Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 355
Filter
1.
Euro Surveill ; 29(18)2024 May.
Article in English | MEDLINE | ID: mdl-38699902

ABSTRACT

BackgroundThe pet industry is expanding worldwide, particularly raw meat-based diets (RMBDs). There are concerns regarding the safety of RMBDs, especially their potential to spread clinically relevant antibiotic-resistant bacteria or zoonotic pathogens.AimWe aimed to investigate whether dog food, including RMBD, commercially available in Portugal can be a source of Salmonella and/or other Enterobacteriaceae strains resistant to last-line antibiotics such as colistin.MethodsFifty-five samples from 25 brands (21 international ones) of various dog food types from 12 suppliers were screened by standard cultural methods between September 2019 and January 2020. Isolates were characterised by phenotypic and genotypic methods, including whole genome sequencing and comparative genomics.ResultsOnly RMBD batches were contaminated, with 10 of 14 containing polyclonal multidrug-resistant (MDR) Escherichia coli and one MDR Salmonella. One turkey-based sample contained MDR Salmonella serotype 1,4,[5],12:i:- ST34/cgST142761 with similarity to human clinical isolates occurring worldwide. This Salmonella exhibited typical antibiotic resistance (bla TEM + strA-strB + sul2 + tet(B)) and metal tolerance profiles (pco + sil + ars) associated with the European epidemic clone. Two samples (turkey/veal) carried globally dispersed MDR E. coli (ST3997-complexST10/cgST95899 and ST297/cgST138377) with colistin resistance (minimum inhibitory concentration: 4 mg/L) and mcr-1 gene on IncX4 plasmids, which were identical to other IncX4 circulating worldwide.ConclusionSome RMBDs from European brands available in Portugal can be a vehicle for clinically relevant MDR Salmonella and pathogenic E. coli clones carrying genes encoding resistance to the last-line antibiotic colistin. Proactive actions within the One Health context, spanning regulatory, pet-food industry and consumer levels, are needed to mitigate these public health risks.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Meat , Salmonella , Animals , Salmonella/isolation & purification , Salmonella/genetics , Salmonella/drug effects , Humans , Portugal , Escherichia coli/isolation & purification , Escherichia coli/genetics , Escherichia coli/drug effects , Dogs , Anti-Bacterial Agents/pharmacology , Meat/microbiology , Drug Resistance, Multiple, Bacterial/genetics , Pets/microbiology , Whole Genome Sequencing , Food Microbiology , Microbial Sensitivity Tests , Escherichia coli Proteins/genetics , Colistin/pharmacology , Animal Feed/microbiology , Escherichia coli Infections/microbiology , Escherichia coli Infections/epidemiology
2.
Article in English | MEDLINE | ID: mdl-38747851

ABSTRACT

Microsporum canis, one of the most widespread dermatophytes worldwide, is a zoonotic microorganism that transmits infection from reservoirs such as cats and dogs to humans. This microorganism is associated with Tinea corporis and other clinical manifestations; however, few studies have used genetic surveillance to determine and characterize the process of zoonotic transmission. In this study, we show a clear example of zoonotic transmission from a cat to an intrafamilial environment, where it caused Tinea corporis by infection with M. canis. Molecular characterization using the b-tubulin gene and Random Amplified Polymorphic DNA analysis made it possible to determine that the six isolates of M. canis obtained in this study belonged to the same genetic variant or clone responsible for reservoir-reservoir or reservoir-human transmission.


Subject(s)
Cat Diseases , Microsporum , Tinea , Zoonoses , Microsporum/isolation & purification , Microsporum/genetics , Microsporum/classification , Cats/microbiology , Animals , Tinea/microbiology , Tinea/transmission , Tinea/veterinary , Cat Diseases/microbiology , Cat Diseases/transmission , Zoonoses/microbiology , Zoonoses/transmission , Pets/microbiology , Humans , Dogs , Random Amplified Polymorphic DNA Technique , Male , Female , Dog Diseases/microbiology , Dog Diseases/transmission , DNA, Fungal/genetics
3.
Int J Food Microbiol ; 418: 110726, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38704995

ABSTRACT

Pet food have been considered as possible vehicles of bacterial pathogens. The sudden boom of the pet food industry due to the worldwide increase in companion animal ownership calls for pet food investigations. Herein, this study aimed to determine the frequency, antimicrobial susceptibility profile, and molecular characteristics of coagulase-negative staphylococci (CoNS) in different pet food brands in Brazil. Eighty-six pet food packages were screened for CoNS. All isolates were identified at species level by MALDI-TOF MS and species-specific PCR. Antimicrobial susceptibility testing was performed by disc diffusion and broth microdilution (vancomycin and teicoplanin only) methods. The D-test was used to screen for inducible clindamycin phenotype (MLS-B). SCCmec typing and detection of mecA, vanA, vanB, and virulence-encoding genes were done by PCR. A total of 16 (18.6 %) CoNS isolates were recovered from pet food samples. Isolates were generally multidrug-resistant (MDR). All isolates were completely resistant (100 %) to penicillin. Resistances (12.5 % - 75 %) were also observed for fluoroquinolones, sulfamethoxazole-trimethoprim, tetracycline, rifampicin, erythromycin, and tobramycin. Isolates were susceptible to vancomycin (MICs <0.25-1 µg/mL) and teicoplanin (MICs <0.25-4 µg/mL). Intriguingly, 3/8 (37.5 %) CoNS isolates with the ERYRCLIS antibiotype expressed MLS-B phenotype. All isolates harboured blaZ gene. Seven (43.8 %) isolates carried mecA; and among them, the SCCmec Type III was the most frequent (n = 5/7; 71.4 %). Isolates also harboured seb, see, seg, sej, sem, etb, tsst, pvl, and hla toxin virulence-encoding genes (6.3 % - 25 %). A total of 12/16 (75 %) isolates were biofilm producers, while the icaAB gene was detected in an S. pasteuri isolate. Herein, it is shown that pet food is a potential source of clinically important Gram-positive bacterial pathogens. To the best of our knowledge, this is the first report of MLS-B phenotype and MR-CoNS in pet food in Latin America.


