Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.194
Filter
1.
Syst Parasitol ; 101(4): 44, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839661

ABSTRACT

Species of Diolcogaster parasitize Lepidoptera pests of commercial plants. The diversity of this genus is high, but few species of Diolcogaster have been described. The description of a new Diolcogaster species provides information for the biological control using this insect. This study presents the description and key notes on the biology of a new Diolcogaster parasitoid wasp. This species was reared from a caterpillar of Hypercompe brasiliensis collected after feeding on a Gloxinia perennis plant important to floriculture. Two complementary identification analyzes were performed on Diolcogaster adult bodies. The first was the analyses of its external morphology and the second its molecular analysis (mitochondrial DNA). The morphological analysis defined the insect as a new species of Diolcogaster, named Diolcogaster joanesi sp. nov. A maximum-likelihood (ML) analysis partially confirmed the morphological analysis, placing D. joanesi within a cluster including a previously identified species (Diolcogaster choi) and seven other morphospecies. The proximity of D. joanesi to D. choi is discussed and an updated key for all New World species of the xanthaspis group is provided. Twenty-eight adult wasps were obtained (22 females and six males) out of 50 cocoons which larvae emerged from the caterpillar host. The findings contribute to the broader understanding of Diolcogaster in the Neotropics and its potential for the biological control of lepidopteran defoliators.


Subject(s)
Pest Control, Biological , Species Specificity , Wasps , Animals , Brazil , Wasps/classification , Wasps/anatomy & histology , Moths/parasitology , Lepidoptera/parasitology , Phylogeny , Larva , Female
2.
Appl Microbiol Biotechnol ; 108(1): 364, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842723

ABSTRACT

Beauveria bassiana (Bal.-Criv.) is an important entomopathogenic fungus being used for the management of various agricultural pests worldwide. However, all strains of B. bassiana may not be effective against whitefly, Bemisia tabaci, or other pests, and strains show diversity in their growth, sporulation, virulence features, and overall bioefficacy. Thus, to select the most effective strain, a comprehensive way needs to be devised. We studied the diversity among the 102 strains of B. bassiana isolated from 19 insect species based on their physiological features, virulence, and molecular phylogeny, to identify promising ones for the management of B. tabaci. Strains showed diversity in mycelial growth, conidial production, and their virulence against B. tabaci nymphs. The highest nymphal mortality (2nd and 3rd instar) was recorded with MTCC-4511 (95.1%), MTCC-6289 (93.8%), and MTCC-4565 (89.9%) at a concentration of 1 × 106 conidia ml-1 under polyhouse conditions. The highest bioefficacy index (BI) was in MTCC-4511 (78.3%), MTCC-4565 (68.2%), and MTCC-4543 (62.1%). MTCC-4511, MTCC-4565, and MTCC-4543 clustered with positive loading of eigenvalues for the first two principal components and the cluster analysis also corresponded well with PCA (principal component analysis) (nymphal mortality and BI). The molecular phylogeny could not draw any distinct relationship between physiological features, the virulence of B. bassiana strains with the host and location. The BI, PCA, and square Euclidean distance cluster were found the most useful tools for selecting potential entomopathogenic strains. The selected strains could be utilized for the management of the B. tabaci nymphal population in the field through the development of effective formulations. KEY POINTS: • 102 B. bassiana strains showed diversity in growth and virulence against B. tabaci. • Bioefficacy index, PCA, and SED group are efficient tools for selecting potential strains. • MTCC-4511, 4565, and 4543 chosen as the most virulent strains to kill whitefly nymphs.


Subject(s)
Beauveria , Gossypium , Hemiptera , Pest Control, Biological , Phylogeny , Beauveria/genetics , Beauveria/pathogenicity , Beauveria/classification , Beauveria/isolation & purification , Animals , Hemiptera/microbiology , Virulence , Gossypium/microbiology , Nymph/microbiology , Spores, Fungal/growth & development , Genetic Variation
3.
BMC Biotechnol ; 24(1): 37, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38825715

