Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 951
Filter
1.
Food Microbiol ; 122: 104536, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38839216

ABSTRACT

The aim of this study was to develop a novel and healthier fermented meat product by replacing pork fat with avocado pulp (AVP) during salami production. Experimental salamis were produced under laboratory conditions by substituting pork fat with AVP partially (10-AVP) and totally (20-AVP), while control salamis (CTR) remained AVP-free. The microbial composition of control and experimental salamis was assessed using a combined culture-dependent and -independent approach. Over a 20-days ripening period, lactic acid bacteria, coagulase-negative staphylococci, and yeasts dominated the microbial community, with approximate levels of 9.0, 7.0 and 6.0 log CFU/g, respectively. Illumina technology identified 26 taxonomic groups, with leuconostocs being the predominant group across all trials [constituting 31.26-59.12 % of relative abundance (RA)]. Gas Chromatography-Mass Spectrometry (GC-MS) analysis revealed changes in fatty acid composition and volatile organic compounds due to the substitution of pork fat with AVP. Specifically, monounsaturated fatty acids and terpene compounds increased, while saturated fatty acids and lipid oxidation products decreased. Although AVP influenced the sensory characteristics of the salamis, the highest overall satisfaction ratings were observed for the 10-AVP salamis. Consequently, substituting pork fat with AVP emerges as a viable strategy for producing healthier salamis and diversifying the meat product portfolio.


Subject(s)
Fermentation , Meat Products , Persea , Persea/microbiology , Persea/chemistry , Animals , Swine , Meat Products/microbiology , Meat Products/analysis , Fatty Acids/analysis , Fatty Acids/metabolism , Humans , Bacteria/classification , Bacteria/isolation & purification , Bacteria/metabolism , Bacteria/genetics , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Fruit/microbiology , Fruit/chemistry , Food Microbiology , Taste , Lactobacillales/metabolism , Lactobacillales/classification , Lactobacillales/growth & development
2.
PLoS One ; 19(6): e0303532, 2024.
Article in English | MEDLINE | ID: mdl-38843189

ABSTRACT

Avocados are an important economic crop of Hawaii, contributing to approximately 3% of all avocados grown in the United States. To export Hawaii-grown avocados, growers must follow strict United States Department of Agriculture Animal and Plant Health Inspection Service (USDA-APHIS) regulations. Currently, only the Sharwil variety can be exported relying on a systems approach, which allows fruit to be exported without quarantine treatment; treatments that can negatively impact the quality of avocados. However, for the systems approach to be applied, Hawaii avocado growers must positively identify the avocados variety as Sharwil with APHIS prior to export. Currently, variety identification relies on physical characteristics, which can be erroneous and subjective, and has been disputed by growers. Once the fruit is harvested, variety identification is difficult. While molecular markers can be used through DNA extraction from the skin, the process leaves the fruit unmarketable. This study evaluated the feasibility of using near-infrared spectroscopy to non-destructively discriminate between different Hawaii-grown avocado varieties, such as Sharwil, Beshore, and Yamagata, Nishikawa, and Greengold, and to positively identify Sharwil from the other varieties mentioned above. The classifiers built using a bench-top system achieved 95% total classification rates for both discriminating the varieties from one another and positively identifying Sharwil while the classifier built using a handheld spectrometer achieved 96% and 96.7% total classification rates for discriminating the varieties from one another and positively identifying Sharwil, respectively. Results from chemometric methods and chemical analysis suggested that water and lipid were key contributors to the performance of classifiers. The positive results demonstrate the feasibility of NIR spectroscopy for discriminating different avocado varieties as well as authenticating Sharwil. To develop robust and stable models for the growers, distributors, and regulators in Hawaii, more varieties and additional seasons should continue to be added.


Subject(s)
Persea , Spectroscopy, Near-Infrared , Persea/chemistry , Hawaii , Spectroscopy, Near-Infrared/methods , Feasibility Studies , Fruit/chemistry
3.
BMC Genomics ; 25(1): 435, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698341

ABSTRACT

The oomycete Phytophthora cinnamomi is a devastating plant pathogen with a notably broad host range. It is the causal agent of Phytophthora root rot (PRR), arguably the most economically important yield-limiting disease in Persea americana (avocado). Despite this, our understanding of the mechanisms P. cinnamomi employs to infect and successfully colonize avocado remains limited, particularly regarding the pathogen's ability to maintain its biotrophic and necrotrophic lifestyles during infection. The pathogen utilises a large repertoire of effector proteins which function in facilitating and establishing disease in susceptible host plants. Crinkling and necrosis effectors (CRN/Crinklers) are suspected to manipulate cell death to aid in maintenance of the pathogens biotrophic and necrotrophic lifestyles during different stages of infection. The current study identified 25 P. cinnamomi CRN effectors from the GKB4 genome using an HMM profile and assigned putative function to them as either cell death inducers or suppressors. Function was assigned to 10 PcinCRNs by analysing their RNA-seq expression profiles, relatedness to other functionally characterised Phytophthora CRNs and tertiary protein predictions. The full-length coding sequences for these PcinCRNs were confirmed by Sanger sequencing, six of which were found to have two divergent alleles. The presence of alleles indicates that the proteins encoded may perform contradicting functions in cell death manipulation, or function in different host plant species. Overall, this study provides a foundation for future research on P. cinnamomi infection and cell death manipulation mechanisms.


