidations coupled to the reduction of H2O2.


Subject(s)
Peroxidase/chemical synthesis , Protein Engineering , Binding Sites , Kinetics , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Peroxidase/chemistry , Substrate Specificity
4.
Methods Enzymol ; 580: 455-70, 2016.
Article in English | MEDLINE | ID: mdl-27586345

ABSTRACT

An artificial peroxidase with thermal tolerance and high catalytic activity has been successfully prepared by mutagenesis of an electron transfer protein, cytochrome c552 from Thermus thermophilus. The mutant enzymes were rationally designed based on the general peroxidase mechanism and spectroscopic analyses of an active intermediate formed in the catalytic reaction. Stopped flow UV-vis spectroscopy and EPR spectroscopy with a rapid freezing sample technique revealed that the initial double mutant, V49D/M69A, which was designed to reproduce the peroxidase mechanism, formed an active oxo-ferryl heme intermediate with a protein radical predominantly localized on Tyr45 during the catalytic reaction. The magnetic power saturation measurement obtained from EPR studies showed little interaction between the oxo-ferryl heme and the tyrosyl radical. Kinetics studies indicated that the isolated oxo-ferryl heme component in the active intermediate was a possible cause of heme degradation during the reaction with H2O2. Strong interaction between the oxo-ferryl heme and the radical was achieved by replacing Tyr45 with tryptophan (resulting in the Y45W/V49D/M69A mutant), which was similar to a tryptophanyl radical found in active intermediates of some catalase-peroxidases. Compared to the protein radical intermediates of V49D/M69A mutant, those of the Y45W/V49D/M69A mutant showed higher reactivity to an organic substrate than to H2O2. The Y45W/V49D/M69A mutant exhibited improved peroxidase activity and thermal tolerance.


Subject(s)
Enzyme Stability , Peroxidase/chemistry , Protein Engineering/methods , Thermus thermophilus/enzymology , Catalysis , Electron Spin Resonance Spectroscopy , Kinetics , Models, Molecular , Oxidation-Reduction , Peroxidase/chemical synthesis , Temperature , Thermus thermophilus/chemistry
5.
Biomed Mater Eng ; 26 Suppl 1: S73-9, 2015.
Article in English | MEDLINE | ID: mdl-26406069

ABSTRACT

A novel artificial peroxidase (AP) with highly catalytic efficiency was designed using hexadecyl trimethyl ammonium bromide (CTAB, 3 mM) nano-micelles and bovine heart cytochrome c (Cyt c, 0.5 µM) in 100 mM, pH 8.0 phosphate buffer at 25°C. The catalytic rate (kcat) and Michaelis-Menten (Km) of the AP were determined to be 0.311 ± 0.013 s(-1) and 8.64 ± 0.6 µM. The catalytic efficiency was 0.0360 ± 0.0020 µM(-1)s(-1) (about 50% the efficiency of native horseradish peroxidase). The Ultraviolet-visible spectrophotometer and Circular Dichroism techniques were applied to study the properties of the CTAB-Cyt c nano-micelle. Designed AP can be applied instead of native horseradish peroxidase.


Subject(s)
Biomimetic Materials/chemical synthesis , Cetrimonium Compounds/chemistry , Cytochromes c/chemical synthesis , Nanocomposites/chemistry , Nanocomposites/ultrastructure , Peroxidase/chemical synthesis , Catalysis , Cetrimonium , Enzyme Activation , Enzyme Stability , Materials Testing , Micelles , Particle Size , Substrate Specificity
6.
J Inorg Biochem ; 105(12): 1538-47, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22071076

