Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732138

ABSTRACT

D-bifunctional protein deficiency (D-BPD) is a rare, autosomal recessive peroxisomal disorder that affects the breakdown of long-chain fatty acids. Patients with D-BPD typically present during the neonatal period with hypotonia, seizures, and facial dysmorphism, followed by severe developmental delay and early mortality. While some patients have survived past two years of age, the detectable enzyme activity in these rare cases was likely a contributing factor. We report a D-BPD case and comment on challenges faced in diagnosis based on a narrative literature review. An overview of Romania's first patient diagnosed with D-BPD is provided, including clinical presentation, imaging, biochemical, molecular data, and clinical course. Establishing a diagnosis can be challenging, as the clinical picture is often incomplete or similar to many other conditions. Our patient was diagnosed with type I D-BPD based on whole-exome sequencing (WES) results revealing a pathogenic frameshift variant of the HSD17B4 gene, c788del, p(Pro263GInfs*2), previously identified in another D-BPD patient. WES also identified a variant of the SUOX gene with unclear significance. We advocate for using molecular diagnosis in critically ill newborns and infants to improve care, reduce healthcare costs, and allow for familial counseling.


Subject(s)
Mitochondrial Trifunctional Protein/deficiency , Peroxisomal Multifunctional Protein-2 , Humans , Peroxisomal Multifunctional Protein-2/deficiency , Peroxisomal Multifunctional Protein-2/genetics , Lipid Metabolism, Inborn Errors/diagnosis , Lipid Metabolism, Inborn Errors/genetics , Infant, Newborn , Infant , Male , Female , Exome Sequencing , Frameshift Mutation , 17-Hydroxysteroid Dehydrogenases/deficiency , 17-Hydroxysteroid Dehydrogenases/genetics , Resource-Limited Settings , Mitochondrial Myopathies , Cardiomyopathies , Nervous System Diseases , Rhabdomyolysis
2.
Breast Cancer Res Treat ; 201(2): 317-328, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37378696

ABSTRACT

PURPOSE: HER2-positive breast cancer has a high chance of achieving pathological complete response when HSD17B4, responsible for peroxisomal ß-oxidation of very long-chain fatty acids (VLCFA) and estradiol, is methylation-silenced. Here, we aimed to identify the underlying molecular mechanism. METHODS: Using a HER2-positive breast cancer cell line, BT-474, control and knock-out (KO) clones were obtained. Metabolic characteristics were analyzed using a Seahorse Flux analyzer. RESULTS: HSD17B4 KO suppressed cellular proliferation, and enhanced sensitivity to lapatinib approximately tenfold. The KO led to accumulation of VLCFA and a decrease of polyunsaturated fatty acids (PUFAs), such as docosahexaenoic acid (DHA) and arachidonic acid. HSD17B4 KO increased Akt phosphorylation, possibly via decreased DHA, and genes involved in oxidative phosphorylation (OxPhos) and electron transport chain (ETC) were upregulated. Increased mitochondrial ATP production in the KO cells was confirmed by extracellular flux analyzer. Increased OxPhos led to severe dependence of the KO cells on pyruvate from glycolysis. Suppression of glycolysis by lapatinib led to severe delayed suppression of OxPhos in KO cells. CONCLUSION: HSD17B4 KO in BT-474 cells caused a decrease of PUFAs, increased Akt phosphorylation, enhanced glucose dependence of OxPhos, and increased sensitivity to inhibition of HER2, upstream of Akt. This mechanism may be applicable to other HER2-positive glucose-dependent breast cancer cells with HSD17B4 silencing.


Subject(s)
Breast Neoplasms , Humans , Female , Lapatinib/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Methylation , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Glucose , Cell Line, Tumor , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Peroxisomal Multifunctional Protein-2/genetics , Peroxisomal Multifunctional Protein-2/metabolism
3.
Am J Med Genet A ; 188(1): 357-363, 2022 01.
Article in English | MEDLINE | ID: mdl-34623748