Subject(s)
Cell Death , Persea , Phytophthora , Plant Diseases , Phytophthora/physiology , Phytophthora/genetics , Phytophthora/pathogenicity , Persea/microbiology , Persea/genetics , Plant Diseases/microbiology
4.
Clin Nutr ESPEN ; 61: 253-265, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777441

ABSTRACT

BACKGROUND: Pomegranate seed oil (PSO) and avocado seed oil (ASO) are natural polyphenols with established anti-inflammatory activity. PURPOSE: This study aimed to investigate the molecular mechanisms underlying the therapeutic efficacy of PSO and ASO in experimental ulcerative colitis (UC) with reference to sulfasalazine (SLZ). METHODS: Eighty male albino rats were divided equally into 8 groups; Normal, PSO, ASO, SLZ, UC-control, (UC + PSO), (UC + ASO) and (UC + SLZ) groups. Colitis was induced by intra-rectal injection of acetic acid. PSO (0.5ml/200g), ASO (1ml/250g) and SLZ (100 mg/kg) were administered orally once/day for 14 days, 24h after colitis induction. Colitis was evaluated by measuring disease activity index (DAI), colon weight/length ratio and histologic inflammatory score. Vascular endothelial growth factor receptor-2 (VEGFR-2), colonic macrophage migration inhibitory factor (MIF), and malondialdehyde (MDA) were determined. Colonic gene expression of TNF-α, VEGF and heme oxygenase-1 (HO-1) were also estimated. RESULTS: PSO and ASO treatments to UC rats significantly reduced DAI, weight/length ratio, VEGFR-2, and colon histologic inflammatory score versus UC-controls. ASO significantly suppressed MIF levels and TNF-α expression greater than PSO. However, PSO was more significant than ASO in reducing MDA levels and up-regulating HO-1 expression. Both oils significantly down-regulated VEGF expression. The obtained biochemical and histological changes induced by UC were nearly corrected by SLZ. CONCLUSION: The proved beneficial effect of PSO and ASO as anti-inflammatory, anti-angiogenic, and antioxidant in UC rats could be mediated by suppression of TNF-α, VEGF, and MIF and up-regulation of HO-1.


Subject(s)
Anti-Inflammatory Agents , Colitis, Ulcerative , Persea , Plant Oils , Pomegranate , Animals , Colitis, Ulcerative/drug therapy , Male , Persea/chemistry , Rats , Pomegranate/chemistry , Plant Oils/pharmacology , Anti-Inflammatory Agents/pharmacology , Macrophage Migration-Inhibitory Factors/metabolism , Malondialdehyde/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Seeds/chemistry , Colon/drug effects , Colon/pathology , Colon/metabolism , Inflammation/drug therapy , Vascular Endothelial Growth Factor A/metabolism , Disease Models, Animal
5.
J Am Heart Assoc ; 13(10): e030497, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38726886

ABSTRACT

BACKGROUND: Abdominal obesity is associated with endothelial dysfunction and poorer vascular health. Avocado consumption improves postprandial endothelial function; however, the longer-term effects remain unclear. It was hypothesized that the daily addition of 1 avocado to a habitual diet for 6 months would improve flow-mediated dilation (FMD) and carotid-femoral pulse wave velocity in individuals with abdominal obesity (waist circumference ≥35 in for women, ≥40 in for men), compared with a habitual diet low in avocados. METHODS AND RESULTS: HAT (Habitual Diet and Avocado Trial) was a multicenter, randomized, controlled, parallel-arm study that investigated the health effects of adding 1 avocado per day to a habitual diet in individuals with abdominal obesity. At the Pennsylvania State University, University Park study center (n=134; age, 50 ± 13 years; women, 78%; body mass index, 32.6 ± 4.8 kg/m2), markers of vascular function were measured, including endothelial function, assessed via brachial artery flow-mediated dilation, and arterial stiffness, assessed via carotid-femoral pulse wave velocity. Between-group differences in 6-month change in flow-mediated dilation and carotid-femoral pulse wave velocity were assessed using independent t tests. Prespecified subgroup analyses were conducted using linear regression. No significant between-group differences in flow-mediated dilation (mean difference=-0.62% [95% CI, -1.70 to 0.46]) or carotid-femoral pulse wave velocity (0.25 m/s [95% CI, -0.13 to 0.63]) were observed. Results of the subgroup analyses were consistent with the primary analyses. CONCLUSIONS: Longer-term consumption of 1 avocado per day as part of a habitual diet did not improve measures of vascular function compared with a habitual diet low in avocados in individuals with abdominal obesity. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03528031.


