Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.746
Filter
1.
Int J Mol Sci ; 25(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38791232

ABSTRACT

The treatment of chronic wounds involves precise requirements and complex challenges, as the healing process cannot go beyond the inflammatory phase, therefore increasing the healing time and implying a higher risk of opportunistic infection. Following a better understanding of the healing process, oxygen supply has been validated as a therapeutic approach to improve and speed up wound healing. Moreover, the local implications of antimicrobial agents (such as silver-based nano-compounds) significantly support the normal healing process, by combating bacterial contamination and colonization. In this study, silver (S) and tannylated calcium peroxide (CaO2@TA) nanoparticles were obtained by adapted microfluidic and precipitation synthesis methods, respectively. After complementary physicochemical evaluation, both types of nanoparticles were loaded in (Alg) alginate-based gels that were further evaluated as possible dressings for wound healing. The obtained composites showed a porous structure and uniform distribution of nanoparticles through the polymeric matrix (evidenced by spectrophotometric analysis and electron microscopy studies), together with a good swelling capacity. The as-proposed gel dressings exhibited a constant and suitable concentration of released oxygen, as shown for up to eight hours (UV-Vis investigation). The biofilm modulation data indicated a synergistic antimicrobial effect between silver and tannylated calcium peroxide nanoparticles, with a prominent inhibitory action against the Gram-positive bacterial biofilm after 48 h. Beneficial effects in the human keratinocytes cultured in contact with the obtained materials were demonstrated by the performed tests, such as MTT, LDH, and NO.


Subject(s)
Alginates , Peroxides , Silver , Wound Healing , Alginates/chemistry , Alginates/pharmacology , Wound Healing/drug effects , Humans , Silver/chemistry , Silver/pharmacology , Peroxides/chemistry , Peroxides/pharmacology , Gels/chemistry , Nanoparticles/chemistry , Keratinocytes/drug effects , Biofilms/drug effects , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bandages , Tannins/chemistry , Tannins/pharmacology
2.
Phytomedicine ; 129: 155640, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38714091

ABSTRACT

BACKGROUND: The discovery of artemisinin, an endoperoxide, encouraged the scientific community to explore endoperoxides as potential anti-parasitic molecules. Although artemisinin derivatives are rapidly evolving as potent anti-malarials, their potential as anti-leishmanials is emerging gradually. The treatment of leishmaniasis, a group of neglected tropical diseases is handicapped by lack of effective vaccines, drug toxicities and drug resistance. The weak antioxidant defense mechanism of the Leishmania parasites due to lack of catalase and a selenium dependent glutathione peroxidase system makes them vulnerable to oxidative stress, and this has been successful exploited by endoperoxides. PURPOSE: The study aimed to review the available literature on the anti-leishmanial efficacy of natural endoperoxides with a view to achieve insights into their mode of actions. METHODS: We reviewed more around 110 research and review articles restricted to the English language, sourced from electronic bibliographic databases including PubMed, Google, Web of Science, Google scholar etc. RESULTS: Natural endoperoxides could potentially augment the anti-leishmanial drug library, with artemisinin and ascaridole emerging as potential anti-leishmanial agents. Due to higher reactivity of the cyclic peroxide moiety, and exploiting the compromised antioxidant defense of Leishmania, endoperoxides like artemisinin and ascaridole potentiate their leishmanicidal efficacy by creating a redox imbalance. Furthermore, these molecules minimally impair oxidative phosphorylation; instead inhibit glycolytic functions, culminating in depolarization of the mitochondrial membrane and depletion of ATP. Additionally, the carbon-centered free radicals generated from endoperoxides, participate in chain reactions that can generate even more reactive organic radicals that are toxic to macromolecules, including lipids, proteins and DNA, leading to cell cycle arrest and apoptosis of Leishmania parasites. However, the precise target(s) of the toxic free radicals remains open-ended. CONCLUSION: In this overview, the spectrum of natural endoperoxide molecules as major anti-leishmanials and their mechanism of action has been delineated. In view of the substantial evidence that natural endoperoxides (e.g., artemisinin, ascaridole) exert a noxious effect on different species of Leishmania, identification and characterization of other natural endoperoxides is a promising therapeutic option worthy of further pharmacological consideration.


Subject(s)
Antiprotozoal Agents , Artemisinins , Leishmania , Peroxides , Leishmania/drug effects , Peroxides/pharmacology , Peroxides/chemistry , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Artemisinins/pharmacology , Artemisinins/chemistry , Humans , Leishmaniasis/drug therapy , Oxidative Stress/drug effects , Animals , Antioxidants/pharmacology
3.
Am J Dent ; 37(2): 78-84, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38704850