ABSTRACT

D-bifunctional protein (DBP) deficiency is a rare, autosomal recessive peroxisomal enzyme deficiency resulting in a high burden of morbidity and early mortality. Patients with DBP deficiency resemble those with a severe Zellweger phenotype, with neonatal hypotonia, seizures, craniofacial dysmorphisms, psychomotor delay, deafness, blindness, and death typically within the first 2 years of life, although patients with residual enzyme function can survive longer. The clinical severity of the disease depends on the degree of enzyme deficiency. Loss-of-function variants typically result in no residual enzyme activity; however, splice variants may result in protein with residual function. We describe a full-term newborn presenting with hypotonia, seizures, and unexplained hypoglycemia, who was later found to have rickets at follow up. Rapid whole genome sequencing identified two HSD17B4 variants in trans; one likely pathogenic variant and one variant of uncertain significance (VUS) located in the polypyrimidine tract of intron 13. To determine the functional consequence of the VUS, we analyzed RNA from the patient's father with RNA-seq which showed skipping of Exon 14, resulting in a frameshift mutation three amino acids from the new reading frame. This RNA-seq analysis was correlated with virtually absent enzyme activity, elevated very-long-chain fatty acids in fibroblasts, and a clinically severe phenotype. Both variants are reclassified as pathogenic. Due to the clinical spectrum of DBP deficiency, this provides important prognostic information, including early mortality. Furthermore, we add persistent hypoglycemia to the clinical spectrum of the disease, and advocate for the early management of fat-soluble vitamin deficiencies to reduce complications.


Subject(s)
Hearing Loss, Sensorineural , Hypoglycemia , Protein Deficiency , Exons , Hearing Loss, Sensorineural/genetics , Humans , Hypoglycemia/genetics , Infant, Newborn , Peroxisomal Multifunctional Protein-2/genetics , Protein Deficiency/genetics
4.
Zhongguo Dang Dai Er Ke Za Zhi ; 23(10): 1058-1063, 2021 Oct 15.
Article in English, Chinese | MEDLINE | ID: mdl-34719423

ABSTRACT

A 15-day-old boy was admitted to the hospital due to repeated convulsions for 14 days. The main clinical manifestations were uncontrolled seizures, hypoergia, feeding difficulties, limb hypotonia, and bilateral hearing impairment. Clinical neurophysiology showed reduced brainstem auditory evoked potential on both sides and burst-suppression pattern on electroencephalogram. Measurement of very-long-chain fatty acids in serum showed that C26:0 was significantly increased. Genetic testing showed a pathogenic compound heterozygous mutation, c.101C>T(p.Ala34Val) and c.1448_1460del(p.Ala483Aspfs*37), in the HSD17B4 gene. This article reports a case of D-bifunctional protein deficiency caused by HSD17B4 gene mutation and summarizes the epidemiological and clinical features, diagnosis, and treatment of this disease, with a focus on the differential diagnosis of this disease from Ohtahara syndrome.


Subject(s)
Muscle Hypotonia , Protein Deficiency , Genetic Testing , Humans , Infant, Newborn , Male , Mutation , Peroxisomal Multifunctional Protein-2/genetics , Protein Deficiency/genetics
5.
Int J Mol Sci ; 22(6)2021 Mar 13.
Article in English | MEDLINE | ID: mdl-33805726

ABSTRACT

An electromagnetic field (EMF) may affect the functions of uterine tissues. This study hypothesized that EMF changes the estrogenic activity of pig myometrium during the peri-implantation period. Tissue was collected on days 15-16 of the gestation and incubated in the presence of EMF (50 and 120 Hz, 2 and 4 h). The cytochrome P450 aromatase type 3 (CYP19A3) and hydroxysteroid 17ß dehydrogenase type 4 (HSD17B4) mRNA transcript abundance, cytochrome P450arom (aromatase), and 17ß hydroxysteroid dehydrogenase 17ßHSD) protein abundance and estrone (E1) and estradiol-17ß (E2) release were examined using Real-Time PCR, Western blot and radioimmunoassay. Selected myometrial slices were treated with progesterone (P4) to determine whether it functions as a protector against EMF. CYP19A3 mRNA transcript abundance in slices treated with EMF was less at 50 Hz (2 h) and greater at 120 Hz (2 and 4 h). HSD17B4 mRNA transcript was greater in slices treated with EMF at 120 Hz (2 h). Progesterone diminished EMF-related effects on CYP19A3 and HSD17B4. When P4 was added, EMF had suppressive (50 and 120 Hz, 2 h) or enhancing (50 Hz, 4 h) effects on aromatase abundance. The E1 release was lower after 4 h of EMF treatment at 50 Hz and P4 did not protect myometrial E1 release. In conclusion, EMF alters the synthesis and release of E1 and did not affect E2 release in the myometrium during the peri-implantation period.