Subject(s)
Endothelium, Vascular , Obesity, Abdominal , Persea , Vascular Stiffness , Vasodilation , Humans , Female , Male , Middle Aged , Obesity, Abdominal/physiopathology , Obesity, Abdominal/diet therapy , Obesity, Abdominal/diagnosis , Vascular Stiffness/physiology , Vasodilation/physiology , Endothelium, Vascular/physiopathology , Adult , Carotid-Femoral Pulse Wave Velocity , Time Factors , Pulse Wave Analysis , Treatment Outcome , Brachial Artery/physiopathology , Diet
6.
Rev Alerg Mex ; 71(1): 79, 2024 Feb 01.
Article in Spanish | MEDLINE | ID: mdl-38683096

ABSTRACT

OBJECTIVE: Determine the electrophoretic profiles of the extracts of Manihot esculenta, Actinidia Deliciosa and Persea Americana and their possible relationship with Latex-Fruit Syndrome. METHODS: Protein extracts of M. esculenta, P. Americana and A. Deliciosa were prepared through the processes of maceration and solvent extraction from plant samples. In the case of the avocado, a prior extraction by soxhlet was carried out to eliminate the fat. The extracts were vacuum filtered, dialyzed and finally lyophilized. Separation of proteins based on molecular weight was performed by SDS PAGE electrophoresis. The electrophoretic profiles obtained were compared with the allergenic proteins previously identified in the latex extract, in order to determine a possible relationship with Latex-Fruit Syndrome, depending on the molecular weight. RESULTS: The extracts of M. esculenta and P. Americana showed a wide range of protein fractions with molecular weights varying from 10 to 250 KD, finding that the region with the highest concentration of bands was between 20 and 89 KD, (60 and 65%), respectively. A 20-band profile was obtained for the M. esculenta extract (Figure 1), with seven bands sharing similar weights with the latex allergens (Hev b 1, Hev b 2, Hev b3, Hev b 4, Hev b 5, Hev b 6.03, Hev b 8 and Hev b 10) (3-5). For the P. Americana extract, 20 bands were also observed (Figure 2), seven of which presented approximate weights to the Latex allergens (Hev b 1, Hev b 2 Hev b 4 Hev b 6.01 Hev b 6.03 Hev b 8 , Hev b 10 Hev b 11 Hev b 14). The Kiwi extract showed two bands of 19.1 and 22.9 KD, with weights close to latex proteins (figure 3), (Hev b 3 and Hev b 6.01), and allergens (Act d 2 and Act d 6), reported in the literature for this fruit. CONCLUSIONS: When analyzing the relationship between the separated protein fractions and the latex allergens described in the literature, a possible association of 35% was found for the extracts of M. esculenta and P. Americana, and 10% for A. Delicious, with great relevance being the association found with the allergens Hev b 4, Hev b 2, Hev 8 and Hev b 11, which are involved in Latex-Fruit Syndrome. The electrophoretic profiles of the prepared extracts were determined and compared with the Latex allergens. This information generates a contribution for the development of new research and advances in the standardization of these extracts on a large scale and for their future use in diagnostic tests.


OBJETIVO: Determinar los perfiles electroforéticos de los extractos de Manihot esculenta, Actinidia deliciosa y Persea americana y su posible relación con el Síndrome de Látex ­ Fruta. MÉTODOS: Se prepararon extractos proteicos de M. esculenta, P. Americana y A. Deliciosa, a través de los procesos de macerado y extracción con solventes a partir muestras vegetales. En el caso del aguacate, se realizó una extracción previa por soxhlet, para eliminar la grasa. Los extractos se filtraron al vacío, se sometieron a diálisis y por último se liofilizaron. La separación de las proteínas en función del peso molecular se realizó mediante electroforesis SDS PAGE. Se compararon los perfiles electroforéticos obtenidos con las proteínas alergénicas previamente identificadas en el extracto de látex, con el fin de determinar una posible relación con el Síndrome de Látex-Fruta, en función del peso molecular. RESULTADOS: Los extractos de M. esculenta y P. americana mostraron una amplia gama de fracciones proteicas con pesos moleculares que varían desde 10 a 250 KD, encontrando que la región con mayor concentración de bandas se situó entre 20 y 89 KD, (60 y 65 %), respectivamente. Se obtuvo un perfil de 20 bandas para el extracto de M. esculenta (figura 1), con siete bandas que comparten pesos similares con los alérgenos del látex (Hev b 1, Hev b 2, Hev b3, Hev b 4, Hev b 5, Hev b 6.03, Hev b 8 y Hev b 10) (3-5). Para el extracto de P. americana, también se observaron 20 bandas (figura 2), siete de las cuales presentaron pesos aproximados a los alérgenos de Látex (Hev b 1, Hev b 2 Hev b 4 Hev b 6.01 Hev b 6.03 Hev b 8, Hev b 10 Hev b 11 Hev b 14). El extracto de Kiwi mostró dos bandas de 19,1 y 22,9 KD, con pesos cercanos a proteínas de látex (figura 3), (Hev b 3 y Hev b 6.01), y los alérgenos (Act d 2 y Act d 6), reportados en la literatura para esta fruta. CONCLUSIONES: Al analizar la relación existente entre las fracciones proteicas separadas y los alérgenos de los látex descritos en la literatura, se encontró una posible asociación del 35% para los extractos de M. esculenta y P. Americana, y del 10% para A. Deliciosa, siendo de gran relevancia la asociación encontrada con los alérgenos Hev b 4, Hev b 2, Hev 8 y Hev b 11, los cuales se encuentran implicados en el Síndrome de Látex-Fruto. Se lograron determinar los perfiles electroforéticos de los extractos elaborados y se compararon con los alérgenos del Látex. Está información genera un aporte para el desarrollo de nuevas investigaciones y avances en la estandarización de estos extractos a gran escala y para su uso futuro en pruebas diagnósticas.