ABSTRACT

PURPOSE: To evaluate how fluoride- or chitosan-based toothpaste used during at-home bleaching affects enamel roughness, tooth color, and staining susceptibility. METHODS: Bovine enamel blocks were submitted to a 14-day cycling regime considering a factorial design (bleaching agent x toothpaste, 2 x 3), with n=10: (1) bleaching with 16% carbamide peroxide (CP) or 6% hydrogen peroxide (HP), and (2) daily exposure of a fluoride (1,450 ppm F-NaF) toothpaste (FT), chitosan-based toothpaste (CBT), or distilled water (control). Then, 24 hours after the last day of bleaching procedure the samples were exposed to a coffee solution. Color (ΔEab, ΔE00, L*, a*, b*) and roughness (Ra, µm) analyses were performed to compare the samples initially (baseline), after bleaching, and after coffee staining. The results were evaluated by linear models for repeated measures (L*, a*, b*, and Ra), 2-way ANOVA (ΔEab, ΔE00) and Tukey's test (α= 0.05). RESULTS: After the at-home bleaching procedure (toothpaste vs. time, P< 0.0001), the toothpaste groups presented a statistically lower Ra than the control (CBT 0.05). After coffee exposure, CBT presented lower ΔEab and ΔE00 values in the HP groups (toothpaste, P< 0.0001), and lower b* and a* values in the CP groups (toothpaste vs. time, P= 0.004). CLINICAL SIGNIFICANCE: Fluoride or chitosan delivered by toothpaste can reduce surface alterations of the enamel during at-home bleaching, without affecting bleaching efficacy.


Subject(s)
Carbamide Peroxide , Chitosan , Dental Enamel , Hydrogen Peroxide , Tooth Bleaching Agents , Tooth Bleaching , Tooth Discoloration , Toothpastes , Chitosan/pharmacology , Toothpastes/pharmacology , Animals , Cattle , Tooth Bleaching/methods , Dental Enamel/drug effects , Tooth Bleaching Agents/pharmacology , Hydrogen Peroxide/pharmacology , Carbamide Peroxide/pharmacology , Surface Properties , Fluorides/pharmacology , Color , Urea/analogs & derivatives , Urea/pharmacology , Coffee , Peroxides/pharmacology
4.
J Colloid Interface Sci ; 668: 12-24, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38669989

ABSTRACT

The coexistence of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in the environment poses a potential threat to public health. In our study, we have developed a novel advanced oxidation process for simultaneously removing ARGs and ARB by two types of iron and nitrogen-doped biochar derived from rice straw (FeN-RBC) and sludge (FeN-SBC). All viable ARB (approximately 108 CFU mL-1) was inactivated in the FeN-RBC/ peroxymonosulfate (PMS) system within 40 min and did not regrow after 48 h even in real water samples. Flow cytometry identified 96.7 % of dead cells in the FeN-RBC/PMS system, which verified the complete inactivation of ARB. Thorough disinfection of ARB was associated with the disruption of cell membranes and intracellular enzymes related to the antioxidant system. Whereas live bacteria (approximately 200 CFU mL-1) remained after FeN-SBC/PMS treatment. Intracellular and extracellular ARGs (tetA and tetB) were efficiently degraded in the FeN-RBC/PMS system. The production of active species, primarily •OH, SO4•- and Fe (IV), as well as electron transfer, were essential to the effective disinfection of FeN-RBC/PMS. In comparison with FeN-SBC, the better catalytic performance of FeN-RBC was mainly ascribed to its higher amount of pyridine-N and Fe0, and more reactive active sites (such as CO group and Fe-N sites). Density functional theory calculations indicated the greater adsorption energy and Bader charge, more stable Fe-O bond, more easily broken OO bond in FeN-RBC/PMS, which demonstrated the stronger electron transfer capacity between FeN-RBC and PMS. To encapsulate, our study provided an efficient and dependable method for the simultaneous elimination of ARGs and ARB in water.


Subject(s)
Charcoal , Iron , Peroxides , Pyridines , Pyridines/chemistry , Pyridines/pharmacology , Charcoal/chemistry , Charcoal/pharmacology , Iron/chemistry , Iron/metabolism , Peroxides/chemistry , Peroxides/pharmacology , Drug Resistance, Bacterial/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Nitrogen/chemistry , Bacteria/drug effects , Bacteria/genetics , Surface Properties
5.
J Colloid Interface Sci ; 668: 88-97, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38669999