Subject(s)
Electromagnetic Fields/adverse effects , Embryo Implantation/radiation effects , Estradiol/metabolism , Estrone/metabolism , Gene Expression Regulation/radiation effects , Myometrium/radiation effects , Animals , Aromatase/genetics , Aromatase/metabolism , Electromagnetic Radiation , Female , Myometrium/metabolism , Peroxisomal Multifunctional Protein-2/genetics , Peroxisomal Multifunctional Protein-2/metabolism , Progesterone/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Swine , Tissue Culture Techniques
6.
Cancer Res ; 81(13): 3593-3606, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33762355

ABSTRACT

Molecular mechanisms underlying intratumoral androgenesis and aberrant androgen receptor (AR) activation in prostate cancer remain poorly understood. Here we demonstrate that ectopic expression of the E3 ubiquitin ligase adaptor speckle-type poxvirus and zinc finger domain protein (SPOP) stabilizes 17ßHSD4. SPOP bound a functional substrate-binding consensus (SBC) motif 315RATST319 in 17ßHSD4 and promoted nondegradable K27- and K29-linked polyubiquitination of 17ßHSD4. The effect of SPOP was antagonized by serum- and glucocorticoid kinase-3 (SGK3)-mediated phosphorylation of serine 318 (S318) in the SBC and S318 phosphorylation-dependent binding of SKP2 E3 ligase and subsequent K48-linked polyubiquitination and proteasomal degradation of 17ßHSD4. Prostate cancer-associated SPOP mutations impaired the SPOP-17ßHSD4 interaction, caused 17ßHSD4 protein destruction in prostate cancer cells in culture and patient specimens, and increased testosterone production and prostate cancer cell growth in vitro and in mouse models. Thus, we have identified SPOP and SKP2 as two essential E3 ubiquitin ligases that exert opposite effects on 17ßHSD4 protein degradation and intratumoral androgenesis in prostate cancer cells. We further demonstrate that SPOP mutations or SKP2 overexpression contribute to prostate cancer progression by decreasing 17ßHSD4 expression and increasing intratumoral androgen synthesis. SIGNIFICANCE: This study reveals a novel mechanism of aberrant AR activation in SPOP-mutated prostate cancer and uncovers putative biomarkers for effective treatment by AR-targeted therapies.


Subject(s)
Androgens/metabolism , Gene Expression Regulation, Neoplastic , Mutation , Nuclear Proteins/metabolism , Peroxisomal Multifunctional Protein-2/metabolism , Prostatic Neoplasms/pathology , Receptors, Androgen/metabolism , Repressor Proteins/metabolism , Animals , Apoptosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Proliferation , Humans , Male , Mice , Mice, SCID , Nuclear Proteins/genetics , Peroxisomal Multifunctional Protein-2/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Proteolysis , Receptors, Androgen/genetics , Repressor Proteins/genetics , Tumor Cells, Cultured , Ubiquitination , Xenograft Model Antitumor Assays
7.
PLoS One ; 16(2): e0246279, 2021.
Article in English | MEDLINE | ID: mdl-33529214

ABSTRACT

Tail adipose as one of the important functional tissues can enhance hazardous environments tolerance for sheep. The objective of this study was to gain insight into the underlying development mechanisms of this trait. A quantitative analysis of protein abundance in ovine tail/rump adipose tissue was performed between Chinese local fat- (Kazakh, Hu and Lanzhou) and thin-tailed (Alpine Merino, Tibetan) sheep in the present study by using lable-free approach. Results showed that 3400 proteins were identified in the five breeds, and 804 were differentially expressed proteins, including 638 up regulated proteins and 83 down regulated proteins in the tail adipose tissues between fat- and thin-tailed sheep, and 8 clusters were distinguished for all the DEPs' expression patterns. The differentially expressed proteins are mainly associated with metabolism pathways and peroxisome proliferator activated receptor signaling pathway. Furthermore, the proteomics results were validated by quantitative real-time PCR and Western Blot. Our research has also suggested that the up-regulated proteins ACSL1, HSD17ß4, FABP4 in the tail adipose tissue might contribute to tail fat deposition by facilitating the proliferation of adipocytes and fat accumulation in tail/rump of sheep. Particularly, FABP4 highly expressed in the fat-tail will play an important role for tail fat deposition. Our study might provide a novel view to understanding fat accumulation in special parts of the body in sheep and other animals.


Subject(s)
Adipose Tissue/metabolism , Adipose Tissue/physiology , Sheep, Domestic/metabolism , Adipocytes/metabolism , Animals , China , Coenzyme A Ligases/genetics , Coenzyme A Ligases/metabolism , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism , Fatty Acids/metabolism , Gene Expression/genetics , Lipid Metabolism/physiology , Peroxisomal Multifunctional Protein-2/genetics , Peroxisomal Multifunctional Protein-2/metabolism , Phenotype , Proteomics/methods , Sheep , Tail , Transcriptome/genetics
8.
Article in English | WPRIM (Western Pacific) | ID: wpr-922391

ABSTRACT

A 15-day-old boy was admitted to the hospital due to repeated convulsions for 14 days. The main clinical manifestations were uncontrolled seizures, hypoergia, feeding difficulties, limb hypotonia, and bilateral hearing impairment. Clinical neurophysiology showed reduced brainstem auditory evoked potential on both sides and burst-suppression pattern on electroencephalogram. Measurement of very-long-chain fatty acids in serum showed that C26:0 was significantly increased. Genetic testing showed a pathogenic compound heterozygous mutation, c.101C>T(p.Ala34Val) and c.1448_1460del(p.Ala483Aspfs*37), in the


