Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.452
Filter
1.
J Environ Manage ; 359: 120979, 2024 May.
Article in English | MEDLINE | ID: mdl-38692033

ABSTRACT

If pharmaceutical wastewater is not managed effectively, the presence of residual antibiotics will result in significant environmental contamination. In addition, inadequate utilization of agricultural waste represents a squandering of resources. The objective of this research was to assess the efficacy of iron-doped biochar (Fe-BC) derived from peanut shells in degrading high concentrations of Tetracycline (TC) wastewater through activated peroxymonosulfate. Fe-BC demonstrated significant efficacy, achieving a removal efficiency of 87.5% for TC within 60 min without the need to adjust the initial pH (20 mg/L TC, 2 mM PMS, 0.5 g/L catalyst). The degradation mechanism of TC in this system involved a dual action, namely Reactive Oxygen Species (ROS) and electron transfer. The primary active sites were the Fe species, which facilitated the generation of SO4•-, •OH, O2•-, and 1O2. The presence of Fe species and the C=C structure in the Fe-BC catalyst support the electron transfer. Degradation pathways were elucidated through the identification of intermediate products and calculation of the Fukui index. The Toxicity Estimator Software Tool (T.E.S.T.) suggested that the intermediates exhibited lower levels of toxicity. Furthermore, the system exhibited exceptional capabilities in real water and circulation experiments, offering significant economic advantages. This investigation provides an efficient strategy for resource recycling and the treatment of high-concentration antibiotic wastewater.


Subject(s)
Charcoal , Iron , Reactive Oxygen Species , Tetracycline , Wastewater , Tetracycline/chemistry , Charcoal/chemistry , Reactive Oxygen Species/chemistry , Wastewater/chemistry , Iron/chemistry , Water Pollutants, Chemical/chemistry , Peroxides/chemistry , Electron Transport
2.
Molecules ; 29(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38792099

ABSTRACT

Losartan, an angiotensin II receptor antagonist frequently detected in wastewater effluents, poses considerable risks to both aquatic ecosystems and human health. Seeking to address this challenge, advanced oxidation processes (AOPs) emerge as robust methodologies for the efficient elimination of such contaminants. In this study, the degradation of Losartan was investigated in the presence of activated peroxymonosulfate (PMS), leveraging ferrous iron as a catalyst to enhance the oxidation process. Utilizing advanced analytical techniques such as NMR and mass spectrometry, nine distinct byproducts were characterized. Notably, seven of these byproducts were identified for the first time, providing novel insights into the degradation pathway of Losartan. The study delved into the kinetics of the degradation process, assessing the degradation efficiency attained when employing the catalyst alone versus when using it in combination with PMS. The results revealed that Losartan degradation reached a significant level of 64%, underscoring the efficacy of PMS/Fe(II) AOP techniques as promising strategies for the removal of Losartan from water systems. This research not only enriches our understanding of pollutant degradation mechanisms, but also paves the way for the development of sustainable water treatment technologies, specifically targeting the removal of pharmaceutical contaminants from aquatic environments.


Subject(s)
Losartan , Oxidation-Reduction , Peroxides , Water Pollutants, Chemical , Water Purification , Losartan/chemistry , Water Pollutants, Chemical/chemistry , Peroxides/chemistry , Water Purification/methods , Iron/chemistry , Wastewater/chemistry , Catalysis , Kinetics
3.
Int J Mol Sci ; 25(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38791232

ABSTRACT

The treatment of chronic wounds involves precise requirements and complex challenges, as the healing process cannot go beyond the inflammatory phase, therefore increasing the healing time and implying a higher risk of opportunistic infection. Following a better understanding of the healing process, oxygen supply has been validated as a therapeutic approach to improve and speed up wound healing. Moreover, the local implications of antimicrobial agents (such as silver-based nano-compounds) significantly support the normal healing process, by combating bacterial contamination and colonization. In this study, silver (S) and tannylated calcium peroxide (CaO2@TA) nanoparticles were obtained by adapted microfluidic and precipitation synthesis methods, respectively. After complementary physicochemical evaluation, both types of nanoparticles were loaded in (Alg) alginate-based gels that were further evaluated as possible dressings for wound healing. The obtained composites showed a porous structure and uniform distribution of nanoparticles through the polymeric matrix (evidenced by spectrophotometric analysis and electron microscopy studies), together with a good swelling capacity. The as-proposed gel dressings exhibited a constant and suitable concentration of released oxygen, as shown for up to eight hours (UV-Vis investigation). The biofilm modulation data indicated a synergistic antimicrobial effect between silver and tannylated calcium peroxide nanoparticles, with a prominent inhibitory action against the Gram-positive bacterial biofilm after 48 h. Beneficial effects in the human keratinocytes cultured in contact with the obtained materials were demonstrated by the performed tests, such as MTT, LDH, and NO.