ABSTRACT

BACKGROUND: As part of a publicly funded initiative to develop genetically engineered Brassicas (cabbage, cauliflower, and canola) expressing Bacillus thuringiensis Crystal (Cry)-encoded insecticidal (Bt) toxin for Indian and Australian farmers, we designed several constructs that drive high-level expression of modified Cry1B and Cry1C genes (referred to as Cry1BM and Cry1CM; with M indicating modified). The two main motivations for modifying the DNA sequences of these genes were to minimise any licensing cost associated with the commercial cultivation of transgenic crop plants expressing CryM genes, and to remove or alter sequences that might adversely affect their activity in plants. RESULTS: To assess the insecticidal efficacy of the Cry1BM/Cry1CM genes, constructs were introduced into the model Brassica Arabidopsis thaliana in which Cry1BM/Cry1CM expression was directed from either single (S4/S7) or double (S4S4/S7S7) subterranean clover stunt virus (SCSV) promoters. The resulting transgenic plants displayed a high-level of Cry1BM/Cry1CM expression. Protein accumulation for Cry1CM ranged from 5.18 to 176.88 µg Cry1CM/g dry weight of leaves. Contrary to previous work on stunt promoters, we found no correlation between the use of either single or double stunt promoters and the expression levels of Cry1BM/Cry1CM genes, with a similar range of Cry1CM transcript abundance and protein content observed from both constructs. First instar Diamondback moth (Plutella xylostella) larvae fed on transgenic Arabidopsis leaves expressing the Cry1BM/Cry1CM genes showed 100% mortality, with a mean leaf damage score on a scale of zero to five of 0.125 for transgenic leaves and 4.2 for wild-type leaves. CONCLUSIONS: Our work indicates that the modified Cry1 genes are suitable for the development of insect resistant GM crops. Except for the PAT gene in the USA, our assessment of the intellectual property landscape of components presents within the constructs described here suggest that they can be used without the need for further licensing. This has the capacity to significantly reduce the cost of developing and using these Cry1M genes in GM crop plants in the future.


Subject(s)
Arabidopsis , Bacillus thuringiensis Toxins , Bacterial Proteins , Endotoxins , Hemolysin Proteins , Plants, Genetically Modified , Plants, Genetically Modified/genetics , Arabidopsis/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Hemolysin Proteins/genetics , Animals , Endotoxins/genetics , Promoter Regions, Genetic/genetics , Bacillus thuringiensis/genetics , Moths/genetics , Brassica/genetics , Pest Control, Biological/methods , Insecticides/pharmacology
4.
Sci Rep ; 14(1): 12689, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38830863

ABSTRACT

The release of sterilized insects to control pest populations has been used successfully during the past 6 decades, but application of the method in vertebrates has largely been overlooked or met with failure. Here, we demonstrate for the first time in fish, that a small population of sea lamprey (Petromyzon marinus; Class Agnatha), arguably one of the most impactful invasive fish in the world, can be controlled by the release of sterilized males. Specifically, the release of high numbers of sterile males (~ 1000's) into a geographically isolated population of adult sea lamprey resulted in the first multiyear delay in pesticide treatment since treatments began during 1966. Estimates of percent reduction in recruitment of age-1 sea lamprey due to sterile male release ranged from 7 to 99.9% with the precision of the estimate being low because of substantial year-to-year variability in larval density and distribution. Additional monitoring that accounts for recruitment variability in time and space would reduce uncertainty in the degree to which sterile male release reduces recruitment rates. The results are relevant to vertebrate pest control programs worldwide, especially as technical opportunities to sterilize vertebrates and manipulate sex ratios expand.


Subject(s)
Introduced Species , Petromyzon , Animals , Male , Petromyzon/physiology , Female , Pest Control, Biological/methods
5.
Indian J Public Health ; 68(1): 3-8, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38847625

ABSTRACT

BACKGROUND: To control mosquito vectors causing human diseases, bacterial biopesticides are currently in use. Indeed, the recent development of resistance to these bacterial agents has impeded its applications. Under these circumstances, the search for novel bacterial agents with mosquitocidal activity is unavoidable. In this study, a novel mosquitocidal bacterium was isolated from red soils of agricultural field. OBJECTIVES: The objective of this study was to isolate and identify new mosquitocidal bacteria from the natural environment. MATERIALS AND METHODS: Soil samples were collected during 2021-2022 from Tirupathur district of Tamil Nadu, South India. The samples were bioprocessed for culturing the bacterial colony in a suitable culture medium (Nutrient Yeast Salt Medium), and after 72 h, the bacterial cell mass was removed and lyophilized. Bioassays (mosquito toxicity assays) were carried out to screen the bacterial colonies for mosquitocidal effect. The potential colony was further analyzed, and identified for its application in mosquito control. RESULTS: The new isolate screened from red soil was identified as Bacillus thuringiensis subspecies israelensis (VCRC B647) as per the ilvD gene sequence analysis. The strain was found to be potentially effective in controlling mosquito larvae, and further biochemical analyses, bacterial growth, biomass, and protein content were investigated. The new isolate did not show any toxic effect on nontarget aquatic organisms. CONCLUSION: It is significant to depict that the mosquitocidal action of this new isolate (Bti) is highly significant than the reference strain of Bti-H14. It is concluded that this is the first report that an indigenous strain of Bti VCRC B647 is very effective in mosquito control.