Subject(s)
Humans , Infant, Newborn , Male , Genetic Testing , Muscle Hypotonia , Mutation , Peroxisomal Multifunctional Protein-2/genetics , Protein Deficiency/genetics
9.
J Korean Med Sci ; 35(39): e357, 2020 Oct 12.
Article in English | MEDLINE | ID: mdl-33045774

ABSTRACT

Peroxisomal D-bifunctional protein (DBP), encoded by the HSD17B4 gene, catalyzes ß-oxidation of very long chain fatty acids (VLCFAs). The deficiency of this peroxisomal enzyme leads to the accumulation of VLCFAs, causing multisystemic manifestations including the brain, retina, adrenal gland, hearing, and skeletal system. Herein, we report the first Korean neonatal case of peroxisomal DBP deficiency and the clinical prognosis over 2 years. This patient showed craniofacial dysmorphism, club foot, and seizures with cyanosis one day after birth. Elevated VLCFAs levels were indicative of a peroxisomal disorder. Targeted exome sequencing was performed and two missense mutations p.Asp117Val and p.Phe279Ser in the HSD17B4 gene were identified. The patient had type III DBP deficiency; therefore, docosahexaenoic acid and non-soluble vitamins were administered. However, progressive nystagmus, optic nerve atrophy, and bilateral hearing defects were observed and follow-up brain imaging revealed leukodystrophy and brain atrophy. Multiple anti-epileptic drugs were required to control the seizures. Over two years, the patient achieved normal growth with home ventilation and tube feeding. Hereby, the subject's parents had support during the second pregnancy from the proven molecular information. Moreover, targeted exome sequencing is an effective diagnostic approach, considering genetic heterogeneity of Zellweger spectrum disorders.


Subject(s)
Peroxisomal Multifunctional Protein-2/genetics , Zellweger Syndrome/diagnosis , Brain/diagnostic imaging , Female , Heterozygote , Humans , Infant, Newborn , Magnetic Resonance Imaging , Mutation, Missense , Pedigree , Peroxisomal Multifunctional Protein-2/deficiency , Republic of Korea , Seizures/diagnosis , Seizures/etiology , Zellweger Syndrome/genetics
10.
Article in English | MEDLINE | ID: mdl-33115767

ABSTRACT

Rapid whole-genome sequencing (rWGS) allows for a diagnosis to be made quickly and impact medical management, particularly in critically ill children. Variants identified by this approach are often not identified using other testing methodologies, such as carrier screening or gene sequencing panels, targeted panels, or chromosomal microarrays. However, rWGS can identify variants of uncertain significance (VUSs), which challenges clinicians in the rapid return of information to families. Here we present a case of the metabolic condition D-bifunctional protein deficiency in a neonate with epilepsy and hypotonia born to consanguineous parents. Sequencing revealed a homozygous VUS in HSD17B4, c.1619A > G (p.His540Arg). Preliminary results were delivered within 3 d of sample receipt. Previous parental carrier screening included the HSD17B4 gene but was reported as negative. The molecular finding directed the clinical team to assess phenotypic overlap and investigate next steps in terms of confirmation of the findings and potential medical management of the patient. Clinical metabolic testing of fatty acids confirmed the diagnosis. Computational analysis of HSD17B4 His540Arg showed the change to likely impact dimerization based on structural insights, with the histidine conserved and selected throughout all 223 species assessed for this amino acid. This variant clusters around several pathogenic and likely pathogenic variants in HSD17B4 This case demonstrates the utility of rWGS, the potential for receiving uncertain results, and the downstream implications for confirmation or rejection of a molecular diagnosis by the clinical team.


Subject(s)
Homozygote , Peroxisomal Multifunctional Protein-2/deficiency , Peroxisomal Multifunctional Protein-2/genetics , Protein Deficiency/genetics , Whole Genome Sequencing , Fatty Acids , Female , Genetic Predisposition to Disease/genetics , Humans , Infant , Models, Molecular , Muscle Hypotonia , Pathology, Molecular/methods , Peroxisomal Multifunctional Protein-2/chemistry , Protein Conformation
11.
Sci Rep ; 10(1): 15530, 2020 09 23.
Article in English | MEDLINE | ID: mdl-32968149