Subject(s)
Alginates , Peroxides , Silver , Wound Healing , Alginates/chemistry , Alginates/pharmacology , Wound Healing/drug effects , Humans , Silver/chemistry , Silver/pharmacology , Peroxides/chemistry , Peroxides/pharmacology , Gels/chemistry , Nanoparticles/chemistry , Keratinocytes/drug effects , Biofilms/drug effects , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bandages , Tannins/chemistry , Tannins/pharmacology
4.
Bioresour Technol ; 402: 130841, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750830

ABSTRACT

Activation of peroxymonosulfate (PMS) with solid catalysts for organic pharmaceutical degradation still faces challenge due to the demand of inexpensive catalysts. In this study, manganese-oxidizing microalgae (MOM) and its associated biogenic manganese oxides (BMO) were employed to prepare biomass-transformed porous-carbon/manganese (B-PC/Mn) catalyst through high-temperature calcination (850 °C). Remarkably, 100 % of carbamazepine (CBZ) was degraded within 30 min in the B-PC/Mn/PMS system. The degradation kinetic constant was 0.1718 min-1, which was 44.0 times higher than that of the biomass-transformed porous carbon mixed with MnOx activated PMS system. 1O2 was generated in the B-PC/Mn/PMS system, which is responsible for CBZ degradation. The MOM-BMO-associated structure greatly increased the specific surface areas and the contents of the C = O and pyrrolic-N groups, which facilitated PMS activation. The structure also induced the generation of Mn5C2, which exhibited a strong adsorption towards PMS. This study provides a novel strategy for preparing catalysts by using waste biomass.


Subject(s)
Biomass , Carbamazepine , Carbon , Manganese , Peroxides , Carbamazepine/chemistry , Catalysis , Porosity , Peroxides/chemistry , Carbon/chemistry , Manganese/chemistry , Kinetics , Water Pollutants, Chemical/chemistry , Microalgae/metabolism , Oxides/chemistry , Manganese Compounds/chemistry , Adsorption
5.
Ultrason Sonochem ; 106: 106886, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692020

ABSTRACT

Tetracycline has received a great deal of interest for the harmful effects of substance abuse on ecosystems and humanity. The effects of different processes on the degradation of tetracycline were compared, with dual-frequency ultrasound (DFUS) in combination with peroxymonosulfate (PMS) being the most effective for the tetracycline degradation. Free radical scavenging experiments showed that O2∙-,SO4∙- and •OH were the main reactive radicals in the degradation of tetracycline. According to the major intermediates of tetracycline degradation identified, three possible degradation pathways were proposed, which are of significance for translational studies of tetracycline degradation. Notably, these intermediates were found to be significantly less toxicity. The number of active bubbles in the degradation vessel was calculated using a semi-empirical formula, and a higher value of 1.44 × 108 L-1s-1 of bubbles was obtained when using dual-frequency ultrasound at 20 kHz (210 W/L) and 80 kHz (85.4 W/L). Therefore, compared to 20 kHz, although the yield of strong oxidizing substances from individual active bubbles decreased slightly, a significant increment of the number of active bubbles still resulted in a higher synergistic effect, and the combination of DFUS and PMS should be effective in promoting the generation of reactive free radicals and mass transfer processes within the degradation vessel, which provides a method for efficient removal of tetracycline from wastewater.


Subject(s)
Peroxides , Tetracycline , Ultrasonic Waves , Tetracycline/chemistry , Peroxides/chemistry , Sonication/methods , Water Pollutants, Chemical/chemistry
6.
Phytomedicine ; 129: 155640, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38714091