Subject(s)
Bacillus thuringiensis , Soil Microbiology , India , Animals , Mosquito Control/methods , Mosquito Vectors/microbiology , Mosquito Vectors/drug effects , Pest Control, Biological/methods , Culicidae/drug effects
6.
J Appl Microbiol ; 135(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38692851

ABSTRACT

AIMS: Clonostachys rosea is a well-known mycoparasite that has recently been investigated as a bio-based alternative to chemical nematicides for the control of plant-parasitic nematodes. In the search for a promising biocontrol agent, the ability of the C. rosea strain PHP1701 to control the southern root-knot nematode Meloidogyne incognita was tested. METHODS AND RESULTS: Control of M. incognita in vitro and in soil by C. rosea strain PHP1701 was significant and concentration dependent. Small pot greenhouse trials confirmed a significant reduction in tomato root galling compared to the untreated control. In a large greenhouse trial, the control effect was confirmed in early and mid-season. Tomato yield was higher when the strain PHP1701 was applied compared to the untreated M. incognita-infected control. However, the yield of non-M. incognita-infected tomato plants was not reached. A similar reduction in root galling was also observed in a field trial. CONCLUSIONS: The results highlight the potential of this fungal strain as a promising biocontrol agent for root-knot nematode control in greenhouses, especially as part of an integrated pest management approach. We recommend the use of C. rosea strain PHP1701 for short-season crops and/or to reduce M. incognita populations on fallow land before planting the next crop.


Subject(s)
Hypocreales , Pest Control, Biological , Plant Diseases , Plant Roots , Soil Microbiology , Solanum lycopersicum , Tylenchoidea , Solanum lycopersicum/parasitology , Animals , Tylenchoidea/physiology , Plant Roots/parasitology , Plant Diseases/parasitology , Plant Diseases/prevention & control , Hypocreales/physiology , Soil/parasitology
7.
Environ Health ; 23(1): 49, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811948

ABSTRACT

Plant protection measures are necessary to prevent pests and diseases from attacking and destroying crop plants and to meet consumer demands for agricultural produce. In the last decades the use of chemical pesticides has largely increased. Farmers are looking for alternatives. Biopesticides should be considered a sustainable solution. They may be less toxic than chemical pesticides, be very specific to the target pest, decompose quickly, and be less likely to cause resistance. On the other hand, lower efficacy and higher costs are two disadvantages of many biopesticides. Biopesticides include macroorganisms, natural compounds and microorganisms. Microbial pesticides are the most widely used and studied class of biopesticides. The greatest difference between microbial and chemical pesticides is the ability of the former to potentially multiply in the environment and on the crop plant after application. The data requirements for the European Union and the United States Environmental Protection Agency are highlighted, as these regulatory processes are the most followed in regions where local regulations for biopesticide products are not available or vague. New Approach Methods already proposed or harmonized for chemical pesticides are presented and discussed with respect to their use in evaluating microbial pesticide formulations. Evaluating the microbials themselves is not as simple as using the same validated New Approach Methods as for synthetic pesticides. Therefore, the authors suggest considering New Approach Method strategies specifically for microbials and global harmonization with acceptability with the advancements of such approaches. Further discussion is needed and greatly appreciated by the experts.


Subject(s)
Pesticides , Humans , Risk Assessment/methods , United States , Pest Control, Biological/methods
8.
Sci Rep ; 14(1): 12117, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802536

ABSTRACT

The implementation of the sterile insect technique against Aedes albopictus relies on many parameters, in particular on the success of the sterilization of males to be released into the target area in overflooding numbers to mate with wild females. Achieving consistent sterility levels requires efficient and standardized irradiation protocols. Here, we assessed the effects of exposure environment, density of pupae, irradiation dose, quantity of water and location in the canister on the induced sterility of male pupae. We found that the irradiation of 2000 pupae in 130 ml of water and with a dose of 40 Gy was the best combination of factors to reliably sterilize male pupae with the specific irradiator used in our control program, allowing the sterilization of 14000 pupae per exposure cycle. The location in the canister had no effect on induced sterility. The results reported here allowed the standardization and optimization of irradiation protocols for a Sterile Insect Technique program to control Ae. albopictus on Reunion Island, which required the production of more than 300,000 sterile males per week.