ABSTRACT

Nanotheranostic platforms, which can respond to tumor microenvironments (TME, such as low pH and hypoxia), are immensely appealing for photodynamic therapy (PDT). However, hypoxia in solid tumors harms the treatment outcome of PDT which depends on oxygen molecules to generate cytotoxic singlet oxygen (1O2). Herein, we report the design of TME-responsive smart nanotheranostic platform (DOX/ZnO2@Zr-Ce6/Pt/PEG) which can generate endogenously hydrogen peroxide (H2O2) and oxygen (O2) to alleviate hypoxia for improving photodynamic-chemo combination therapy of tumors. DOX/ZnO2@Zr-Ce6/Pt/PEG nanocomposite was prepared by the synthesis of ZnO2 nanoparticles, in-situ assembly of Zr-Ce6 as typical metal-organic framework (MOF) on ZnO2 surface, in-situ reduction of Pt nanozymes, amphiphilic lipids surface coating and then doxorubicin (DOX) loading. DOX/ZnO2@Zr-Ce6/Pt/PEG nanocomposite exhibits average sizes of ∼78 nm and possesses a good loading capacity (48.8 %) for DOX. When DOX/ZnO2@Zr-Ce6/Pt/PEG dispersions are intratumorally injected into mice, the weak acidic TEM induces the decomposition of ZnO2 core to generate endogenously H2O2, then Pt nanozymes catalyze H2O2 to produce O2 for alleviating tumor hypoxia. Upon laser (630 nm) irradiation, the Zr-Ce6 component in DOX/ZnO2@Zr-Ce6/Pt/PEG can produce cytotoxic 1O2, and 1O2 generation rate can be enhanced by 2.94 times due to the cascaded generation of endogenous H2O2/O2. Furthermore, the generated O2 can suppress the expression of hypoxia-inducible factor α, and further enable tumor cells to become more sensitive to chemotherapy, thereby leading to an increased effectiveness of chemotherapy treatment. The photodynamic-chemo combination therapy from DOX/ZnO2@Zr-Ce6/Pt/PEG nanoplatform exhibits remarkable tumor growth inhibition compared to chemotherapy or PDT. Thus, the present study is a good demonstration of a TME-responsive nanoplatform in a multimodal approach for cancer therapy.


Subject(s)
Doxorubicin , Hydrogen Peroxide , Oxygen , Photochemotherapy , Theranostic Nanomedicine , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/metabolism , Animals , Mice , Doxorubicin/pharmacology , Doxorubicin/chemistry , Doxorubicin/administration & dosage , Oxygen/chemistry , Oxygen/metabolism , Humans , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Particle Size , Surface Properties , Drug Screening Assays, Antitumor , Cell Survival/drug effects , Cell Proliferation/drug effects , Cell Line, Tumor , Peroxides/chemistry , Peroxides/pharmacology , Nanoparticles/chemistry , Mice, Inbred BALB C , Zinc/chemistry , Zinc/pharmacology , Tumor Microenvironment/drug effects , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/administration & dosage
6.
Phytochemistry ; 222: 114070, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574957

ABSTRACT

Ten ergostane-type steroids, including seven undescribed ones named spectasteroids A-G, were obtained from Aspergillus spectabilis. Their structures and absolute configurations were determined based on HRESIMS, NMR, ECD calculations, and single-crystal X-ray diffraction analyses. Structurally, spectasteroid A was a unique example of aromatic ergostane-type steroid that featured a rare peroxide ring moiety; spectasteroid B contained a rare oxetane ring system formed between C-9 and C-14; and spectasteroid C was an unusual 3,4-seco-ergostane steroid with an extra lactone ring between C-3 and C-9. Spectasteroids F and G specifically showed inhibitory effects against concanavalin A-induced T lymphocyte proliferation and lipopolysaccharide-induced B lymphocyte proliferation, with IC50 values ranging from 2.33 to 4.22 µM. Spectasteroid F also showed excellent antimultidrug resistance activity, which remarkable enhanced the inhibitory activity of PTX on the colony formation of SW620/Ad300 cells.


Subject(s)
Aspergillus , Immunosuppressive Agents , Peroxides , Aspergillus/chemistry , Immunosuppressive Agents/pharmacology , Immunosuppressive Agents/chemistry , Immunosuppressive Agents/isolation & purification , Peroxides/chemistry , Peroxides/pharmacology , Peroxides/isolation & purification , Molecular Structure , Humans , Lactones/chemistry , Lactones/pharmacology , Lactones/isolation & purification , Ergosterol/chemistry , Ergosterol/pharmacology , Ergosterol/isolation & purification , Ergosterol/analogs & derivatives , Cell Proliferation/drug effects , Ethers, Cyclic/chemistry , Ethers, Cyclic/pharmacology , Ethers, Cyclic/isolation & purification , Structure-Activity Relationship , Dose-Response Relationship, Drug , Mice , T-Lymphocytes/drug effects
7.
Phytochemistry ; 223: 114097, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38641142

ABSTRACT

A chemical investigation of the dichloromethane extract from the Xisha sponge Diacarnus sp. revealed seven undescribed norterpene cyclic peroxides, named diacarperoxides T-Z, and five unreported related norterpenes, named diacarnoids E-I, and eleven previously reported compounds. The structures of these isolated compounds, including their absolute configurations, were elucidated based on extensive spectroscopic analyses, electronic circular dichroism (ECD) calculations, Snatzke's method, [Rh2(OCOCF3)4]-induced ECD spectra, and modified Mosher's method. Bioassays were performed to assess the antibacterial activity against six pathogenic bacteria, cytotoxicities toward three cancer cell lines, and antimalarial activity against Plasmodium parasites. Most of the cyclic peroxides exhibited substantial antibacterial activity (MIC 1-8 µg/mL). Diacarperoxide W and nuapapuin A showed substantial antimalarial activity with IC50 values of 0.98 and 2.83 µM. Moreover, many compounds exhibited <50% cell survival rates, and IC50 values of 0.22-6.33 µM. The apoptosis assay showed that nuapapuin A induced cancer cell apoptosis in a dose-dependent manner.