ABSTRACT

BACKGROUND: The discovery of artemisinin, an endoperoxide, encouraged the scientific community to explore endoperoxides as potential anti-parasitic molecules. Although artemisinin derivatives are rapidly evolving as potent anti-malarials, their potential as anti-leishmanials is emerging gradually. The treatment of leishmaniasis, a group of neglected tropical diseases is handicapped by lack of effective vaccines, drug toxicities and drug resistance. The weak antioxidant defense mechanism of the Leishmania parasites due to lack of catalase and a selenium dependent glutathione peroxidase system makes them vulnerable to oxidative stress, and this has been successful exploited by endoperoxides. PURPOSE: The study aimed to review the available literature on the anti-leishmanial efficacy of natural endoperoxides with a view to achieve insights into their mode of actions. METHODS: We reviewed more around 110 research and review articles restricted to the English language, sourced from electronic bibliographic databases including PubMed, Google, Web of Science, Google scholar etc. RESULTS: Natural endoperoxides could potentially augment the anti-leishmanial drug library, with artemisinin and ascaridole emerging as potential anti-leishmanial agents. Due to higher reactivity of the cyclic peroxide moiety, and exploiting the compromised antioxidant defense of Leishmania, endoperoxides like artemisinin and ascaridole potentiate their leishmanicidal efficacy by creating a redox imbalance. Furthermore, these molecules minimally impair oxidative phosphorylation; instead inhibit glycolytic functions, culminating in depolarization of the mitochondrial membrane and depletion of ATP. Additionally, the carbon-centered free radicals generated from endoperoxides, participate in chain reactions that can generate even more reactive organic radicals that are toxic to macromolecules, including lipids, proteins and DNA, leading to cell cycle arrest and apoptosis of Leishmania parasites. However, the precise target(s) of the toxic free radicals remains open-ended. CONCLUSION: In this overview, the spectrum of natural endoperoxide molecules as major anti-leishmanials and their mechanism of action has been delineated. In view of the substantial evidence that natural endoperoxides (e.g., artemisinin, ascaridole) exert a noxious effect on different species of Leishmania, identification and characterization of other natural endoperoxides is a promising therapeutic option worthy of further pharmacological consideration.


Subject(s)
Antiprotozoal Agents , Artemisinins , Leishmania , Peroxides , Leishmania/drug effects , Peroxides/pharmacology , Peroxides/chemistry , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Artemisinins/pharmacology , Artemisinins/chemistry , Humans , Leishmaniasis/drug therapy , Oxidative Stress/drug effects , Animals , Antioxidants/pharmacology
7.
J Hazard Mater ; 472: 134515, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38703676

ABSTRACT

The efficient activation and selective high-valent metal-oxo (HVMO) species generation remain challenging for peroxymonosulfate (PMS)-based advanced oxidation processes (PMS-AOPs) in water purification. The underlying mechanism of the activation pathway is ambiguous, leading to a massive dilemma in the control and regulation of HVMO species generation. Herein, bioinspired by the bio-oxidase structure of cytochrome P450, the axial coordination strategy was adopted to tailor a single-atom cobalt catalyst (CoN4S-CB) with an axial S coordination. CoN4S-CB high-selectively generated high-valent Co-Oxo species (Co(IV)=O) via PMS activation. Co(IV)=O demonstrated an ingenious oxygen atom transfer (OAT) reaction to achieve the efficient degradation of sulfamethoxazole (SMX), and this allowed robust operation in various complex environments. The axial S coordination modulated the 3d orbital electron distribution of the Co atom. Density functional theory (DFT) calculation revealed that the axial S coordination decreased the energy barrier for PMS desorption and lowered the free energy change (ΔG) for Co(IV)=O generation. CoN4S-PMS* had a narrow d-band close to the Fermi level, which enhanced charge transfer to accelerate the cleavage of O-O and O-H bonds in PMS. This work provides a broader perspective on the activator design with natural enzyme structure-like active sites to efficient activate PMS for selective HVMO species generation.


Subject(s)
Cobalt , Oxidation-Reduction , Peroxides , Cobalt/chemistry , Catalysis , Peroxides/chemistry , Sulfamethoxazole/chemistry , Water Purification/methods , Water Pollutants, Chemical/chemistry , Oxygen/chemistry , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/metabolism , Density Functional Theory
8.
Waste Manag ; 182: 271-283, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38688046