Subject(s)
Aedes , Mosquito Control , Pupa , Animals , Aedes/radiation effects , Aedes/physiology , Male , Pupa/radiation effects , Female , Mosquito Control/methods , Reunion , Pest Control, Biological/methods
9.
World J Microbiol Biotechnol ; 40(7): 217, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38806748

ABSTRACT

Plant pathogens with their abundance are harmful and cause huge damage to different agricultural crops and economy of a country as well as lead towards the shortage of food for humans. For their management, the utilization of entomopathogenic fungi is an eco-friendly technique, sustainable to the environment, safe for humans and has promising effect over chemical-based pesticides. This process requires a biochemical mechanism, including the production of enzymes, toxins, and other metabolites that facilitate host infection and invasion. Essential enzymes such as chitinase, proteinase, and lipase play a direct role in breaking down the host cuticle, the primary barrier to EPF (Entomopathogenic Fungi) infection. Additionally, secondary metabolites such as destruxins in Metarhizium, beauvericin in Beauveria, hirsutellides in Hirsutella, isarolides in Isaria, cordyols in Cordyceps, and vertihemipterins in Verticillium, among others, act both directly and indirectly to disable the defense mechanisms of insect hosts, thereby accelerating the EPF infection process. The chemical composition of these secondary metabolites varies, ranging from simple non-peptide pigments such as oosporine to highly complex piperazine derivatives such as vertihemiptellides. The biocontrol efficacy of EPF is extensively studied, with numerous fungal strains commercially available on a large scale for managing arthropod pests. This review emphasizes the role of proteins and enzymes against crop pathogens, detailing their mode of action, and describing the metabolites from entomopathogenic fungi and their biological activities. In doing so, these findings contribute to establishing a symbiotic equilibrium between agricultural productivity and environmental conservation.


Subject(s)
Crops, Agricultural , Fungi , Insecta , Pest Control, Biological , Animals , Beauveria/metabolism , Biological Control Agents/metabolism , Cordyceps/metabolism , Crop Protection/methods , Crops, Agricultural/parasitology , Fungi/metabolism , Insecta/microbiology , Metarhizium/metabolism , Plant Diseases/parasitology , Plant Diseases/prevention & control , Secondary Metabolism
10.
J Agric Food Chem ; 72(19): 10936-10943, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38691835

ABSTRACT

RNAi plays a crucial role in insect gene function research and pest control field. Nonetheless, the variable efficiency of RNAi across diverse insects and off-target effects also limited its further application. In this study, we cloned six essential housekeeping genes from Solenopsis invicta and conducted RNAi experiments by orally administering dsRNA. Then, we found that mixing with liposomes significantly enhanced the RNAi efficiency by targeting for SiV-ATPaseE. Additionally, we observed a certain lethal effect of this dsRNA on queens by our established RNAi system. Furthermore, no strict sequence-related off-target effects were detected. Finally, the RNAi effect of large-scale bacteria expressing dsRNA was successfully confirmed for controlling S. invicta. In summary, this study established an RNAi system for S. invicta and provided a research template for the future development of nucleic acid drugs based on RNAi.


Subject(s)
Ants , Insect Proteins , RNA Interference , Animals , Insect Proteins/genetics , Insect Proteins/metabolism , Ants/genetics , Insect Control/methods , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , Pest Control, Biological/methods , Female , Fire Ants
11.
Vet Parasitol ; 328: 110191, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723410

ABSTRACT

Small ruminants (sheep and goats) constantly suffer from endoparasitoses caused by gastrointestinal nematodes. Among these, the species Haemonchus contortus (Rudolphi, 1803) is considered to be the one of greatest importance within sheep farming. This nematode is difficult to control due to its resistance to most commercial anthelmintics. The aim of the present study was to assess the potential of macrochelid mites as macrobiological agents for controlling endoparasitoses of sheep caused by the nematode, H. contortus. For this, novel in vitro methodology was used, in which assessments were made not only of the predatory ability but also the population growth of mite species (Macrocheles merdarius, Macrocheles robustulus and Holostaspella bifoliata) when offered larvae of the nematode, H. contortus. The predatory ability of the mites, M. merdarius and H. bifoliata were efficient regarding their predatory ability against H. contortus nematode larvae. The mite, M. merdarius exhibited the highest predation rate with mean distribution values for the treated group of 18656 ± 10091 and for the control group of 1178 ± 712 (P < 0.0001). The species, H. bifoliata presented the highest population growth rate, with a percentage acarid recovery rate of 263% in relation to the number added initially. The data from this in vitro predation experiment suggest that, M. merdarius and H. bifoliata showed promise as macrobiological agents for controlling gastrointestinal endoparasitoses of sheep caused by the nematode, H. contortus given that both species reduced the population of this helminth by more 70% and the number of mites recovered was three times greater than the number added.