Subject(s)
Actinidia , Allergens , Latex Hypersensitivity , Manihot , Persea , Plant Proteins , Manihot/chemistry , Allergens/analysis , Actinidia/chemistry , Persea/chemistry , Plant Proteins/analysis , Plant Proteins/immunology , Fruit/chemistry , Latex/chemistry , Plant Extracts/chemistry , Electrophoresis, Polyacrylamide Gel , Syndrome , Molecular Weight
7.
Plant Physiol Biochem ; 210: 108621, 2024 May.
Article in English | MEDLINE | ID: mdl-38604012

ABSTRACT

To enhance the postharvest quality of avocado (Persea americana Mill.) fruit, this study investigates alterations in cell wall metabolism and reactive oxygen species (ROS) metabolism during near-freezing temperature (NFT) storage, and explores their impact on fruit softening. The fruit was stored at 25 °C, 5 °C, 2 °C, and NFT, respectively. NFT storage retarded firmness loss and chilling injury in comparison with 25 °C, 5 °C, and 2 °C. NFT storage delayed the decrease of ionic-soluble pectin (ISP) and cellulose (CLL) contents by suppressing cell wall degradation enzyme activities. Correlation analysis showed that cell wall degradation enzyme activities were positively correlated to rates of ethylene release and respiration. Moreover, NFT storage maintained higher levels of DPPH and ABTS scavenging abilities, activities of superoxide dismutase, peroxidase, and catalase, as well as ascorbate-glutathione cycle (ascorbic acid, glutathione, glutathione disulfide, ascorbate peroxidase, cycle-related enzymes), thereby inhibited the increase of ROS content, malondialdehyde content, and cell membrane permeability. Fruit firmness and chilling injury were correlated with the contents of hydrogen (H2O2), superoxide anion (O2.-), ISP, and CLL. These results suggested that NFT could suppress fruit softening and chilling injury by inhibiting cell wall degradation through delaying respiration and ethylene production and suppressing ROS production via activation of antioxidant systems, thereby maintaining quality and prolonged storage life during avocado fruit storage.


Subject(s)
Cell Wall , Fruit , Persea , Reactive Oxygen Species , Persea/metabolism , Cell Wall/metabolism , Reactive Oxygen Species/metabolism , Fruit/metabolism , Food Storage/methods , Cold Temperature , Freezing , Ethylenes/metabolism , Pectins/metabolism , Cellulose/metabolism
8.
Int J Biol Macromol ; 267(Pt 1): 131426, 2024 May.
Article in English | MEDLINE | ID: mdl-38583836

ABSTRACT

This study aimed to evaluate the physical and chemical alterations in rice starch modified by heat-moisture treatment (HMT) using an autoclave and a microwave, in association with avocado oil (AO), and evaluate the effects on thermal and structural properties, in vitro digestibility, and estimated glycemic index (eGI). Samples were adjusted to 30 % (w/w) moisture and 2, 4 and 8 % AO. HMT was conducted at 110 °C for 1 h in the autoclave (A0%, A2%, A4%, and A8%) and at 50 °C for 3 min in the microwave (M0%, M2%, M4%, and M8%). Both procedures did not alter the starch crystallinity pattern (type-A). Pasting viscosity, setback, relative crystallinity, and gelatinisation enthalpy decreased as the AO content increased in both HMT processes. The M8% showed reduced digestibility, decreased eGI (72.99, p < 0.05), and lower starch hydrolysis concentration (62.75 %, p < 0.05). The application of HMT with the addition of AO may be an interesting process for obtaining resistant starch since its content increased after both treatments (A8%, M4%, and M8%). The microwave process proved efficient, making it possible to use a lower temperature, less time, and less energy for modification and obtain starches with improved characteristics.


Subject(s)
Hot Temperature , Microwaves , Oryza , Persea , Plant Oils , Starch , Starch/chemistry , Oryza/chemistry , Persea/chemistry , Plant Oils/chemistry , Viscosity , Hydrolysis
9.
Compr Rev Food Sci Food Saf ; 23(3): e13351, 2024 05.
Article in English | MEDLINE | ID: mdl-38682674

ABSTRACT

Consumer priorities in healthy diets and lifestyle boosted the demand for nutritious and functional foods as well as plant-based ingredients. Avocado has become a food trend due to its nutritional and functional values, which in turn is increasing its consumption and production worldwide. Avocado edible portion has a high content of lipids, with the pulp and its oil being rich in monounsaturated fatty acids and essential omega - 3 and omega - 6 polyunsaturated fatty acids (PUFA). These fatty acids are mainly esterified in triacylglycerides, the major lipids in pulp, but also in minor components such as polar lipids (phospholipids and glycolipids). Polar lipids of avocado have been overlooked despite being recently highlighted with functional properties as well. The growth in the industry of avocado products is generating an increased amount of their byproducts, such as seed and peels (nonedible portions), still undervalued. The few studies on avocado byproducts pointed out that they also contain interesting lipids, with seeds particularly rich in polar lipids bearing PUFA, and thus can be reused as a source of add-value phytochemical. Mass spectrometry-based lipidomics approaches appear as an essential tool to unveil the complex lipid signature of avocado and its byproducts, contributing to the recognition of value-added lipids and opening new avenues for their use in novel biotechnological applications. The present review provides an up-to-date overview of the lipid signature from avocado pulp, peel, seed, and its oils.