ABSTRACT

High water and pharmaceutical and care products (PPCPs) bounded in sludge flocs limit its utilization and disposal. The advanced oxidation process of perxymonosulfate (PMS) catalyzed by iron salts has been widely used in sludge conditioning. In this study, two iron-rich minerals pyrite and siderite were proposed to enhance sludge dewatering performance and remove the target contaminant of triclosan (TCS). The permanent release of Fe2+ in the activation of PMS made siderite more effective in enhancing sludge dewater with capillary suction time (CST) diminishing by 60.5 %, specific resistance to filtration (SRF) decreasing by 79.2 %, and bound water content (BWC) dropping from 37.1 % to 2.6 % at siderite/PMS dosages of 0.36/0.20 mmol/g-TSS after 20 min of pretreatment. Pyrite/PMS performed slightly inferior under the same conditions and the corresponding CST and SRF decreased by 51.5 % and 71.8 % while the BWC only declined to 17.8 %. Rheological characterization was employed to elucidate the changes in sludge dewatering performance, with siderite/PMS treated sludge showing a 48.3 % reduction in thixotropy, higher than 28.4 % of pyrite/PMS. Oscillation and creep tests further demonstrated the significantly weakened viscoelastic behavior of the sludge by siderite/PMS pretreatment. For TCS mineralization removal, siderite/PMS achieved a high removal efficiency of 43.9 %, in comparison with 39.9 % for pyrite/PMS. The reduction in the sludge solids phase contributed the most to the TCS removal. Free radical quenching assays and EPR spectroscopy showed that both siderite/PMS and pyrite/PMS produced SO4-·  and ·OH, with the latter acting as the major radicals. Besides, the dosage of free radicals generated from siderite/PMS exhibited a lower time-dependence, which also allowed it to outperform in destroying EPS matrix, neutralizing the negative Zeta potential of sludge flocs, and mineralizing macromolecular organic matter.


Subject(s)
Iron , Peroxides , Sewage , Triclosan , Waste Disposal, Fluid , Sewage/chemistry , Triclosan/chemistry , Iron/chemistry , Waste Disposal, Fluid/methods , Peroxides/chemistry , Water Pollutants, Chemical/chemistry , Minerals/chemistry , Oxidation-Reduction
9.
Water Res ; 256: 121601, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38640566

ABSTRACT

Thioether compounds, prevalent in pharmaceuticals, are of growing environmental concern due to their prevalence and potential toxicity. Peroxy chemicals, including peroxymonosulfate (PMS) and peroxyacetic acid (PAA), hold promise for selectively attacking specific thioether moieties. Still, it has been unclear how chemical structures affect the interactions between thioethers and peroxy chemicals. This study addresses this knowledge gap by quantitatively assessing the relationship between the structure of thioethers and intrinsic reaction rates. First, the results highlighted the adverse impact of electron-withdrawing groups on reactivity. Theoretical calculations were employed to locate reactive sites and investigate structural characteristics, indicating a close relationship between thioether charge and reaction rate. Additionally, we established a SMILES-based model for rapidly predicting PMS reactivity with thioether compounds. With this model, we identified 147 thioether chemicals within the high production volume (HPV) and Food and Drug Administration (FDA) approved drug lists that PMS could effectively eliminate with the toxicity (-lg LC50) decreasing. These findings underscore the environmental significance of thioether compounds and the potential for their selective removal by peroxides.


Subject(s)
Peracetic Acid , Peroxides , Sulfides , Sulfides/chemistry , Peroxides/chemistry , Peracetic Acid/chemistry , Water Pollutants, Chemical/chemistry
10.
J Environ Manage ; 358: 120846, 2024 May.
Article in English | MEDLINE | ID: mdl-38599079

ABSTRACT

Recently, the Fenton-like reaction using peroxymonosulfate (PMS) has been acknowledged as a potential method for breaking down organic pollutants. In this study, we successfully synthesized a highly efficient and stable single atom molybdenum (Mo) catalyst dispersed on nitrogen-doped carbon (Mo-NC-0.1). This catalyst was then utilized for the first time to activate PMS and degrade bisphenol A (BPA). The Mo-NC-0.1/PMS system demonstrated the ability to completely degrade BPA within just 20 min. Scavenging tests and density functional theory (DFT) calculations have demonstrated that the primary reactive oxygen species was singlet oxygen (1O2) produced by Mo-N4 sites. The self-cycling of Mo facilitated PMS activation and the transition from a free radical activation pathway to a non-radical pathway mediated by 1O2. Simultaneously, the nearby pyridinic N served as adsorption sites to immobilize BPA and PMS molecules. The exceptionally high catalytic activity of Mo-NC-0.1 derived from its unique Mo-N coordination, which markedly reduced the distance for 1O2 to migrate to the BPA molecules. The Mo-NC-0.1/PMS system effectively reduced the acute toxicity of BPA and exhibited excellent cycling stability with minimal leaching. This study presented a new catalyst with high selectivity for 1O2 generation and provided valuable insights for the application of single atom catalysts in PMS-based AOPs.