ABSTRACT

HER2-positive breast cancers that achieve pathological complete response (pCR) after HER2-directed therapy consistently have good survival. We previously identified HSD17B4 methylation as a marker for pCR by methylation screening. Here, we aimed to identify a new marker by conducting a multi-omics analysis of materials prepared by laser capture microdissection, and adding 71 new samples. In the screening set (n = 36), mutations, methylation, and expression were analyzed by targeted sequencing, Infinium 450 K, and expression microarray, respectively, and 15 genes were identified as differentially expressed and eight genomic regions as differentially methylated between cancer samples with and without pCR. In a validation set (n = 47), one gene showed differential expression, and one region had differential methylation. Further, in the re-validation set (n = 55), all new samples, only HSD17B4 methylation was significantly different. The HSD17B4 methylation was at the transcriptional start site of its major variant, and was associated with its silencing. HSD17B4 was highly expressed in the vast majority of human cancers, and its methylation was present only in breast cancers and one lymphoblastic leukemia cell line. A combination of estrogen receptor-negative status and HSD17B4 methylation showed a positive predictive value of 80.0%. During HER2-directed neoadjuvant therapy, HSD17B4 methylation was the most reliable marker to monitor response to the therapy. These results showed that HSD17B4 methylation is a candidate predictive and response marker of HER2-positive breast cancer to HER2-directed therapy.


Subject(s)
Antineoplastic Agents/therapeutic use , Biomarkers, Tumor , Breast Neoplasms/genetics , Peroxisomal Multifunctional Protein-2/genetics , Receptor, ErbB-2/genetics , Biomarkers, Tumor/genetics , Breast Neoplasms/drug therapy , Cell Line, Tumor , DNA Methylation , DNA, Neoplasm/genetics , Female , Gene Silencing , Humans , Middle Aged , Receptor, ErbB-2/antagonists & inhibitors , Transcriptome , Treatment Outcome
12.
Aging (Albany NY) ; 12(14): 14699-14717, 2020 07 17.
Article in English | MEDLINE | ID: mdl-32678070

ABSTRACT

Steroidogenic enzymes are crucial in prostate cancer (PCa) progression. 17ß-Hydroxysteroid dehydrogenase type 4 (HSD17B4), encoded by HSD17B4, lacks catalytic capacity in androgen metabolism. Now the detailed role and molecular mechanism of PCa development are largely unknown. Here we showed that the expression of HSD17B4 was increased in PCa tissues compared to paired paratumor tissues. HSD17B4 knockdown in PCa cells significantly suppressed its proliferation, migration and invasion, while overexpressing HSD17B4 had opposite effects. Mechanistically, we found that the protein level of HSD17B4 was regulated by its acetylation at lysine 669(K669). Dihydroxytestosterone (DHT) treatment increased HSD17B4 acetylation and then promoted its degradation via chaperone-mediated autophagy (CMA). SIRT3 directly interacted with HSD17B4 to inhibit its acetylation and enhance its stability. In addition, we identified CREBBP as a regulator of the K669 acetylation and degradation of HSD17B4, affecting PC cell proliferation, migration and invasion. Notably, in PCa tissues and paired paratumor tissues, the level of HSD17B4 was negatively correlated with its K669 acetylation. Taken together, this study identified a novel role of HSD17B4 in PCa progression and suggested that HSD17B4 and its upstream regulators may be potential therapeutic targets for PCa intervention.


Subject(s)
Peroxisomal Multifunctional Protein-2/genetics , Peroxisomal Multifunctional Protein-2/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Acetylation , Animals , CREB-Binding Protein/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation , Disease Progression , Gene Expression Regulation, Neoplastic/genetics , Gene Knockdown Techniques , Humans , Lysine/metabolism , Male , Mice , Mice, Knockout , Neoplasm Invasiveness/genetics , Sirtuin 3/genetics , Testosterone/metabolism , Xenograft Model Antitumor Assays
13.
Int J Mol Med ; 44(3): 995-1005, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31257461

ABSTRACT

Peroxisomal disorders are genetically heterogeneous metabolic disorders associated with a deficit of very long chain fatty acid ß­oxidation that commonly manifest as early­onset neurodegeneration. Brain microvascular endothelial dysfunction with increased permeability to monocytes has been described in X­linked adrenoleukodystrophy, one of the most common peroxisomal disorders caused by mutations of the ATP binding cassette subfamily D member 1 (ABCD1) gene. The present study demonstrated that dysregulation of sirtuin 1 (SIRT1) in human brain microvascular endothelial cells (HBMECs) mediates changes in adhesion molecules and tight­junction protein expression, as well as increased adhesion to monocytes associated with peroxisomal dysfunction due to ABCD1 or hydroxysteroid 17­ß dehydrogenase 4 silencing. Furthermore, enhancement of the function of SIRT1 by resveratrol attenuated this molecular and functional dysregulation of HBMECs via modulation of the nuclear factor­κB and Krüppel­like factor 4 signaling pathways.