Subject(s)
Lipidomics , Lipids , Persea , Persea/chemistry , Lipidomics/methods , Lipids/chemistry , Lipids/analysis , Nutritive Value , Fruit/chemistry , Seeds/chemistry
10.
J Ethnopharmacol ; 331: 118259, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38685366

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: In ancient Mexican cultures, the Persea americana Mill seed has been used against gastrointestinal diseases, due to high concentrations of bioactive compounds. According to Traditional Mexican Medicine, P. americana seed aqueous infusion is used against roundworms, intestinal worms, parasites, and gastrointestinal problems, in a dose taken over three or four days. In addition, Mexican Society of Natural History indicates the traditional use of P. americana seed powder as an antiparasitic, and antibacterial. On the other hand, Helicobacter pylori infection is a factor associated with the development of gastric disease, peptic ulcers as well as some types of gastric lymphomas and gastric cancer in humans; in this way is necessary scientific evidence about P. americana seed effect in gastrointestinal disease. AIM OF THE STUDY: The work aimed to evaluate bioactive compounds bioaccessibility and antimicrobial potential against Helicobacter pylori during oral-gastric digestion in vitro of food ingredient from Persea americana Mill. seed and elucidate the possible action mechanism using in silico tools. MATERIALS AND METHODS: Initially, P. americana seed oil and aqueous extract of P. americana seed were obtained using ultrasound and maceration respectively, and the food ingredient from P. americana seed was obtained. The samples underwent oral-gastric digestions by the INFOGEST method, to continue identifying and quantifying the bioactive compounds by HPLC-DAD and GC-MS. The anti-Helicobacter pylori activity determination were used fourteen Helicobacter pylori clinical strains and reference strains by Susceptibility testing by Minimal Inhibition Concentration, Kinetics of Growth Inhibition of H. pylori, Urease Inhibitory Kinetic. Finally, to elucidate a possible action mechanism used in silico tools (Software AutoDock 4.2.6 and BioVia Discovery v.19.1.0.1.18287). RESULTS: The lipophilic fraction of P. americana seed detected oleic acid, linoleic acid, and avocadenofuran compounds, and the phenolic fraction showed the presence of catechin, rutin, ellagic, and chlorogenic acid, among others. Phenolic compounds conformational changes during oral-gastric digestion due to mechanical and acid hydrolysis, while lipophilic compounds showed a 20% increase in the gastric phase. Persea americana Mill. seed ingredient (3.08 µg/mL) showed total in vitro inhibition of clinical and reference strains of H. pylori, likewise, the lipophilic fraction had a lower inhibition concentration (2.59 µg/mL) regardless of the strains. Among the mechanisms found in silico, inhibition of target proteins such as CagA, BabA, and MUC5 were observed, as virulence factors involving adherence and bacterial pathogenicity. CONCLUSIONS: This research provides evidence that food ingredient from P. americana seed has antimicrobial in vitro potential against H. pylori clinical strains, through phenolic and mainly lipophilic compounds, opening new scientific evidence that supports the P. americana seed's traditional use.


Subject(s)
Anti-Bacterial Agents , Digestion , Helicobacter pylori , Persea , Plant Extracts , Seeds , Persea/chemistry , Seeds/chemistry , Helicobacter pylori/drug effects , Anti-Bacterial Agents/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Biological Availability , Humans , Microbial Sensitivity Tests
11.
Mol Plant Pathol ; 25(4): e13453, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38590150

ABSTRACT

Plant cells undergo extensive transcriptional reprogramming following pathogen infection, with these reprogramming patterns becoming more complex when pathogens, such as hemibiotrophs, exhibit different lifestyles. These transcriptional changes are often orchestrated by MYB, WRKY and AP2/ERF transcription factors (TFs), which modulate both growth and defence-related gene expression. Transcriptional analysis of defence-related genes in avocado (Persea americana) infected with Phytophthora cinnamomi indicated differential immune response activation when comparing a partially resistant and susceptible rootstock. This study identified 226 MYB, 82 WRKY, and 174 AP2/ERF TF-encoding genes in avocado, using a genome-wide approach. Phylogenetic analysis revealed substantial sequence conservation within TF groups underscoring their functional significance. RNA-sequencing analysis in a partially resistant and susceptible avocado rootstock infected with P. cinnamomi was indicative of an immune response switch occurring in either rootstock after 24 and 6 h post-inoculation, respectively. Different clusters of co-expressed TF genes were observed at these times, suggesting the activation of necrotroph-related immune responses at varying intervals between the two rootstocks. This study aids our understanding of avocado immune response activation following P. cinnamomi infection, and the role of the TFs therein, elucidating the transcriptional reprogramming disparities between partially resistant and susceptible rootstocks.