Subject(s)
Anti-Bacterial Agents , Antimalarials , Peroxides , Porifera , Antimalarials/pharmacology , Antimalarials/chemistry , Antimalarials/isolation & purification , Porifera/chemistry , Peroxides/pharmacology , Peroxides/chemistry , Peroxides/isolation & purification , Humans , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Molecular Structure , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Drug Screening Assays, Antitumor , Apoptosis/drug effects , Parasitic Sensitivity Tests , Plasmodium falciparum/drug effects , Structure-Activity Relationship , Microbial Sensitivity Tests , Cell Line, Tumor , Dose-Response Relationship, Drug , Cell Survival/drug effects , Cell Proliferation/drug effects
8.
ACS Appl Mater Interfaces ; 16(19): 24172-24190, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38688027

ABSTRACT

Of the most common, hypoxia, overexpressed glutathione (GSH), and insufficient H2O2 concentration in the tumor microenvironment (TME) are the main barriers to the advancment of reactive oxygen species (ROS) mediated Xdynamic therapies (X = photo, chemodynamic, chemo). Maximizing Fenton catalytic efficiency is crucial in chemodynamic therapy (CDT), yet endogenous H2O2 levels are not sufficient to attain better anticancer efficacy. Specifically, there is a need to amplify Fenton reactivity within tumors, leveraging the unique attributes of the TME. Herein, for the first time, we design RuxCu1-xO2-Ce6/CPT (RCpCCPT) anticancer nanoagent for TME-mediated synergistic therapy based on heterogeneous Ru-Cu peroxide nanodots (RuxCu1-xO2 NDs) and chlorine e6 (Ce6), loaded with ROS-responsive thioketal (TK) linked-camptothecin (CPT). The Ru-Cu peroxide NDs (RCp NDs, x = 0.50) possess the highest oxygen vacancy (OV) density, which grants them the potential to form massive Lewis's acid sites for peroxide adsorption, while the dispersibility and targetability of the NDs were improved via surface modification using hyaluronic acid (HA). In TME, RCpCCPT degrades, releasing H2O2, Ru2+/3+, and Cu+/2+ ions, which cooperatively facilitate hydroxyl radical (•OH) formation and deactivate antioxidant GSH enzymes through a cocatalytic loop, resulting in excellent tumor therapeutic efficacy. Furthermore, when combined with laser treatment, RCpCCPT produces singlet oxygen (1O2) for PDT, which induces cell apoptosis at tumor sites. Following ROS generation, the TK linkage is disrupted, releasing up to 92% of the CPT within 48 h. In vitro investigations showed that laser-treated RCpCCPT caused 81.5% cell death from PDT/CDT and chemotherapy (CT). RCpCCPT in cancer cells produces red-blue emission in images of cells taking them in, which allows for fluorescence image-guided Xdynamic treatment. The overall results show that RCp NDs and RCpCCPT are more biocompatible and have excellent Xdynamic therapeutic effectiveness in vitro and in vivo.


Subject(s)
Copper , Hydrogen Peroxide , Ruthenium , Tumor Microenvironment , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Tumor Microenvironment/drug effects , Copper/chemistry , Copper/pharmacology , Animals , Mice , Humans , Ruthenium/chemistry , Ruthenium/pharmacology , Nanoparticles/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Peroxides/chemistry , Peroxides/pharmacology , Cell Line, Tumor , Photochemotherapy , Drug Carriers/chemistry , Reactive Oxygen Species/metabolism , Neoplasms/drug therapy , Neoplasms/pathology
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124142, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38493515

ABSTRACT

In this work, we investigated the oxidative stress-related biochemical alterations in red blood cells (RBCs) and their membranes with the use of spectroscopic techniques. We aimed to show their great advantage for the in situ detection of lipid classes and secondary structures of proteins without the need for their extraction in the cellular environment. The exposition of the cells to peroxides, t-butyl hydroperoxide (tBOOH) or hydrogen peroxide (H2O2) led to different degradation processes encompassing the changes in the composition of membranes and structural modifications of hemoglobin (Hb). Our results indicated that tBOOH is generally a stronger oxidizing agent than H2O2 and this observation was congruent with the activity of superoxide and glutathione peroxidase. ATR-FTIR and Raman spectroscopies of membranes revealed that tBOOH caused primarily the partial loss and peroxidation of the lipids resulting in loss of the integrity of membranes. In turn, both peroxides induced several kinds of damage in the protein layer, including the partial decrease of their content and irreversible aggregation of spectrin, ankyrin, and membrane-bound globin. These changes were especially pronounced on the membrane surface where stress conditions induced the formation of ß-sheets and intramolecular aggregates, particularly for tBOOH. Interestingly, nano-FTIR spectroscopy revealed the lipid peroxidative damage on the membrane surface in both cases. As far as hemoglobin was concerned, tBOOH and H2O2 caused the increase of the oxyhemoglobin species and conformational alterations of its polypeptide chain into ß-sheets. Our findings confirm that applied spectroscopies effectively track the oxidative changes occurring in the structural components of red blood cells and the simplicity of conducting measurements and sample preparation can be readily applied to pharmacological and clinical studies.