Subject(s)
Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Peroxisomal Disorders/etiology , Peroxisomal Disorders/metabolism , Sirtuin 1/metabolism , ATP Binding Cassette Transporter, Subfamily D, Member 1/genetics , Cell Adhesion , Cell Communication , Cells, Cultured , Gene Expression , Gene Silencing , Humans , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/genetics , Monocytes/metabolism , Peroxisomal Multifunctional Protein-2/genetics , Tight Junctions/metabolism
14.
J Neuroinflammation ; 16(1): 61, 2019 Mar 13.
Article in English | MEDLINE | ID: mdl-30866963

ABSTRACT

BACKGROUND: Microglia play a central role in most neurological disorders, but the impact of microgliosis on brain environment and clinical functions is not fully understood. Mice lacking multifunctional protein-2 (MFP2), a pivotal enzyme in peroxisomal ß-oxidation, develop a fatal disorder characterized by motor problems similar to the milder form of MFP2 deficiency in humans. The hallmark of disease in mice is the chronic proliferation of microglia in the brain, but molecular pathomechanisms that drive rapid clinical deterioration in human and mice remain unknown. In the present study, we identified the effects of specific deletion of MFP2 from microglia in the brain on immune responses, neuronal functioning, and behavior. METHODS: We created a novel Cx3cr1-Mfp2-/- mouse model and studied the impact of MFP2 deficiency on microglial behavior at different ages using immunohistochemistry and real-time PCR. Pro- and anti-inflammatory responses of Mfp2-/- microglia were assessed in vitro and in vivo after stimulation with IL-1ß/INFγ and IL-4 (in vitro) and LPS and IL-4 (in vivo). Facial nerve axotomy was unilaterally performed in Cx3cr1-Mfp2-/- and control mice, and microglial functioning in response to neuronal injury was subsequently analyzed by histology and real-time PCR. Finally, neuronal function, motor function, behavior, and cognition were assessed using brainstem auditory evoked potentials, grip strength and inverted grid test, open field exploration, and passive avoidance learning, respectively. RESULTS: We found that Mfp2-/- microglia in a genetically intact brain environment adopt an inflammatory activated and proliferative state. In addition, we found that acute inflammatory and neuronal injury provoked normal responses of Mfp2-/- microglia in Cx3cr1-Mfp2-/- mice during the post-injury period. Despite chronic pro-inflammatory microglial reactivity, Cx3cr1-Mfp2-/- mice exhibited normal neuronal transmission, clinical performance, and cognition. CONCLUSION: Our data demonstrate that MFP2 deficiency in microglia causes intrinsic dysregulation of their inflammatory profile, which is not harmful to neuronal function, motor function, and cognition in mice during their first year of life.


Subject(s)
Brain/pathology , Inflammation/pathology , Microglia/drug effects , Microglia/metabolism , Peroxisomal Multifunctional Protein-2/deficiency , Animals , Animals, Newborn , Brain/drug effects , Brain/metabolism , CX3C Chemokine Receptor 1/metabolism , Calcium-Binding Proteins/metabolism , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cells, Cultured , Disease Models, Animal , Evoked Potentials, Auditory, Brain Stem/drug effects , Evoked Potentials, Auditory, Brain Stem/genetics , Exploratory Behavior/drug effects , Exploratory Behavior/physiology , Facial Nerve Diseases/complications , Facial Nerve Diseases/pathology , Functional Laterality , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Hand Strength/physiology , Inflammation/chemically induced , Interleukin-4/administration & dosage , Lipopolysaccharides/toxicity , Mice , Mice, Transgenic , Microfilament Proteins/metabolism , Microglia/pathology , Peroxisomal Multifunctional Protein-2/genetics
15.
Oncol Rep ; 41(3): 2009-2019, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30747222

ABSTRACT

Accumulating evidence has implicated that the activation of signal transducer and activator of transcription 3 (STAT3) contributes to the progression of liver cancer by affecting the expression of proliferation­associated genes. A previous study reported that elevated levels of 17ß­hydroxysteroid dehydrogenase 4 (HSD17B4) are observed in patients with liver cancer. The current study investigated how upregulated HSD17B4 expression promoted the expression of proliferation­associated genes in rats with liver cancer. HSD17B4 expression in rats with liver cancer was significantly increased compared with the control group as determined by reverse transcription­quantitative polymerase chain reaction and western blot assays. Immunohistochemical results revealed that STAT3 activation was positively correlated with increased HSD17B4 expression in tumor tissues from patients with liver cancer. Western blot results further suggested that HSD17B4 overexpression increased STAT3 activation via the protein kinase B and the mitogen­activated protein kinase/extracellular­signal­regulated kinase signaling pathways in HepG2 cells. The present study suggested that overexpression may promote HepG2 proliferation by enhancing expression of various downstream targets of STAT3. Targeted inhibition of HSD17B4 may describe a novel approach in the prevention and treatment of liver cancer.