Subject(s)
Persea , Phytophthora , Persea/genetics , Persea/metabolism , Phylogeny
12.
Physiol Plant ; 176(2): e14291, 2024.
Article in English | MEDLINE | ID: mdl-38628053

ABSTRACT

Priming plants with chemical agents has been extensively investigated as a means for improving their tolerance to many biotic and abiotic stresses. Earlier, we showed that priming young avocado (Persea americana Mill cv. 'Hass') trees with sodium hydrosulfide (NaHS), a donor of hydrogen sulfide, improves the response of photosynthesis to simulated frost (cold followed by high light) conditions. In the current study, we performed a transcriptome analysis to gain insight into the molecular response of avocado 'Hass' leaves to frost, with or without NaHS priming. The analysis revealed 2144 (down-regulated) and 2064 (up-regulated) differentially expressed genes (DEGs) common to both non-primed and primed trees. Non-primed trees had 697 (down) and 559 (up) unique DEGs, while primed trees exhibited 1395 (down) and 1385 (up) unique DEGs. We focus on changes in the expression patterns of genes encoding proteins involved in photosynthesis, carbon cycle, protective functions, biosynthesis of isoprenoids and abscisic acid (ABA), as well as ABA-regulated genes. Notably, the differential expression results depict the enhanced response of primed trees to the frost and highlight gene expression changes unique to primed trees. Amongst these are up-regulated genes encoding pathogenesis-related proteins, heat shock proteins, enzymes for ABA metabolism, and ABA-induced transcription factors. Extending the priming experiments to field conditions, which showed a benefit to the physiology of trees following chilling, suggests that it can be a possible means to improve trees' response to cold stress under natural winter conditions.


Subject(s)
Hydrogen Sulfide , Persea , Persea/genetics , Sulfides/pharmacology , Hydrogen Sulfide/metabolism , Gene Expression Profiling , Abscisic Acid/pharmacology , Gene Expression Regulation, Plant
13.
Sci Rep ; 14(1): 7561, 2024 03 30.
Article in English | MEDLINE | ID: mdl-38555364

ABSTRACT

Evaluating potential routes of invasion of pathogens and vectors of sanitary importance is essential for planning and decision-making at multiple scales. An effective tool are process-explicit models that allow coupling environmental, demographic and dispersal information to evaluate population growth and range dynamics as a function of the abiotic conditions in a region. In this work we simulate multiple dispersal/invasion routes in Mexico that could be taken by ambrosia beetles and a specific symbiont, Harringtonia lauricola, responsible for a severe epiphytic of Lauraceae in North America. We used Xyleborus bispinatus Eichhoff 1868 as a study subject and estimated its demography in the laboratory in a temperature gradient (17, 20, 26, 29, 35 °C), which we then used to parameterize a process-based model to estimate its metapopulation dynamics. The maximum intrinsic growth rate of X. bispinatus is 0.13 with a thermal optimum of 26.2 °C. The models suggest important regions for the establishment and dispersal the states of Veracruz, Chiapas and Oaxaca (high host and secondary vectors diversity), the Isthmus of Tehuantepec (connectivity region), and Michoacán and Jalisco (important avocado plantations). The use of hybrid process-based models is a promising tool to refine the predictions applied to the study of biological invasions and species distributions.


Subject(s)
Coleoptera , Lauraceae , Persea , Weevils , Animals , Demography
14.
J Food Sci ; 89(4): 2110-2123, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38450774

ABSTRACT

The aim of the current study was to evaluate the influence of increasing contents (5%-25%) of avocado pulp powder (APP) produced by foam-mat drying (FMD) as a substitute for hydrogenated vegetable fat in bread on its nutritional composition, physical properties, α-amylase, α-glucosidase, and lipase inhibition, total phenolic content, antioxidant activity, color, structure, and x-ray diffraction patterns. The increase in the APP content decreased the values of lipids, carbohydrates, energy, firmness, and specific volume of breads. The inhibition of lipase activity showed a pronounced increase, while the total phenolic content and antioxidant activity were significantly elevated. The color parameters a* and b* were higher in the breads with added APP. The crystalline structure transitioned from type A to type V with 15% APP incorporation. Taken together, these results suggest that APP has potential to act as a healthier substitute for saturated fats in breads, paving the way to develop creative and innovative solutions for the functionalization of bakery food products.