Subject(s)
Haemonchiasis , Mites , Pest Control, Biological , Sheep Diseases , Haemonchus , Haemonchiasis/prevention & control , Mites/physiology , Larva , Predatory Behavior , Pest Control, Biological/standards , Population Growth , Female , Animals , Sheep , Sheep Diseases/parasitology , Sheep Diseases/prevention & control , Feces/parasitology , Species Specificity , In Vitro Techniques
12.
Arch Microbiol ; 206(6): 268, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38762847

ABSTRACT

Actinomycetes, a diverse group of bacteria with filamentous growth characteristics, have long captivated researchers and biochemists for their prolific production of secondary metabolites. Among the myriad roles played by actinomycete secondary metabolites, their historical significance in the field of biocontrol stands out prominently. The fascinating journey begins with the discovery of antibiotics, where renowned compounds like streptomycin, tetracycline, and erythromycin revolutionized medicine and agriculture. The history of biocontrol traces its roots back to the early twentieth century, when scientists recognized the potential of naturally occurring agents to combat pests and diseases. The emergence of synthetic pesticides in the mid-twentieth century temporarily overshadowed interest in biocontrol. However, with growing environmental concerns and the realization of the negative ecological impacts of chemical pesticides, the pendulum swung back towards exploring sustainable alternatives. Beyond their historical role as antibiotics, actinomycete-produced secondary metabolites encompass a rich repertoire with biopesticide potential. The classification of these compounds based on chemical structure and mode of action is highlighted, demonstrating their versatility against both plant pathogens and insect pests. Additionally, this review provides in-depth insights into how endophytic actinomycete strains play a pivotal role in biocontrol strategies. Case studies elucidate their effectiveness in inhibiting Spodoptera spp. and nematodes through the production of bioactive compounds. By unraveling the multifunctional roles of endophytic actinomycetes, this review contributes compelling narrative knowledge to the field of sustainable agriculture, emphasizing the potential of these microbial allies in crafting effective, environmentally friendly biocontrol strategies for combating agricultural pests.


Subject(s)
Actinobacteria , Agriculture , Pest Control, Biological , Actinobacteria/metabolism , Animals , Biological Control Agents/metabolism , Secondary Metabolism , Plant Diseases/prevention & control , Plant Diseases/microbiology , Plant Diseases/parasitology , Pesticides/metabolism , Spodoptera/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Nematoda/microbiology , Endophytes/metabolism
13.
J Invertebr Pathol ; 204: 108123, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705354

ABSTRACT

Entomopathogenic nematodes (EPNs) can control several important turfgrass insect pests including white grubs, weevils, cutworms, and sod webworms. But most of the research has focused on inundative releases in a biopesticide strategy using EPN strains that may have lost some of their ability to persist effectively over years of lab maintenance and / or selection for virulence and efficient mass-production. Our study examined the potential of fresh field isolate mixes of endemic EPNs to provide multi-year suppression of turfgrass insect pests. In early June 2020, we applied isolate mixes from golf courses of the EPNs Steinernema carpocapsae, Heterorhabditis bacteriophora, and their combination to plots straddling fairway and rough on two golf courses in central New Jersey, USA. Populations of EPNs and insect pests were sampled on the fairway and rough side of the plots from just before EPN application until October 2022. EPN populations increased initially in plots treated with the respective species. Steinernema carpocapsae densities stayed high for most of the experiment. Heterorhabditis bacteriophora densities decreased after 6 months and stabilized at lower levels. Several insect pests were reduced across the entire experimental period. In the fairway, the combination treatment reduced annual bluegrass weevil larvae (59 % reduction) and adults (74 %); S. carpocapsae reduced only adults (42 %). White grubs were reduced by H. bacteriophora (67 %) and the combination (63 %). Black turfgrass ataenius adults were reduced in all EPN treatments (43-62 %) in rough and fairway. Sod webworm larvae were reduced by S. carpocapsae in the fairway (75 %) and the rough (100 %) and by H. bacteriophora in the rough (75 %). Cutworm larvae were reduced in the fairway by S. carpocapsae (88 %) and the combination (75 %). Overall, our observations suggest that inoculative applications of fresh field isolate mixes of endemic EPNs may be a feasible approach to long-term suppression of insect pests in turfgrass but may require periodic reapplications.