Subject(s)
Molybdenum , Singlet Oxygen , Catalysis , Molybdenum/chemistry , Singlet Oxygen/chemistry , Nitrogen/chemistry , Benzhydryl Compounds/chemistry , Phenols/chemistry , Peroxides/chemistry
11.
Langmuir ; 40(17): 9155-9169, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38641555

ABSTRACT

A lack of eco-friendly, highly active photocatalyst for peroxymonosulfate (PMS) activation and unclear environmental risks are significant challenges. Herein, we developed a double S-scheme Fe2O3/BiVO4(110)/BiVO4(010)/Fe2O3 photocatalyst to activate PMS and investigated its impact on wheat seed germination. We observed an improvement in charge separation by depositing Fe2O3 on the (010) and (110) surfaces of BiVO4. This enhancement is attributed to the formation of a dual S-scheme charge transfer mechanism at the interfaces of Fe2O3/BiVO4(110) and BiVO4(010)/Fe2O3. By introducing PMS into the system, photogenerated electrons effectively activate PMS, generating reactive oxygen species (ROS) such as hydroxyl radicals (·OH) and sulfate radicals (SO4·-). Among the tested systems, the 20% Fe2O3/BiVO4/Vis/PMS system exhibits the highest catalytic efficiency for norfloxacin (NOR) removal, reaching 95% in 40 min. This is twice the catalytic efficiency of the Fe2O3/BiVO4/PMS system, 1.8 times that of the Fe2O3/BiVO4 system, and 5 times that of the BiVO4 system. Seed germination experiments revealed that Fe2O3/BiVO4 heterojunction was beneficial for wheat seed germination, while PMS had a significant negative effect. This study provides valuable insights into the development of efficient and sustainable photocatalytic systems for the removal of organic pollutants from wastewater.


Subject(s)
Bismuth , Ferric Compounds , Light , Norfloxacin , Peroxides , Vanadates , Vanadates/chemistry , Vanadates/radiation effects , Bismuth/chemistry , Norfloxacin/chemistry , Norfloxacin/radiation effects , Catalysis/radiation effects , Ferric Compounds/chemistry , Peroxides/chemistry , Photochemical Processes , Triticum/chemistry , Triticum/radiation effects
12.
J Colloid Interface Sci ; 668: 12-24, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38669989

ABSTRACT

The coexistence of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in the environment poses a potential threat to public health. In our study, we have developed a novel advanced oxidation process for simultaneously removing ARGs and ARB by two types of iron and nitrogen-doped biochar derived from rice straw (FeN-RBC) and sludge (FeN-SBC). All viable ARB (approximately 108 CFU mL-1) was inactivated in the FeN-RBC/ peroxymonosulfate (PMS) system within 40 min and did not regrow after 48 h even in real water samples. Flow cytometry identified 96.7 % of dead cells in the FeN-RBC/PMS system, which verified the complete inactivation of ARB. Thorough disinfection of ARB was associated with the disruption of cell membranes and intracellular enzymes related to the antioxidant system. Whereas live bacteria (approximately 200 CFU mL-1) remained after FeN-SBC/PMS treatment. Intracellular and extracellular ARGs (tetA and tetB) were efficiently degraded in the FeN-RBC/PMS system. The production of active species, primarily •OH, SO4•- and Fe (IV), as well as electron transfer, were essential to the effective disinfection of FeN-RBC/PMS. In comparison with FeN-SBC, the better catalytic performance of FeN-RBC was mainly ascribed to its higher amount of pyridine-N and Fe0, and more reactive active sites (such as CO group and Fe-N sites). Density functional theory calculations indicated the greater adsorption energy and Bader charge, more stable Fe-O bond, more easily broken OO bond in FeN-RBC/PMS, which demonstrated the stronger electron transfer capacity between FeN-RBC and PMS. To encapsulate, our study provided an efficient and dependable method for the simultaneous elimination of ARGs and ARB in water.


Subject(s)
Charcoal , Iron , Peroxides , Pyridines , Pyridines/chemistry , Pyridines/pharmacology , Charcoal/chemistry , Charcoal/pharmacology , Iron/chemistry , Iron/metabolism , Peroxides/chemistry , Peroxides/pharmacology , Drug Resistance, Bacterial/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Nitrogen/chemistry , Bacteria/drug effects , Bacteria/genetics , Surface Properties
13.
J Colloid Interface Sci ; 668: 88-97, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38669999