Subject(s)
Cell Proliferation/genetics , Liver Neoplasms/genetics , Peroxisomal Multifunctional Protein-2/genetics , STAT3 Transcription Factor/genetics , Adult , Aged , Animals , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/genetics , Hep G2 Cells , Humans , Liver/pathology , Liver Neoplasms/pathology , Male , Middle Aged , Mitogen-Activated Protein Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Rats , Rats, Wistar , Signal Transduction/genetics , Transcriptional Activation/genetics , Up-Regulation/genetics
16.
FASEB J ; 33(3): 4355-4364, 2019 03.
Article in English | MEDLINE | ID: mdl-30540494

ABSTRACT

Peroxisomes are essential organelles for the specialized oxidation of a wide variety of fatty acids, but they are also able to degrade fatty acids that are typically handled by mitochondria. Using a combination of pharmacological inhibition and clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein 9 genome editing technology to simultaneously manipulate peroxisomal and mitochondrial fatty acid ß-oxidation (FAO) in HEK-293 cells, we identified essential players in the metabolic crosstalk between these organelles. Depletion of carnitine palmitoyltransferase (CPT)2 activity through pharmacological inhibition or knockout (KO) uncovered a significant residual peroxisomal oxidation of lauric and palmitic acid, leading to the production of peroxisomal acylcarnitine intermediates. Generation and analysis of additional single- and double-KO cell lines revealed that the D-bifunctional protein (HSD17B4) and the peroxisomal ABC transporter ABCD3 are essential in peroxisomal oxidation of lauric and palmitic acid. Our results indicate that peroxisomes not only accept acyl-CoAs but can also oxidize acylcarnitines in a similar biochemical pathway. By using an Hsd17b4 KO mouse model, we demonstrated that peroxisomes contribute to the plasma acylcarnitine profile after acute inhibition of CPT2, proving in vivo relevance of this pathway. We summarize that peroxisomal FAO is important when mitochondrial FAO is defective or overloaded.-Violante, S., Achetib, N., van Roermund, C. W. T., Hagen, J., Dodatko, T., Vaz, F. M., Waterham, H. R., Chen, H., Baes, M., Yu, C., Argmann, C. A., Houten, S. M. Peroxisomes can oxidize medium- and long-chain fatty acids through a pathway involving ABCD3 and HSD17B4.


Subject(s)
ATP-Binding Cassette Transporters/physiology , Fatty Acids/metabolism , Peroxisomal Multifunctional Protein-2/physiology , Peroxisomes/enzymology , ATP-Binding Cassette Transporters/deficiency , ATP-Binding Cassette Transporters/genetics , Animals , CRISPR-Cas Systems , Carnitine/analogs & derivatives , Carnitine/metabolism , Carnitine O-Palmitoyltransferase/antagonists & inhibitors , Carnitine O-Palmitoyltransferase/deficiency , Carnitine O-Palmitoyltransferase/physiology , HEK293 Cells , Humans , Lauric Acids/metabolism , Membrane Proteins/metabolism , Mice , Mice, Knockout , Mitochondria/enzymology , Oxidation-Reduction , Palmitic Acid/metabolism , Peroxisomal Bifunctional Enzyme/deficiency , Peroxisomal Multifunctional Protein-2/deficiency , Peroxisomal Multifunctional Protein-2/genetics , Recombinant Proteins/metabolism
18.
Brain Pathol ; 28(5): 631-643, 2018 09.
Article in English | MEDLINE | ID: mdl-29341299

ABSTRACT

Peroxisomes play a crucial role in normal neurodevelopment and in the maintenance of the adult brain. This depends largely on intact peroxisomal ß-oxidation given the similarities in pathologies between peroxisome biogenesis disorders and deficiency of multifunctional protein-2 (MFP2), the central enzyme of this pathway. Recently, adult patients diagnosed with cerebellar ataxia were shown to have mild mutations in the MFP2 gene, hydroxy-steroid dehydrogenase (17 beta) type 4 (HSD17B4). Cerebellar atrophy also develops in MFP2 deficient mice but the cellular origin of the degeneration is unexplored. In order to investigate whether peroxisomal ß-oxidation is essential within Purkinje cells, the sole output neurons of the cerebellum, we generated and characterized a mouse model with Purkinje cell selective deletion of the MFP2 gene. We show that selective loss of MFP2 from mature cerebellar Purkinje neurons causes a late-onset motor phenotype and progressive Purkinje cell degeneration, thereby mimicking ataxia and cerebellar deterioration in patients with mild HSD17B4 mutations. We demonstrate that swellings on Purkinje cell axons coincide with ataxic behavior and precede neurodegeneration. Loss of Purkinje cells occurs in a characteristic banded pattern, proceeds in an anterior to posterior fashion and is accompanied by progressive astro- and microgliosis. These data prove that the peroxisomal ß-oxidation pathway is required within Purkinje neurons to maintain their axonal integrity, independent of glial dysfunction.