Subject(s)
Pest Control, Biological , Rhabditida , Animals , Rhabditida/physiology , Poaceae/parasitology , Moths/parasitology , Weevils/parasitology , New Jersey
14.
J Invertebr Pathol ; 204: 108122, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710321

ABSTRACT

The Asian citrus psyllid (ACP) Diaphorina citri transmits the causative agent of huanglongbing, or citrus greening disease, that has decimated global citrus production. Pesticidal proteins derived from bacteria such as Bacillus thuringiensis (Bt) can provide effective and environmentally friendly alternatives for management of D. citri, but few with sufficient toxicity to D. citri have been identified. Here, we report on the toxicity of 14 Bt-derived pesticidal proteins from five different structural groups against D. citri. These proteins were selected based on previously reported toxicity to other hemipteran species and on pesticidal protein availability. Most of the proteins were expressed in Escherichia coli and purified from inclusion bodies or His-tag affinity purification, while App6Aa2 was expressed in Bt and purified from spore/crystal mixtures. Pesticidal proteins were initially screened by feeding psyllids on a single dose, and lethal concentration (LC50) then determined for proteins with significantly greater mortality than the buffer control. The impact of CLas infection of D. citri on toxicity was assessed for selected proteins via topical feeding. The Bt protein Tpp78Aa1 was toxic to D. citri adults with an LC50 of approximately 204 µg/mL. Nymphs were more susceptible to Tpp78Aa1 than adults but no significant difference in susceptibility was observed between healthy and CLas-infected nymphs or adults. Tpp78Aa1 and other reported D. citri-active proteins may provide valuable tools for suppression of D. citri populations.


Subject(s)
Bacterial Proteins , Hemiptera , Pest Control, Biological , Animals , Hemiptera/microbiology , Citrus/microbiology , Insect Vectors , Bacillus thuringiensis/chemistry , Plant Diseases/microbiology , Insecticides
15.
J Agric Food Chem ; 72(20): 11381-11391, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38728113

ABSTRACT

RNA interference (RNAi)-based biopesticides offer an attractive avenue for pest control. Previous studies revealed high RNAi sensitivity in Holotrichia parallela larvae, showcasing its potential for grub control. In this study, we aimed to develop an environmentally friendly RNAi method for H. parallela larvae. The double-stranded RNA (dsRNA) of the V-ATPase-a gene (HpVAA) was loaded onto layered double hydroxide (LDH). The dsRNA/LDH nanocomplex exhibited increased environmental stability, and we investigated the absorption rate and permeability of dsRNA-nanoparticle complexes and explored the RNAi controlling effect. Silencing the HpVAA gene was found to darken the epidermis of H. parallela larvae, with growth cessation or death or mortality, disrupting the epidermis and midgut structure. Quantitative reverse transcription-polymerase chain reaction and confocal microscopy confirmed the effective absorption of the dsRNA/LDH nanocomplex by peanut plants, with distribution in roots, stems, and leaves. Nanomaterial-mediated RNAi silenced the target genes, leading to the death of pests. Therefore, these findings indicate the successful application of the nanomaterial-mediated RNAi system for underground pests, thus establishing a theoretical foundation for developing a green, safe, and efficient pest control strategy.


Subject(s)
Larva , RNA Interference , RNA, Double-Stranded , Animals , Larva/growth & development , Larva/genetics , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , Hydroxides/chemistry , Hydroxides/metabolism , Vacuolar Proton-Translocating ATPases/genetics , Vacuolar Proton-Translocating ATPases/metabolism , Vacuolar Proton-Translocating ATPases/chemistry , Arachis/genetics , Arachis/chemistry , Arachis/growth & development , Arachis/metabolism , Pest Control, Biological , Coleoptera/genetics , Coleoptera/growth & development , Green Chemistry Technology , Biological Control Agents/chemistry , Biological Control Agents/metabolism , Nanoparticles/chemistry
16.
Sci Rep ; 14(1): 12500, 2024 05 31.
Article in English | MEDLINE | ID: mdl-38822009