Subject(s)
Erythrocytes , Hydrogen Peroxide , Humans , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , Erythrocytes/metabolism , Hemoglobins/metabolism , Peroxides/pharmacology , Spectroscopy, Fourier Transform Infrared/methods , Lipids , Oxidative Stress
10.
Clin Oral Investig ; 28(4): 224, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38509406

ABSTRACT

OBJECTIVES: To evaluate the bleaching efficacy and permeability of hydrogen peroxide (HP) in the pulp chamber of human teeth bleached with lower concentrations of carbamide peroxide gel (4%, 5% and 7% CP). MATERIALS AND METHODS: Bleaching gels with lower concentrations were formulated and a commercial standard gel, 10% CP, was used as a reference. Fifty-six human premolars were randomly divided into four groups. Applications of the bleaching gel were made for 3 h for 21 days. The bleaching efficacy was evaluated by digital spectrophotometry on 1, 7, 14 and 21 days, with analysis in the ∆Eab, ∆E00 and WID color spaces. The concentration of HP in the pulp chamber was measured in the same periods by UV-Vis spectrophotometry (µg/mL). Two-way repeated analysis of variance (ANOVA) examined bleaching efficacy and HP permeability, followed by Tukey's post-hoc test (α = 0.05). RESULTS: All groups showed significant color changes, with no statistical differences after the second and third week of bleaching (p > 0.05). The 'time' factor was statistically different (p < 0.05), increasing the bleaching efficacy throughout the treatment. The 4% CP group had lower HP levels in the pulp chamber (p < 0.05). CONCLUSIONS: The results seem promising, revealing that low concentration gels are as effective as 10% CP with the benefit of reducing the amount of HP in the pulp chamber. CLINICAL RELEVANCE: Low concentration 4% PC and 5% PC maintains bleaching efficacy, reduces the penetration of HP peroxide into the pulp chamber, and may reduce tooth sensitivity.


Subject(s)
Tooth Bleaching Agents , Tooth Bleaching , Humans , Carbamide Peroxide , Dental Pulp Cavity , Tooth Bleaching Agents/pharmacology , Hydrogen Peroxide , Tooth Bleaching/methods , Hypochlorous Acid , Gels , Urea/pharmacology , Peroxides/pharmacology
11.
J Dent ; 143: 104902, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38432352

ABSTRACT

OBJECTIVE: To investigate the effect of tooth whitening on biomechanical properties of vacuum-formed retainers (VFRs). METHODS: Using a split-mouth, randomised controlled trial design, thirty participants were randomly allocated to receive whitening on either the upper or the lower arch, using 10 % carbamide peroxide for two weeks. Biomechanical properties such as hardness, tensile strength, and surface roughness were assessed two weeks after whitening was completed. RESULTS: Tensile strength of the whitening arch (mean ± SD: 40.93 ± 3.96 MPa) was significantly lower than that of the control (47.40 ± 5.03 MPa) (difference 6.47 MPa, 95 % CI 4.51 - 8.42, p < 0.001). Hardness and internal roughness of the whitening arch (VHN = 14.63 ± 2.29 N/mm2 and Ra = 1.33 ± 0.35 µm, respectively) were significantly greater than those of the control (12.22 ± 1.86 N/mm2 and 0.96 ± 0.29 µm, respectively) (differences 2.41 N/mm2, 95 % CI 1.56 - 3.25, p < 0.001 and 0.37 µm, 95 % CI 0.23 - 0.51, p < 0.001, respectively). The whitening arch showed greater tooth colour change (ΔE = 6.00 ± 3.32) than the control (ΔE = 2.50 ± 1.70) (difference = 3.50, 95 % CI 2.43 - 4.56, p < 0.001). CONCLUSIONS: Based on this short-term study, marked tooth colour change was achieved by whitening with VFRs as the whitening trays, but this changed the VFRs' biomechanical properties, including a decrease in tensile strength and an increase in hardness and internal roughness. CLINICAL SIGNIFICANCE: The application of carbamide peroxide in VFRs may compromise their mechanical properties.


Subject(s)
Tooth Bleaching Agents , Tooth Bleaching , Tooth , Humans , Carbamide Peroxide , Vacuum , Tooth Bleaching Agents/pharmacology , Urea , Peroxides/pharmacology , Hydrogen Peroxide/pharmacology , Drug Combinations
12.
J Nat Prod ; 87(2): 358-364, 2024 02 23.
Article in English | MEDLINE | ID: mdl-38320400

ABSTRACT

Bioassay-guided isolation of the extract from the marine sponge Diacarnus spinipoculum showing inhibitory activity against human transient receptor potential ankyrin 1 (hTRPA1) resulted in the isolation of 12 norditerpene cyclic peroxides (1-12) and eight norsesterterpene cyclic peroxides (13-20). Among these, 10 (5-7, 11, 12, 16-20) are unprecedented analogs. Compounds with either a hydroxy (5, 11) or a methoxy (6, 12) group attached to the cyclohexanone moiety were obtained as epimeric mixtures at C-11, while compounds 4, 6, 10, and 12 are likely the artifacts of isolation. The absolute configurations of the new compounds were established based on an NMR-based empirical method and comparison of specific rotation values. Mosher ester analysis revealed the absolute configurations of compounds 17-20. The inhibitory activity of the isolated compounds against hTRPA1 varied significantly depending on their structures, with the norsesterterpenoid 19 displaying the most potent activity (IC50 2.0 µM).