Subject(s)
Axons/physiology , Cerebellar Ataxia/physiopathology , Neurodegenerative Diseases/physiopathology , Peroxisomal Disorders/physiopathology , Peroxisomal Multifunctional Protein-2/deficiency , Purkinje Cells/physiology , Aging , Animals , Astrocytes/pathology , Astrocytes/physiology , Axons/pathology , Cerebellar Ataxia/etiology , Cerebellar Ataxia/pathology , Disease Models, Animal , Gliosis/pathology , Gliosis/physiopathology , Mice, Transgenic , Microglia/pathology , Microglia/physiology , Neurodegenerative Diseases/pathology , Peroxisomal Disorders/pathology , Peroxisomal Multifunctional Protein-2/genetics , Purkinje Cells/pathology
19.
BMC Med Genet ; 18(1): 91, 2017 08 23.
Article in English | MEDLINE | ID: mdl-28830375

ABSTRACT

BACKGROUND: Perrault syndrome is a rare multisystem disorder that manifests with sensorineural hearing loss in both sexes, primary ovarian insufficiency in females and neurological features. The syndrome is heterogeneous both genetically and phenotypically. CASE PRESENTATION: We reported a consanguineous family (two affected sisters) with Perrault syndrome. The proband had the characteristics of Perrault syndrome: ovarian dysgenesis, bilateral hearing loss and obvious neurological signs. Target genetic sequencing and triplet repeat primed PCR (TP-PCR) plus capillary electrophoresis was conducted to detect causative mutations in the proband. The detected variant was further confirmed in the proband and tested in other family members by Sanger sequencing. Both the proband and her sister were found homozygous for the novel variant HSD17B4 c.298G > T (p.A100S) with their parents heterozygous. Detected by western blot, the protein expression of HSD17B4 mutant was much lower than that of the wild type in SH-SY5Y cells transfected by HSD17B4 wild type or mutant plasmid, which indicated the pathogenicity of the HSD17B4 mutation. CONCLUSIONS: Our findings supported that HSD17B4 was one of the genes contributing to Perrault syndrome with the likely pathogenic variant c.298G > T (p.A100S). Special manifestations of cerebellar impairment were found in cases caused by HSD17B4 mutations. Besides, attention should be paid to distinguish Perrault syndrome from D-bifunctional protein deficiency and hereditary ataxia.


Subject(s)
Asian People/genetics , Gonadal Dysgenesis, 46,XX/genetics , Hearing Loss, Sensorineural/genetics , Homozygote , Mutation, Missense , Peroxisomal Multifunctional Protein-2/genetics , Adult , Cell Line , Female , Gene Expression Regulation , Genetic Testing , Gonadal Dysgenesis, 46,XX/diagnosis , Hearing Loss, Sensorineural/diagnosis , Heterozygote , Humans , Magnetic Resonance Imaging , Pedigree , Peroxisomal Multifunctional Protein-2/metabolism , Sequence Analysis, DNA
20.
Methods Mol Biol ; 1595: 329-342, 2017.
Article in English | MEDLINE | ID: mdl-28409475

ABSTRACT

The peroxisomal disorders (PDs) are a heterogeneous group of genetic diseases in man caused by an impairment in peroxisome biogenesis or one of the metabolic functions of peroxisomes. Thanks to the revolutionary technical developments in gene sequencing methods and their increased use in patient diagnosis, the field of genetic diseases in general and peroxisomal disorders in particular has dramatically changed in the last few years. Indeed, several novel peroxisomal disorders have been identified recently and in addition it has been realized that the phenotypic spectrum of patients affected by a PD keeps widening, which makes clinical recognition of peroxisomal patients increasingly difficult. Here, we describe these new developments and provide guidelines for the clinical and laboratory diagnosis of peroxisomal patients.


Subject(s)
Peroxisomal Disorders/diagnosis , Peroxisomal Disorders/genetics , Acyl-CoA Oxidase/deficiency , Acyl-CoA Oxidase/genetics , Genetic Testing , Humans , Peroxisomal Disorders/metabolism , Peroxisomal Multifunctional Protein-2/deficiency , Peroxisomal Multifunctional Protein-2/genetics , Peroxisomal Multifunctional Protein-2/metabolism , Peroxisomes/genetics , Peroxisomes/metabolism , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...