ABSTRACT

Fusarium wilt, caused by (Fusarium udum Butler), is a significant threat to pigeonpea crops worldwide, leading to substantial yield losses. Traditional approaches like fungicides and resistant cultivars are not practical due to the persistent and evolving nature of the pathogen. Therefore, native biocontrol agents are considered to be more sustainable solution, as they adapt well to local soil and climatic conditions. In this study, five isolates of F. udum infecting pigeonpea were isolated from various cultivars and characterized morphologically and molecularly. The isolate from the ICP 8858 cultivar displayed the highest virulence of 90%. Besides, 100 endophytic bacteria, 100 rhizosphere bacteria and three Trichoderma spp. were isolated and tested against F. udum isolated from ICP 8858 under in vitro conditions. Out of the 200 bacteria tested, nine showed highest inhibition, including Rb-4 (Bacillus sp.), Rb-11 (B. subtilis), Rb-14 (B. megaterium), Rb-18 (B. subtilis), Rb-19 (B. velezensis), Eb-8 (Bacillus sp.), Eb-11 (B. subtilis), Eb-13 (P. aeruginosa), and Eb-21 (P. aeruginosa). Similarly, Trichoderma spp. were identified as T. harzianum, T. asperellum and Trichoderma sp. Notably, Rb-18 (B. subtilis) and Eb-21 (P. aeruginosa) exhibited promising characteristics such as the production of hydrogen cyanide (HCN), cellulase, siderophores, ammonia and nutrient solubilization. Furthermore, treating pigeonpea seedlings with these beneficial microorganisms led to increased levels of key enzymes (POD, PPO, and PAL) associated with resistance to Fusarium wilt, compared to untreated controls. In field trials conducted for four seasons, the application of these potential biocontrol agents as seed treatments on the susceptible ICP2376 cultivar led to the lowest disease incidence. Specifically, treatments T2 (33.33) (P. aeruginosa) and T3 (35.41) (T. harzianium) exhibited the lowest disease incidence, followed by T6 (36.5) (Carbendizim), T1 (36.66) (B. subtilis), T4 (52.91) (T. asperellum) and T5 (53.33) (Trichoderma sp.). Results of this study revealed that, P. aeruginosa (Eb-21), B. subtilis (Rb-18) and T. harzianum can be used for plant growth promotion and management of Fusarium wilt of pigeonpea.


Subject(s)
Cajanus , Fusarium , Plant Diseases , Fusarium/pathogenicity , Cajanus/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Biological Control Agents , Trichoderma/physiology , Rhizosphere , Soil Microbiology , Pest Control, Biological/methods
17.
Curr Microbiol ; 81(7): 199, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822161

ABSTRACT

The present study evaluated the acaricidal activity of three Serratia strains isolated from Mimosa pudica nodules in the Lancandon zone Chiapas, Mexico. The analysis of the genomes based on the Average Nucleotide Identity, the phylogenetic relationships allows the isolates to be placed in the Serria ureilytica clade. The size of the genomes of the three strains is 5.4 Mb, with a GC content of 59%. The Serratia UTS2 strain presented the highest mortality with 61.41% against Tyrophagus putrescentiae followed by the Serratia UTS4 strain with 52.66% and Serratia UTS3 with 47.69% at 72 h at a concentration of 1X109 cell/mL. In the bioinformatic analysis of the genomes, genes related to the synthesis of chitinases, proteases and cellulases were identified, which have been reported for the biocontrol of mites. It is the first report of S. ureilytica with acaricidal activity, which may be an alternative for the biocontrol of stored products with high fat and protein content.


Subject(s)
Acaricides , Phylogeny , Serratia , Animals , Serratia/genetics , Acaricides/pharmacology , Genome, Bacterial , Pest Control, Biological , Chitinases/genetics , Chitinases/metabolism , Mexico
18.
J Parasitol ; 110(3): 200-205, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38802106

ABSTRACT

Phasmarhabditis (syn. Pellioditis) californica is a facultative parasite that has been marketed as a popular biocontrol agent against pestiferous slugs in England, Scotland, and Wales. The necromenic nematode Pristionchus entomophagus has also been recovered from slugs infected with Ph. californica. In this study, we experimentally investigated the outcome of single and mixed applications of Pr. entomophagus and Ph. californica on the slug Deroceras reticulatum (Müller). Host mortality was comparable for single and mixed applications of Ph. californica, with time to death significantly shorter in both treatment groups compared with controls. However, trials with Pr. entomophagus alone did not cause any significant host mortality relative to controls. Compared with the single Ph. californica applications, mixed applications resulted in 67% fewer infective juveniles establishing in the host, and subsequently far fewer infective juveniles were recovered in the next generation. In contrast, the establishment rate and progeny production in Pr. entomophagus were not impacted by the presence of Ph. californica (i.e., mixed applications). Hence, the presence of Pr. entomophagus had a deleterious effect on the establishment success and progeny production of Ph. californica. Our findings reveal an asymmetrical, antagonistic interaction between Ph. californica and Pr. entomophagus and highlight the importance of understanding the ecological relationships between co-occurring species. A decrease in parasite establishment success and progeny production has the potential to directly impact the persistence, sustainability, and efficacy of Ph. californica as a biological control agent.