Subject(s)
Diterpenes , Porifera , Animals , Humans , Ankyrins/antagonists & inhibitors , Molecular Structure , Peroxides/pharmacology , Peroxides/chemistry , Porifera/chemistry , Terpenes/pharmacology , Terpenes/chemistry
13.
Eur J Oral Sci ; 132(1): e12958, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37853653

ABSTRACT

This clinical trial investigated the effects of pre-application enamel moistening on the impact of a 37% carbamide peroxide whitener on tooth color changes and the influence of repositioning guide colors. Forty participants were randomly assigned to in-office tooth bleaching with either moistened enamel (experimental) or dry enamel (control). The whitener was applied for 45 min over two sessions. Tooth color was visually measured or assessed using a spectrophotometer with purple or green silicone guides. Tooth bleaching was assessed using CIE76 (ΔEab ) and CIEDE2000 (ΔE00 ) formulas and by whitening and bleaching index score changes. Moistening the enamel did not significantly affect tooth color. However, the guide color choice only impacted tooth color when measured instrumentally. At baseline, the green guide resulted in statistically significantly whiter teeth than the purple guide. Less pronounced differences in the b* coordinate between baseline and final measurements were found using the green guide. The green guide also produced lower ΔEab values and less change in indexes. In conclusion, moistening the enamel did not significantly impact tooth color changes. However, the repositioning guide color influenced the tooth bleaching measured instrumentally, except for ΔE00 .


Subject(s)
Tooth Bleaching Agents , Tooth Bleaching , Tooth Discoloration , Humans , Tooth Bleaching/methods , Peroxides/pharmacology , Tooth Bleaching Agents/pharmacology , Urea , Dental Enamel , Color , Hydrogen Peroxide
14.
Neurotox Res ; 42(1): 2, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38095761

ABSTRACT

A feature in neurodegenerative disorders is the loss of neurons, caused by several factors including oxidative stress induced by reactive oxygen species (ROS). In this work, static magnetic field (SMF) was applied in vitro to evaluate its effect on the viability, proliferation, and migration of human neuroblastoma SH-SY5Y cells, and on the toxicity induced by hydrogen peroxide (H2O2), tert-butyl hydroperoxide (tBHP), H2O2/sodium azide (NaN3) and photosensitized oxidations by photodynamic therapy (PDT) photosensitizers. The SMF increased almost twofold the cell expression of the proliferation biomarker Ki-67 compared to control cells after 7 days of exposure. Exposure to SMF accelerated the wound healing of scratched cell monolayers and significantly reduced the H2O2-induced and the tBHP-induced cell deaths. Interestingly, SMF was able to revert the effects of NaN3 (a catalase inhibitor), suggesting an increased activity of catalase under the influence of the magnetic field. In agreement with this hypothesis, SMF significantly reduced the oxidation of DCF-H2, indicating a lower level of intracellular ROS. When the redox imbalance was triggered through photosensitized oxidation, no protection was observed. This observation aligns with the proposed role of catalase in cellular proctetion under SMF.  Exposition to SMF should be further validated in vitro and in vivo as a potential therapeutic approach for neurodegenerative disorders.


Subject(s)
Neuroblastoma , Neurodegenerative Diseases , Humans , Reactive Oxygen Species/metabolism , Peroxides/pharmacology , Hydrogen Peroxide/toxicity , Cell Line, Tumor , Catalase/metabolism , Neuroblastoma/metabolism , Oxidative Stress , Magnetic Fields
15.
J Mater Chem B ; 11(40): 9685-9696, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37789698

ABSTRACT

Ferroptosis has appealing antitumor potential that is mainly based on the accumulation of lipid peroxide to a lethal level. The cytotoxic singlet oxygen (1O2) generated from nanoscale X-ray-induced photodynamic therapy (X-PDT) may facilitate glutathione (GSH) depletion and further activate ferroptosis. To realize combined X-PDT and ferroptosis, a nanocarrier (D-NPVR) was engineered with a hyperbranched copolymer with 1O2-sensitive linkers, where both the photosensitizer (verteporfin) and ferroptosis inducer RAS-selective lethal small molecule 3 (RSL3) were encapsulated. Upon X-ray radiation, D-NPVR could produce a large amount of 1O2 for apoptosis. Subsequently, 1O2 triggered D-NP dissociation by cleavage of 1,2-bis(2-hydroxyethylthio)ethylene bonds to boost payload release and decrease levels of intracellular GSH via thiol oxidation. Liberated RSL3 is a covalent inhibitor for glutathione peroxide 4 (GPX4), which is responsible for detoxifying lipid peroxides to lipid alcohols with GSH assistance, and both 1O2-induced GSH depletion and GPX4 inactivation thereby produced ferroptotic cell death. Tumor growth inhibition in murine 4T1 tumor-bearing mice demonstrated that D-NPVR produced pronounced therapeutic efficiency where ferroptosis induction was supported by the GPX4 content and expression. This study highlights the contribution of 1O2-sensitive nanocarriers for promoting the potency of combined X-PDT and ferroptosis.