ABSTRACT

The peroxidase and catalase activities of eighteen manganese-Schiff base complexes have been studied. A correlation between the structure of the complexes and their catalytic activity is discussed on the basis of the variety of systems studied. Complexes 1-18 have the general formulae [MnL(n)(D)(2)](X)(H(2)O/CH(3)OH)(m), where L(n)=L(1)-L(13); D=H(2)O, CH(3)OH or Cl; m=0-2.5 and X=NO(3)(-), Cl(-), ClO(4)(-), CH(3)COO(-), C(2)H(5)COO(-) or C(5)H(11)COO(-). The dianionic tetradentate Schiff base ligands H(2)L(n) are the result of the condensation of different substituted (OMe-, OEt-, Br-, Cl-) hydroxybenzaldehyde with diverse diamines (1,2-diaminoethane for H(2)L(1)-H(2)L(2); 1,2-diamino-2-methylethane for H(2)L(3)-H(2)L(4); 1,2-diamino-2,2-dimethylethane for H(2)L(5); 1,2-diphenylenediamine for H(2)L(6)-H(2)L(7); 1,3-diaminopropane for H(2)L(8)-H(2)L(11); 1,3-diamino-2,2-dimethylpropane for H(2)L(12)-H(2)L(13)). The new Mn(III) complexes [MnL(1)(H(2)O)Cl](H(2)O)(2.5) (2), [MnL(2)(H(2)O)(2)](NO(3))(H(2)O) (4), [MnL(6)(H(2)O)(2)][MnL(6)(CH(3)OH)(H(2)O)](NO(3))(2)(CH(3)OH) (8), [MnL(6)(H(2)O)(OAc)](H(2)O) (9) and [MnL(7)(H(2)O)(2)](NO(3))(CH(3)OH)(2) (12) were isolated and characterised by elemental analysis, magnetic susceptibility and conductivity measurements, redox studies, ESI spectrometry and UV, IR, paramagnetic (1)H NMR, and EPR spectroscopies. X-ray crystallographic studies of these complexes and of the ligand H(2)L(6) are also reported. The crystal structures of the rest of the complexes have been previously published and herein we have only revised their study by those techniques still not reported (EPR and (1)H NMR for some of these compounds) and which help to establish their structures in solution. Complexes 1-12 behave as more efficient mimics of peroxidase or catalase in contrast with 13-18. The analysis between the catalytic activity and the structure of the compounds emphasises the significance of the existence of a vacant or a labile position in the coordination sphere of the catalyst.


Subject(s)
Catalase/chemistry , Coordination Complexes/chemistry , Manganese/chemistry , Peroxidase/chemistry , Schiff Bases/chemistry , Catalase/chemical synthesis , Catalysis , Coordination Complexes/chemical synthesis , Crystallography, X-Ray , Electrochemistry , Imines/chemistry , Models, Molecular , Molecular Conformation , Peroxidase/chemical synthesis , Schiff Bases/chemical synthesis , Structure-Activity Relationship
7.
J Inorg Biochem ; 103(3): 381-8, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19135258

ABSTRACT

Mimetics of antioxidant enzymes such as superoxide dismutases (SOD) or catalases are reported as potential new drugs able to reduce oxidative stress damage. In particular, manganese(III) complexes of salen-type ligands have been studied as both SOD and catalase mimetics. In this paper, we report the synthesis of two novel conjugates of salen-type ligands with the beta-cyclodextrin, the 6-deoxy-6-[(S-cysteamidopropyl(1,2-diamino)N,N'-bis(salicylidene))]-beta-cyclodextrin and the 6-deoxy-6-[(S-cysteamidopropyl(1,2-diamino)N,N'-bis(3-methoxysalicylidene))]-beta-cyclodextrin, their spectroscopic characterization, and the synthesis and the characterization of their manganese(III) complexes. The SOD-like activity of the metal complexes was investigated by the indirect Fridovich method. The catalase like activity was tested using a Clark-type oxygen electrode. The peroxidase activity was tested using the ABTS (2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)) assay. The glycoconjugation of salen-manganese(III) complexes yields compounds with enhanced SOD activity. These complexes also show catalase and peroxidase activities higher than the simple salen complexes (EUK 113 and EUK 108).