ABSTRACT

Nanotheranostic platforms, which can respond to tumor microenvironments (TME, such as low pH and hypoxia), are immensely appealing for photodynamic therapy (PDT). However, hypoxia in solid tumors harms the treatment outcome of PDT which depends on oxygen molecules to generate cytotoxic singlet oxygen (1O2). Herein, we report the design of TME-responsive smart nanotheranostic platform (DOX/ZnO2@Zr-Ce6/Pt/PEG) which can generate endogenously hydrogen peroxide (H2O2) and oxygen (O2) to alleviate hypoxia for improving photodynamic-chemo combination therapy of tumors. DOX/ZnO2@Zr-Ce6/Pt/PEG nanocomposite was prepared by the synthesis of ZnO2 nanoparticles, in-situ assembly of Zr-Ce6 as typical metal-organic framework (MOF) on ZnO2 surface, in-situ reduction of Pt nanozymes, amphiphilic lipids surface coating and then doxorubicin (DOX) loading. DOX/ZnO2@Zr-Ce6/Pt/PEG nanocomposite exhibits average sizes of ∼78 nm and possesses a good loading capacity (48.8 %) for DOX. When DOX/ZnO2@Zr-Ce6/Pt/PEG dispersions are intratumorally injected into mice, the weak acidic TEM induces the decomposition of ZnO2 core to generate endogenously H2O2, then Pt nanozymes catalyze H2O2 to produce O2 for alleviating tumor hypoxia. Upon laser (630 nm) irradiation, the Zr-Ce6 component in DOX/ZnO2@Zr-Ce6/Pt/PEG can produce cytotoxic 1O2, and 1O2 generation rate can be enhanced by 2.94 times due to the cascaded generation of endogenous H2O2/O2. Furthermore, the generated O2 can suppress the expression of hypoxia-inducible factor α, and further enable tumor cells to become more sensitive to chemotherapy, thereby leading to an increased effectiveness of chemotherapy treatment. The photodynamic-chemo combination therapy from DOX/ZnO2@Zr-Ce6/Pt/PEG nanoplatform exhibits remarkable tumor growth inhibition compared to chemotherapy or PDT. Thus, the present study is a good demonstration of a TME-responsive nanoplatform in a multimodal approach for cancer therapy.


Subject(s)
Doxorubicin , Hydrogen Peroxide , Oxygen , Photochemotherapy , Theranostic Nanomedicine , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/metabolism , Animals , Mice , Doxorubicin/pharmacology , Doxorubicin/chemistry , Doxorubicin/administration & dosage , Oxygen/chemistry , Oxygen/metabolism , Humans , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Particle Size , Surface Properties , Drug Screening Assays, Antitumor , Cell Survival/drug effects , Cell Proliferation/drug effects , Cell Line, Tumor , Peroxides/chemistry , Peroxides/pharmacology , Nanoparticles/chemistry , Mice, Inbred BALB C , Zinc/chemistry , Zinc/pharmacology , Tumor Microenvironment/drug effects , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/administration & dosage
14.
Phytochemistry ; 222: 114070, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574957

ABSTRACT

Ten ergostane-type steroids, including seven undescribed ones named spectasteroids A-G, were obtained from Aspergillus spectabilis. Their structures and absolute configurations were determined based on HRESIMS, NMR, ECD calculations, and single-crystal X-ray diffraction analyses. Structurally, spectasteroid A was a unique example of aromatic ergostane-type steroid that featured a rare peroxide ring moiety; spectasteroid B contained a rare oxetane ring system formed between C-9 and C-14; and spectasteroid C was an unusual 3,4-seco-ergostane steroid with an extra lactone ring between C-3 and C-9. Spectasteroids F and G specifically showed inhibitory effects against concanavalin A-induced T lymphocyte proliferation and lipopolysaccharide-induced B lymphocyte proliferation, with IC50 values ranging from 2.33 to 4.22 µM. Spectasteroid F also showed excellent antimultidrug resistance activity, which remarkable enhanced the inhibitory activity of PTX on the colony formation of SW620/Ad300 cells.


Subject(s)
Aspergillus , Immunosuppressive Agents , Peroxides , Aspergillus/chemistry , Immunosuppressive Agents/pharmacology , Immunosuppressive Agents/chemistry , Immunosuppressive Agents/isolation & purification , Peroxides/chemistry , Peroxides/pharmacology , Peroxides/isolation & purification , Molecular Structure , Humans , Lactones/chemistry , Lactones/pharmacology , Lactones/isolation & purification , Ergosterol/chemistry , Ergosterol/pharmacology , Ergosterol/isolation & purification , Ergosterol/analogs & derivatives , Cell Proliferation/drug effects , Ethers, Cyclic/chemistry , Ethers, Cyclic/pharmacology , Ethers, Cyclic/isolation & purification , Structure-Activity Relationship , Dose-Response Relationship, Drug , Mice , T-Lymphocytes/drug effects
15.
Chemosphere ; 357: 141985, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38614404