Subject(s)
Ferroptosis , Neoplasms , Photochemotherapy , Animals , Mice , Singlet Oxygen , X-Rays , Cell Line, Tumor , Peroxides/pharmacology , Lipid Peroxides/pharmacology , Glutathione/metabolism
16.
J Appl Microbiol ; 134(11)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37863832

ABSTRACT

AIM: The purpose of the present study was to understand the possible events involved in the toxicity of hydrogen peroxide (H2O2) to wild and sporulene-deficient spores of Bacillus subtilis, as H2O2 was previously shown to have deleterious effects. METHODS AND RESULTS: The investigation utilized two strains of B. subtilis, namely the wild-type PY79 (WT) and the sporulene-deficient TB10 (ΔsqhC mutant). Following treatment with 0.05% H2O2 (v/v), spore viability was assessed using a plate count assay, which revealed a significant decrease in cultivability of 80% for the ΔsqhC mutant spores. Possible reasons for the loss of spore viability were investigated with microscopic analysis, dipicholinic acid (DPA) quantification and propidium iodide (PI) staining. Microscopic examinations revealed the presence of withered and deflated morphologies in spores of ΔsqhC mutants treated with H2O2, indicating a compromised membrane permeability. This was further substantiated by the absence of DPA and a high frequency (50%-75%) of PI infiltration. The results of fatty acid methyl ester analysis and protein profiling indicated that the potentiation of H2O2-induced cellular responses was manifested in the form of altered spore composition in ΔsqhC B. subtilis. The slowed growth rates of the ΔsqhC mutant and the heightened sporulene biosynthesis pathways in the WT strain, both upon exposure to H2O2, suggested a protective function for sporulenes in vegetative cells. CONCLUSIONS: Sporulenes serve as a protective layer for the inner membrane of spores, thus assuming a significant role in mitigating the adverse effects of H2O2 in WT B. subtilis. The toxic effects of H2O2 were even more pronounced in the spores of the ΔsqhC mutant, which lacks this protective barrier of sporulenes.


Subject(s)
Bacillus subtilis , Hydrogen Peroxide , Hydrogen Peroxide/pharmacology , Spores, Bacterial , Peroxides/metabolism , Peroxides/pharmacology , Cell Membrane Permeability
17.
ACS Appl Mater Interfaces ; 15(41): 47955-47968, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37812458

ABSTRACT

Reactive oxygen species (ROS) generation, using photodynamic therapy (PDT) and chemodynamic therapy (CDT), is a promising strategy for cancer treatment. However, the production of ROS in tumor cells is often limited by hypoxia, insufficient substrates, and high level of ROS scavengers in a tumor microenvironment, which seriously affects the efficacy of ROS-related tumor therapies. Herein, we report a lipid-supported manganese oxide nanozyme, MLP@DHA&Ce6, by decorating a MnO2 nano-shell on the liposome loaded with dihydroartemisinin (DHA) and photosensitizer Ce6 for generating multisource ROS to enhance cancer therapy. MLP@DHA&Ce6 can be accumulated in tumors and can release active components, Mn2+ ions, and O2. The conjugate generates ROS via nanozyme-catalyzed CDT using DHA as a substrate, PDT through Ce6, and the Fenton reaction catalyzed by Mn2+ ions. The production of O2 from MnO2 enhanced Ce6-mediated PDT under near-infrared light irradiation. Meanwhile, MLP@DHA&Ce6 showed prominent glutathione depletion, which allowed ROS to retain high activity in tumor cells. In addition, the release of Mn2+ ions and DHA in tumor cells induced ferroptosis. This multisource ROS generation and ferroptosis effect of MLP@DHA&Ce6 led to enhanced therapeutic effects in vivo.


Subject(s)
Neoplasms , Photochemotherapy , Humans , Reactive Oxygen Species/pharmacology , Manganese Compounds/pharmacology , Peroxides/pharmacology , Cell Line, Tumor , Oxides/pharmacology , Photosensitizing Agents/therapeutic use , Neoplasms/drug therapy , Oxygen/pharmacology , Hydrogen Peroxide/pharmacology , Tumor Microenvironment
18.
Photodiagnosis Photodyn Ther ; 44: 103793, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37689126