Subject(s)
Fat Substitutes , Persea , Antioxidants/pharmacology , Antioxidants/chemistry , Bread/analysis , Powders , Phenols/analysis , Lipase
15.
Clin Transl Sci ; 17(3): e13778, 2024 03.
Article in English | MEDLINE | ID: mdl-38515346

ABSTRACT

Persea americana fruit (PAF) is a favorable nutraceutical resource that comprises diverse unsaturated fatty acids (UFAs). UFAs are significant dietary supplementation, as they relieve metabolic disorders, including obesity (OB). In another aspect, this study was focused on the anti-OB efficacy of the non-fatty acids (NFAs) in PAF through network pharmacology (NP). Natural product activity & species source (NPASS), SwissADME, similarity ensemble approach (SEA), Swiss target prediction (STP), DisGeNET, and online Mendelian inheritance in man (OMIM) were utilized to gather significant molecules and its targets. The crucial targets were adopted to construct certain networks: protein-protein interaction (PPI), PAF-signaling pathways-targets-compounds (PSTC) networks, a bubble chart, molecular docking assay (MDA), and density function theory (DFT). Finally, the toxicities of the key compounds were validated by ADMETlab 2.0 platform. All 41 compounds in PAF conformed to Lipinski's rule, and the key 31 targets were identified between OB and PAF. On the bubble chart, PPAR signaling pathway had the highest rich factor, suggesting that the pathway might be an agonism for anti-OB. Conversely, estrogen signaling pathway had the lowest rich factor, indicating that the mechanism might be antagonism against OB. Likewise, the PSTC network represented that AKT1 had the greatest degree value. The MDA results showed that AKT1-gamma-tocopherol, PPARA-fucosterol, PPARD-stigmasterol, (PPARG)-fucosterol, (NR1H3)-campesterol, and ILK-alpha-tocopherol formed the most stable conformers. The DFT represented that the five molecules might be promising agents via multicomponent targeting. Overall, this study suggests that the NFAs in PAF might play important roles against OB.


Subject(s)
Fruit , Persea , Humans , Molecular Docking Simulation , Biological Assay , Fatty Acids , Obesity/drug therapy
16.
Nutr Cancer ; 76(4): 372-378, 2024.
Article in English | MEDLINE | ID: mdl-38425005

ABSTRACT

Dietary fiber and phytonutrients can protect against colorectal cancer, yet their consumption is low in the US. Avocados are a potential source of these beneficial nutrients. Therefore, this study aimed to examine the relationship between avocados/guacamole consumption and colorectal cancer risk in the Multiethnic Cohort Study. We assessed avocados/guacamole consumption by using a food frequency questionnaire. We classified participants into three consumer groups: <1 serving/month, 1-3 servings/month, and ≥1 serving/week with one serving defined as ½ avocado or ½ cup. Colorectal cancer cases were ascertained through the Surveillance, Epidemiology and End Results Program cancer registries. Cox proportional hazards models of colorectal cancer were used to calculate hazard ratios and 95% confidence intervals across avocados/guacamole intake groups in each sex overall and by anatomic subsite (i.e., right colon, left colon, and rectum) and race and ethnicity. Of 192,651 eligible participants, 62.8% reported consuming <1 serving/month avocados/guacamole, 26.7% reported 1-3 servings/month, and 10.5% reported ≥1 serving/week. When adjusted for relevant covariates, there was no significant association with incident colorectal cancer overall, for subsites, or within racial and ethnic subgroups (all p for trend ≥ 0.06). In this large prospective cohort study, we did not find that consumption of avocados/guacamole was associated with colorectal cancer risk.


Subject(s)
Colorectal Neoplasms , Persea , Humans , Cohort Studies , Risk Factors , Prospective Studies , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/prevention & control , Vegetables
17.
J Cell Mol Med ; 28(7): e18177, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38494843

ABSTRACT

Atherosclerosis, a chronic inflammatory disease of aorta, remains the major cause of morbidity and mortality among cardiovascular disease patients. Macrophage foam cell formation and inflammation are critically involved in early stages of atherosclerosis, hence chemopreventive targeting of foam cell formation by nutraceuticals may be a promising approach to curbing the progression of atherosclerosis. However, many nutraceuticals including berberine and ginkgetin have low stability, tissue/cell penetration and bioavailability resulting in inadequate chemotherapeutic effects of these nutraceuticals. We have used avocado-derived extracellular vesicles (EV) isolated from avocado (EVAvo ) as a novel carrier of nutraceuticals, in a strategy to alleviate the build-up of macrophage foam cells and expression of inflammatory genes. Our key findings are: (i) Avocado is a natural source of plant-derived EVs as shown by the results from transmission electron microscopy, dynamic light scattering and NanoBrook Omni analysis and atomic force microscopy; (ii) EVAvo are taken up by macrophages, a critical cell type in atherosclerosis; (iii) EVAvo can be loaded with high amounts of ginkgetin and berberine; (iv) ginkgetin plus berberine-loaded EVAvo (EVAvo(B+G) ) suppress activation of NFκB and NLRP3, and inhibit expression of pro-inflammatory and atherogenic genes, specifically Cd36, Tnfα, Il1ß and Il6; (v) EVAvo(B+G) attenuate oxidized low-density lipoprotein (oxLDL)-induced macrophage foam cell formation and (vi) EVAvo(B+G) inhibit oxLDL uptake but not its cell surface binding during foam cell formation. Overall, our results suggest that using EVAvo as a natural carrier of nutraceuticals may improve strategies to curb the progression of atherosclerosis by limiting inflammation and pro-atherogenic responses.