ABSTRACT

Carbonate radical (CO3•-) has been proved to be an important secondary radical in advanced oxidation processes due to various radical reactions involved HCO3-/CO32-. However, the roles and contributions of CO3•- in organic micropollutant degradation have not been explored systematically. Here, we quantified the impact of CO3•- on the degradation kinetics of propranolol, a representative pollutant in the UV/peroxymonosulfate (PMS) system, by constructing a steady-state radical model. Substantially, the measured values were coincident with the predictive values, and the contributions of CO3•- on propranolol degradation were the water matrix-dependent. Propranolol degradation increased by 130% in UV/PMS system containing 10 mM HCO3-, and the contribution of CO3•- was as high as 58%. Relatively high pH values are beneficial for propranolol degradation in pure water containing HCO3-, and the contributions of CO3•- also enhanced, while an inverse phenomenon was shown for the effects of propranolol concentrations. Dissolved organic matter exhibited significant scavenging effects on HO•, SO4•-, and CO3•-, substantially retarding the elimination process. The developed model successfully predicted oxidation degradation kinetics of propranolol in actual sewage, and CO3•- contribution was up to 93%, which in indicative of the important role of CO3•- in organic micropollutant removal via AOPs treatment.


Subject(s)
Carbonates , Oxidation-Reduction , Peroxides , Propranolol , Ultraviolet Rays , Water Pollutants, Chemical , Propranolol/chemistry , Water Pollutants, Chemical/chemistry , Carbonates/chemistry , Kinetics , Peroxides/chemistry , Hydrogen-Ion Concentration
16.
Chemosphere ; 357: 141943, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38621492

ABSTRACT

In this study, bentonite supporting phosphorus-doped Fe2MnO4 (BPF) was synthesized and applied for PMS activation to degrade TCE. Morphology and structure characterization results indicated the successfully synthesized of BPF, and the BPF/PMS system not only featured high TCE removal (97.4%) but also high reaction rate constant (kobs = 0.0554 min-1) and PMS utilization (70.4%, kobs = 0.0228 min-1). According to the results of various experiments, massive oxygen vacancies on P-Fe2MnO4 alter its charge balance and facilitate the electron transfer process named adjacent transfer (direct electron capture by adsorbed PMS from adjacent TCE). Mn(III) is the main adsorption site for PMS, and the hydroxyl groups on the catalyst (Fe sites of P-Fe2MnO4, Si and Al sites of bentonite) can also offer binding sites for PMS. The hydrogen-bonded PMS on Fe(III) and Mn(III) sites will subsequently accept the discharged electrons to generate free radicals and high-valent metal species. Meanwhile, electron loss of HSO5- that chemically bonded to hydroxyl groups on bentonite will generate SO5•-, which will further produce 1O2 through self-bonding. the active species on the catalyst surface contribute 65% of TCE degradation in the heterogeneous catalytic oxidation system.


Subject(s)
Bentonite , Manganese Compounds , Peroxides , Trichloroethylene , Bentonite/chemistry , Catalysis , Peroxides/chemistry , Trichloroethylene/chemistry , Manganese Compounds/chemistry , Adsorption , Oxidation-Reduction , Ferric Compounds/chemistry , Environmental Restoration and Remediation/methods , Phosphorus/chemistry , Manganese/chemistry , Water Pollutants, Chemical/chemistry
17.
Chemosphere ; 357: 141858, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636910

ABSTRACT

The non-free radical oxidation pathway (PMS-NOPs) of peroxymonosulfate (PMS) holds significant promise for practical wastewater treatment applications, owing to its low oxidation potential, high PMS utilization rate, and robust anti-interference capability in the degradation of pollutants. A novel activator copper nitrogen co-doped porous biochar (Cu-N-BC) with rich defect edges and functional groups was obtained by adding Cu and N to the biochar matrix generated by sodium alginate through pyrolysis in this study. Under the condition of 1 mM PMS, 30 mg/L activator was used to activate PMS and achieve efficient degradation of 10 mg/L paracetamol (PCT) within 15 min, with a high reaction rate constants (kobs) of 0.391 min-1. The activation mechanism of the Cu-N-BC/PMS/PCT system was a non-radical activation pathway with the dominance of singlet oxygen (1O2) and the presence of catalyst-mediated electron transfer. The graphite nitrogen, pyridine nitrogen, and Cu-N coordination introduced by Cu/N co-doping, as well as the carbon skeleton and CO functional group of biochar, were considered active sites that promote the 1O2 generation. The Cu-N-BC/PMS system exhibits strong stability, eco-friendliness, effective mineralization, and interference resistance across diverse pH levels (3-11) and interfering ions, including Cl-, H2PO4-, NO3-, SO42-, and humic acid. Remarkably, it efficiently degrades PCT in tap and lake water, achieving a notable 63.73% TOC mineralization rate, with leached copper ions below 0.02 mg/L. This research introduces a novel method for obtaining metal nitrogen carbon activators and enhances understanding of PMS non-radical activation pathways and active sites.