Subject(s)
Gastropoda , Pest Control, Biological , Animals , Gastropoda/parasitology , Rhabditida/physiology , Host-Parasite Interactions , Rhabditoidea/physiology
19.
Arch Insect Biochem Physiol ; 116(1): e22121, 2024 May.
Article in English | MEDLINE | ID: mdl-38783691

ABSTRACT

Invasive insect pests, currently, pose a serious economic threat to several staple crops all over the world, one such being the fall armyworm, Spodoptera frugiperda. It was first observed in Africa since 2016, outside of its natural habitat in the Americas. Subsequently, it invaded several countries in South and South East Asia and also very recently in Australia. In all the newly invaded regions, maize is the principal crop attacked causing a serious economic concern to the poor farmers, particularly in the developing countries. Owing to the innate genetic ability, it defies many of the management options that include insecticides, Bt transgenics, and so forth. This is due to its high mobility, polyphagy and ability for quick development of resistance to several classes of insecticides. At this critical juncture, CRISPR/Cas9 mediated genome editing has shown a lot of promise in developing a novel area-wide pest management strategy called precision-guided sterile insect technique (pgSIT). pgSIT was initially demonstrated in Drosophila melanogaster which holds a greater promise for the environmentally friendly management of several globally significant agricultural pests such as S. frugiperda. Therefore, before developing both sgRNA and Cas9 transgenic lines, we have validated the target gene such as tssk2 through a non-transgenic approach by microinjecting ribo nucleo protein complex (Cas9 protein and tssk2 sgRNA) into G0 eggs of S. frugiperda. In the current investigation, we have obtained five edited males with distinct mutations which were further used for crossing studies to ascertain the effect of tssk2 editing affecting egg hatchability.


Subject(s)
CRISPR-Cas Systems , Spodoptera , Animals , Spodoptera/genetics , Male , Pest Control, Biological/methods , Gene Editing/methods , Spermatogenesis/genetics , Insect Proteins/genetics , Insect Proteins/metabolism , Female , Insect Control/methods
20.
PLoS Comput Biol ; 20(5): e1012052, 2024 May.
Article in English | MEDLINE | ID: mdl-38709817

ABSTRACT

The sterile insect technique (SIT) can be an efficient solution for reducing or eliminating certain insect pest populations. It is widely used in agriculture against fruit flies, including the Mediterranean fruit fly (medfly), Ceratitis capitata. The re-mating tendency of medfly females and the fact that the released sterile males may have some residual fertility could be a challenge for the successful implementation of the SIT. Obtaining the right balance between sterility level and sterile male quality (competitiveness, longevity, etc) is the key to a cost-efficient program. Since field experimental approaches can be impacted by many environmental variables, it is difficult to get a clear understanding on how specific parameters, alone or in combination, may affect the SIT efficiency. The use of models not only helps to gather knowledge, but it allows the simulation of a wide range of scenarios and can be easily adapted to local populations and sterile male production. In this study, we consider single- and double-mated females. We first show that SIT can be successful only if the residual fertility is less than a threshold value that depends on the basic offspring number of the targeted pest population, the re-mating rates, and the parameters of double-mated females. Then, we show how the sterile male release rate is affected by the parameters of double-mated females and the male residual fertility. Different scenarios are explored with continuous and periodic sterile male releases, with and without ginger aromatherapy, which is known to enhance sterile male competitiveness, and also taking into account some biological parameters related to females that have been mated twice, either first by a wild (sterile) male and then a sterile (wild) male, or by two wild males only. Parameter values were chosen for peach as host fruit to reflect what could be expected in the Corsican context, where SIT against the medfly is under consideration. Our results suggest that ginger aromatherapy can be a decisive factor determining the success of SIT against medfly. We also emphasize the importance of estimating the duration of the refractory period between matings depending on whether a wild female has mated with a wild or sterile male. Further, we show the importance of parameters, like the (hatched) eggs deposit rate and the death-rate related to all fertile double-mated females. In general, re-mating is considered to be detrimental to SIT programs. However, our results show that, depending on the parameter values of double-mated females, re-mating may also be beneficial for SIT. Our model can be easily adapted to different contexts and species, for a broader understanding of release strategies and management options.


Subject(s)
Ceratitis capitata , Fertility , Sexual Behavior, Animal , Animals , Ceratitis capitata/physiology , Male , Female , Fertility/physiology , Sexual Behavior, Animal/physiology , Pest Control, Biological/methods , Models, Biological , Computational Biology
SELECTION OF CITATIONS
SEARCH DETAIL
...