Subject(s)
Atherosclerosis , Berberine , Biflavonoids , Persea , Humans , Foam Cells , Berberine/pharmacology , Macrophages , Atherosclerosis/drug therapy , Atherosclerosis/prevention & control , Lipoproteins, LDL
18.
Int J Biol Macromol ; 265(Pt 1): 130837, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38503372

ABSTRACT

Efficient and effective use of biopolymers, such as starch, has increasingly prompted interest due to the current environmental challenges. However, starch-based composites still show poor ductility along with water and oxygen permeability, which may not meet the requirements for food packaging standards. In this study, modified starch (m-St), isolated from the avocado seed and synthesized with tert-butyl acetoacetate (t-BAA), was embedded into polylactic acid (PLA) to design new eco-friendly composites. The developed biocomposites were found to exhibit high performance with outstanding mechanical properties in conjunction with remarkable light, water vapor, and oxygen blocking features for food packaging applications. PLA/m-St(1:6) 20 wt% composites showed a dramatic increase in elongation at break (EB%) from 3.35 to 27.80 % (about 730 % enhancement) and exhibited remarkable UV-blocking performance from 16.21 to 83.86 % for UVB, relative to pure PLA. Equally importantly, these biocomposites revealed significant improvement in oxygen and water vapor barrier performance by reducing their values from 1331 to 32.9 cc m-2 day-1 (indicating a remarkable reduction of 97.53 %) and 61.9 to 28 g m-2 day-1, respectively. This study can show the great potential of extracting starch from biowaste resources and transforming it into sustainable bio-based composites as a promising solution for food packaging applications.


Subject(s)
Persea , Food Packaging , Starch , Steam , Polyesters , Oxygen
19.
Zootaxa ; 5403(2): 197-238, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38480446

ABSTRACT

Two new species, Tetralicia sawyeri n. sp. and Aleuroplatus martini n. sp. found on avocado (Persea americana) trees in Peru are described and illustrated. The synonymy of Aleuropleurocelus Drews & Sampson, 1956 n. syn. with Tetralicia Harrison, 1917 is proposed and a review and an illustrated key to the 39 species of Tetralicia of the world based on characteristics of the puparia is provided. Thirty-three species are transferred from Aleuropleurocelus to Tetralicia. A lectotype is designated for Aleurodes abnormis Quaintance, 1900. Aleurotrachelus gratiosus Bondar, 1923 is transferred to the genus Aleuroplatus. Paracarniella mexicana (Distant) and Adparaproba cf. yungensis Carvalho (Hemiptera: Miridae) are recorded for the first time in Peru and are important predators of both new whitefly species. Other natural enemies of these whiteflies found in the study include predatory species: Nephaspis isabelae Gonzlez (Coccinellidae), Chrysoperla sp., Ceraeochrysa sp. (Chrysopidae) and Gasteracantha cancriformis L. (Araneidae) as well as Encarsia brasiliensis Hempel, a common whitefly parasitoid in the Neotropics. A key to the New World genera of whiteflies similar to Aleuroplatus and Tetralicia is provided.


Subject(s)
Coleoptera , Hemiptera , Heteroptera , Hymenoptera , Persea , Animals , Trees , Peru
20.
Anal Bioanal Chem ; 416(10): 2399-2409, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38393340

ABSTRACT

According to green analytical chemistry principles, the use of agricultural byproducts as sorbent phases is an interesting topic due to their lignocellulosic origin, as they are biodegradable and inexpensive. To the best of our knowledge, this is the first study in which avocado seed and avocado seed activated carbon are proposed as sustainable sorbents for solid-phase microextraction technologies, which were used to assess the proof of concept. Rotating disk sorptive extraction (RDSE) was used as a model technology and ibuprofen (Ibu) and 1-hydroxy-ibuprofen (1-OH-Ibu) as representative analytes. It was found that activated carbon (AC) prepared at 600 °C with an impregnation ratio (raw material/activating agent (ZnCl2), w/w) of 1:1.2 had better extraction efficiency than other ACs obtained at different temperatures, impregnation ratios, and activating agents (K2CO3). Characterization revealed several differences between natural avocado seed, biochar prepared at 600 °C, and selected AC since the typical functional groups of the natural starting material begin to disappear with pyrolysis and increasing the surface area and pore volume, suggesting that the main interactions between analytes and the sorbent material are pore filling and π-π stacking. By using this AC as the sorbent phase, the optimal extraction conditions in RDSE were as follows: the use of 50 mg of sorbent in the disk, 30 mL of sample volume, pH 4, 90 min of extraction time at a rotation velocity of the disk of 2000 rpm, and methanol as the elution solvent. The extracts were analyzed via gas chromatography coupled to mass spectrometry (GC-MS). The method provided limits of detection of 0.23 and 0.07 µg L-1 and recoveries of 81% and 91% for Ibu and 1-OH-Ibu, respectively. When comparing the extraction efficiency of the selected activated carbon with those provided by Oasis® HLB and C18 in RDSE, nonsignificant differences were observed, indicating that avocado seed activated carbon is a suitable alternative to these commercial materials.


Subject(s)
Charcoal , Persea , Ibuprofen , Solvents/chemistry , Technology , Solid Phase Extraction/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...