Subject(s)
Acetaminophen , Charcoal , Copper , Nitrogen , Oxidation-Reduction , Peroxides , Singlet Oxygen , Water Pollutants, Chemical , Charcoal/chemistry , Copper/chemistry , Acetaminophen/chemistry , Water Pollutants, Chemical/chemistry , Singlet Oxygen/chemistry , Nitrogen/chemistry , Peroxides/chemistry , Electron Transport , Wastewater/chemistry , Catalysis
18.
Environ Pollut ; 350: 124037, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38677457

ABSTRACT

Ionizing radiation (mainly including gamma ray and electron beam) technology provides a more efficient and ecological option for dye-containing wastewater treatment, which is supported by its successful achievements in industrial-scale applications. However, the degradation pathway of triphenylmethane dyes by radiation technology is still unclear. In this study, crystal violet (CV) was selected as representative cationic triphenylmethane dye, the decolorization and degradation performance by electron beam radiation technology was systematically evaluated. The results showed that CV can be efficiently decolorized and mineralized by radiation, and its degradation kinetics followed the first-order kinetic model. The effect of inorganic anions and chelating agents commonly existed in dye-containing wastewater on CV decolorization and total organic carbon (TOC) removal was explored. Quenching experiments, density functional theory (DFT) calculation and high performance liquid chromatography mass spectrometry (HPLC-MS) analysis were employed to reveal CV decolorization and degradation mechanism and pathway, which mainly included N-demethylation, triphenylmethane chromophore cleavage, ring-opening of aromatic products and further oxidation to carboxylic acid, and mineralization to CO2 and H2O. Additionally, electron beam radiation/PMS process was explored to decrease the absorbed dose required for decolorization and degradation, and the synergetic effect of radiation with PMS was elucidated. More importantly, the findings of this study would provide the support for treating actual dyeing wastewater by electron beam radiation technology.


Subject(s)
Gentian Violet , Wastewater , Water Pollutants, Chemical , Gentian Violet/chemistry , Water Pollutants, Chemical/chemistry , Wastewater/chemistry , Coloring Agents/chemistry , Peroxides/chemistry , Waste Disposal, Fluid/methods , Water Decolorization/methods , Electrons , Kinetics
19.
Chemosphere ; 358: 142115, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657689

ABSTRACT

Extracellular polymeric substance (EPS) with highly hydrophilic groups and sludge with high compressibility are determined sludge dewaterability. Herein, Fe2+ catalyzed calcium peroxide (CaO2) assisted by oxalic acid (OA) Fenton-like process combined with coal slime was applied to improve sludge dewaterability. Results demonstrated that the sludge treated by 0.45/1/1.1-OA/Fe2+/CaO2 mM/g DS, the water content (WC), specific resistance to filtration and capillary suction time dropped to 53.01%, 24.3 s and 1.2 × 1012 m/kg, respectively. Under coal slime ratio as 0.6, WC and compressibility were further reduced to 42.72% and 0.66, respectively. The hydroxyl radicals generated by OA/Fe2+/CaO2 under near-neutral pH layer by layer collapsed EPS, resulting in the degradation and migration of inner releasing components and the exposure of inner sludge flocs skeleton. The hydrophilic tryptophan-like protein of TB-EPS were degraded into aromatic protein of S-EPS and exposed inner hydrophobic sites. The protein secondary structures were transformed by destroying hydrophilic functional groups, which were attributed to the reducing α-helix ratio and reconstructing ß-sheet. Moreover, coal slime as the skeleton builder lowered compressibility and formed more macropores to increase the filterability of pre-oxidized sludge for the higher intensity of rigid substances. This study deepened the understanding of OA enhanced Fenton-like system effects on sludge dewaterability and proposed a cost-effective and synergistic waste treatment strategy in sludge dewatering.


Subject(s)
Oxalic Acid , Sewage , Waste Disposal, Fluid , Sewage/chemistry , Oxalic Acid/chemistry , Waste Disposal, Fluid/methods , Iron/chemistry , Peroxides/chemistry , Extracellular Polymeric Substance Matrix/chemistry , Hydrogen Peroxide/chemistry , Hydrophobic and Hydrophilic Interactions , Water/chemistry , Coal
SELECTION OF CITATIONS
SEARCH DETAIL
...