ABSTRACT

BACKGROUND: This in vitro study evaluated the efficacy and the effect over the dental enamel surface of violet LED dental bleaching associated to different concentrations of carbamide and hydrogen peroxide. METHODS: Human dental blocks (n = 100) were randomly distributed into 5 groups: 10% hydrogen peroxide (HP10), 10% carbamide peroxide (CP10), 10% hydrogen peroxide with violet LED (VHP10), 10% carbamide peroxide with violet LED (VCP10) and 35% hydrogen peroxide (HP35). The specimens were analyzed by Vickers microhardness test (n = 50) initially, immediately after and seven days after ending the bleaching protocol. For color analysis (n = 50), the specimens were evaluated for bleaching effectiveness (ΔE2000, ΔE1976) and whiteness index (ΔWID) with EasyShade spectrophotometer, before bleaching protocol and seven days after ending the bleaching protocol. The microhardness and color data were analyzed using one-way ANOVA with post-hoc Tukey test (α = 0.05). RESULTS: The microhardness values showed difference among the investigated groups only immediately after the end of the dental bleaching (p < 0.05), with reduction for the groups HP35 (p < 0.01) and HP10 (p < 0.05), however the microhardness values were reestablished after seven days. Regarding the color changes, a difference between VHP10 and the others groups evaluated for ΔE2000 and ΔE1976 index was observed (p < 0.05). For ΔWID, there was no difference between the studied groups. CONCLUSIONS: Violet LED associated with low concentration bleaching agents did not show a negative effect on dental enamel regarding the surface microhardness. All bleaching protocols were effective, therefore, perceptible to human eyes.


Subject(s)
Photochemotherapy , Tooth Bleaching , Humans , Carbamide Peroxide , Hydrogen Peroxide , Peroxides/pharmacology , Tooth Bleaching/methods , Photochemotherapy/methods , Photosensitizing Agents , Hypochlorous Acid
19.
FEMS Microbiol Lett ; 3702023 01 17.
Article in English | MEDLINE | ID: mdl-37491694

ABSTRACT

The facultative anaerobe Shewanella oneidensis respires an extensive set of electron acceptors and, as a consequence, can leak electrons to produce reactive oxygen species such as hydrogen peroxide (H2O2). However, the effects of respiration on cytoplasmic redox homeostasis are poorly characterized in comparison. In the present study, the H2O2 sensor HyPer-3 was deployed to interrogate cytoplasmic peroxide levels of both wild-type and gene deletion mutants lacking peroxide scavenging enzymes following exposure to H2O2. HyPer-3 signals were validated in the S. oneidensis wild-type strain and exhibited a dynamic range of 0-250 µM H2O2. As reported by the HyPer-3 sensor, the cytoplasm of H2O2-perturbed mutant strains lacking periplasmic glutathione peroxidase (PgpD) and double deletion mutants lacking catalase (KatB) and bifunctional catalase-peroxidases (KatG1 or KatG2) contained high H2O2 concentrations. The high cytoplasmic H2O2 concentrations correlated with impaired H2O2 removal rates displayed by the mutant strains. Results of the present study provide the first in vivo interrogation of the redox environment of the S. oneidensis cytoplasm with HyPer-3 sensors and indicate that proper redox conditions in minimal growth medium are maintained by the concerted action of both well-known (periplasmic PgpD, cytoplasmic KatB and KatG1) and previously overlooked (cytoplasmic KatG2) peroxidases and catalases.


Subject(s)
Hydrogen Peroxide , Shewanella , Hydrogen Peroxide/pharmacology , Peroxides/metabolism , Peroxides/pharmacology , Catalase/genetics , Catalase/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Shewanella/metabolism , Cytoplasm/metabolism
20.
Am J Orthod Dentofacial Orthop ; 164(2): e43-e50, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37294233

ABSTRACT

INTRODUCTION: This study aimed to assess the efficacy of chemical agents in removing Candida albicans and Streptococcus mutans biofilm from invisible aligners. METHODS: The samples were made of EX30 Invisalign trays, biofilm was cultured by standardized suspensions of C. albicans ATCC strain and S. mutans clinical strain on the sample. The treatments used were 0.5% sodium hypochlorite (NaClO) (20 minutes), 1% NaClO (10 minutes), chlorhexidine (5 minutes), peroxide (15 minutes), and orthophosphoric acid (15 seconds). The control group received phosphate-buffered saline for 10 minutes. The colony-forming units per milliliter of each microorganism were determined by serial dilutions seeded in plates with selective culture mediums for each one. Data were analyzed by the Kruskal-Wallis and Conover-Iman tests at an α of 0.05. RESULTS: For the C. albicans biofilm group, the control group had 9.7 Log10 of microorganism growth, and all treatment groups had statistically significant biofilm reduction, in which chlorhexidine presented the highest inhibition of 3 Log10, followed by alkaline peroxide and orthophosphoric acid both with 2.6 Log10, 1% NaClO (2.5 Log10), and 0.5% NaClO (2 Log10). As for S. mutans, the control group had 8.9 Log10 of growth, and a total microorganism inhibition was reached by chlorhexidine, 1% NaClO, and orthophosphoric acid, whereas alkaline peroxide inhibited growth to 7.9 Log10 and 0.5% NaClO 5.1 Log10. CONCLUSIONS: Within the limitations, chlorhexidine and orthophosphoric acid had greater efficacy in both biofilms. In addition, 1% NaClO and alkaline peroxide also had significant effects; therefore, their incorporation aligners disinfection protocols are valid.


Subject(s)
Candida albicans , Chlorhexidine , Humans , Chlorhexidine/pharmacology , Streptococcus mutans , Biofilms , Peroxides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...