Subject(s)
Biomimetic Materials/chemistry , Catalase/chemistry , Copper/chemistry , Manganese/chemistry , Superoxide Dismutase/chemistry , beta-Cyclodextrins/chemistry , Biomimetic Materials/chemical synthesis , Catalase/chemical synthesis , Oxidative Stress , Peroxidase/chemical synthesis , Peroxidase/chemistry , Superoxide Dismutase/chemical synthesis , beta-Cyclodextrins/chemical synthesis
8.
Chem Commun (Camb) ; (6): 688-90, 2008 Feb 14.
Article in English | MEDLINE | ID: mdl-18478691

ABSTRACT

An acid-base interaction between hemin and PAMAM dendrimers affords supramolecular non-covalent peroxidase systems whose catalytic activity is enhanced after spontaneous electrostatic self-assembling onto a solid surface.


Subject(s)
Biomimetics , Dendrimers/chemistry , Hemin/chemistry , Peroxidase/chemistry , Polyamines/chemistry , Catalysis , Molecular Structure , Peroxidase/chemical synthesis , Solutions/chemistry , Static Electricity , Water/chemistry
9.
Biochem Biophys Res Commun ; 312(2): 292-8, 2003 Dec 12.
Article in English | MEDLINE | ID: mdl-14637135

ABSTRACT

Myeloperoxidase (MPO) is one of the essential components of the antimicrobial systems of polymorphonuclear neutrophils. It is unique in having a globin-like standard reduction potential of the ferric/ferrous couple. Here, it is shown that ferrous MPO heterolytically cleaves hydrogen peroxide forming water and oxyferryl MPO (compound II). The two-electron oxidation reaction follows second-order kinetics with the apparent bimolecular rate constant being (6.8+/-0.6)x10(4)M(-1)s(-1) at pH 7.0. After depletion of (micromolar) H(2)O(2) compound II slowly decays to ferric MPO, whereas upon addition of millimolar H(2)O(2) to ferrous MPO, compound III (oxyperoxidase) is formed in a sequence of two reactions involving compound II formation and its direct reaction with H(2)O(2), which also follows second-order kinetics [(78+/-2)M(-1)s(-1) at pH 7.0]. It is discussed how these reactions contribute to the interconversion of compound II and compound III and could explain the catalase activity of MPO.


Subject(s)
Ferrous Compounds/chemistry , Flow Injection Analysis , Hydrogen Peroxide/chemistry , Hypochlorous Acid/chemistry , Peroxidase/chemistry , Anaerobiosis , Enzyme Activation , Immunoenzyme Techniques , Kinetics , Oxidation-Reduction , Oxygen , Peroxidase/chemical synthesis , Spectrum Analysis
10.
Int. j. lepr. other mycobact. dis ; 70(3): 191-200, Sept., 2002. ilus, graf
Article in English | Sec. Est. Saúde SP, HANSEN, Hanseníase Leprosy, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: biblio-1227110

ABSTRACT

Mycobacterium lepraemurium (MLM) is a successful parasite of murine macrophages; in vitro, this microorganism infects macrophages without triggering these cells' ability to produce either the reactive oxygen intermediaries (ROI) or the reactive nitrogen intermediaries (RNI), and ends up lodging within these cells, that, in addition, do not contain myeloperoxidase (MPO). In this study, we analyzed the effect of exogenous peroxidase on the evolution of murine leprosy. Bacilli were intraperitoneally injected, either alone (MLM) or precoated with horseradish peroxidase (MLM-PO), into two different groups of mice. At two-week intervals, the groups were blood-sampled to measure the levels of antibodies to protein- or lipid-MLM antigens. The extent of the disease was also assessed by looking at the histopathologic changes that occurred both in the liver and the spleen of the infected animals. We found that the animals injected with MLM-PO developed a disease that evolved at a slower pace than the disease that occurred in the animals injected with intact MLM. The difference between groups, both in terms of antibody levels and histological changes, was clearly evident at the intermediate stages of the disease (2 to 2.5 months), but was not so obvious at the more advanced stage of 3 months. Several possibilities to explain how the PO-coated bacilli might have regained their infectiousness are discussed. Lowering the infective dose of MLM and MLM-PO from 5 x 10(7) bacilli to 5 x 10(6) bacilli would, probably, have resulted in a different outcome of the disease: more extended in the MLM-group than in the MLM-PO group.


Subject(s)
Leprosy/physiopathology , Leprosy/immunology , Peroxidase/immunology , Peroxidase/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...