Subject(s)
Anti-Bacterial Agents , Clindamycin , Coagulase , Microbial Sensitivity Tests , Staphylococcus , Staphylococcus/drug effects , Staphylococcus/genetics , Staphylococcus/isolation & purification , Brazil , Anti-Bacterial Agents/pharmacology , Coagulase/metabolism , Animals , Clindamycin/pharmacology , Methicillin/pharmacology , Animal Feed/microbiology , Food Microbiology , Pets/microbiology , Drug Resistance, Multiple, Bacterial/genetics
4.
Parasite ; 31: 27, 2024.
Article in English | MEDLINE | ID: mdl-38787023

ABSTRACT

Enterocytozoon bieneusi is the most common microsporidian species in humans and can affect over 200 animal species. Considering possible increasing risk of human E. bieneusi infection due to close contact with pet dogs and identification of zoonotic E. bieneusi genotypes, 589 fresh fecal specimens of pet dogs were collected from Yunnan Province, China to determine the occurrence of E. bieneusi, characterize dog-derived E. bieneusi isolates, and assess their zoonotic potential at the genotype level. Enterocytozoon bieneusi was identified and genotyped by PCR and sequencing of the internal transcribed spacer (ITS) region of the ribosomal RNA (rRNA) gene. Twenty-nine specimens (4.9%) were positive. A statistical difference was observed in occurrence rates of E. bieneusi in pet dogs among 11 sampling sites by Fisher's exact test. Fifteen genotypes were identified and all of them phylogenetically belonged to zoonotic group 1, including four known genotypes (EbpC, D, Peru 8, and Henan-III) and 11 novel genotypes. Genotype Henan-III was reported in dogs for the first time. The finding of known genotypes found previously in humans and novel genotypes falling into zoonotic group 1 indicates that dogs may play a role in the transmission of E. bieneusi to humans in the investigated areas.


Title: Occurrence et caractérisation génétique d'Enterocytozoon bieneusi chez les chiens de compagnie dans la province du Yunnan, Chine. Abstract: Enterocytozoon bieneusi est l'espèce de microsporidies la plus répandue chez l'homme et peut affecter plus de 200 espèces animales. Compte tenu du risque accru possible d'infection humaine à E. bieneusi en raison d'un contact étroit avec des chiens de compagnie et de l'identification de génotypes zoonotiques d'E. bieneusi, 589 échantillons fécaux frais de chiens de compagnie ont été collectés dans la province du Yunnan, en Chine, pour déterminer la présence d'E. bieneusi, caractériser les isolats obtenus de chiens, et évaluer leur potentiel zoonotique au niveau du génotype. Enterocytozoon bieneusi a été identifié et génotypé par PCR et séquençage de la région d'espacement transcrit interne (ITS) du gène de l'ARN ribosomal (ARNr). Vingt-neuf échantillons (4,9%) étaient positifs. Une différence statistique a été observée dans les taux de présence d'E. bieneusi chez les chiens de compagnie parmi 11 sites d'échantillonnage par le test exact de Fisher. Quinze génotypes ont été identifiés et tous appartenaient phylogénétiquement au groupe zoonotique 1, dont quatre génotypes connus (EbpC, D, Peru 8 et Henan-III) et 11 nouveaux génotypes. Le génotype Henan-III est signalé pour la première fois chez le chien. La découverte de génotypes connus précédemment trouvés chez l'homme et de nouveaux génotypes appartenant au groupe zoonotique 1 indique que les chiens peuvent jouer un rôle dans la transmission d'E. bieneusi aux humains dans les zones étudiées.


Subject(s)
Dog Diseases , Enterocytozoon , Feces , Genotype , Microsporidiosis , Phylogeny , Zoonoses , Dogs , Animals , Enterocytozoon/genetics , Enterocytozoon/isolation & purification , Enterocytozoon/classification , China/epidemiology , Microsporidiosis/veterinary , Microsporidiosis/epidemiology , Microsporidiosis/microbiology , Dog Diseases/epidemiology , Dog Diseases/microbiology , Dog Diseases/parasitology , Feces/microbiology , Feces/parasitology , Pets/microbiology , DNA, Ribosomal Spacer/genetics , DNA, Fungal/genetics , Humans , Polymerase Chain Reaction/veterinary , Sequence Analysis, DNA
5.
PLoS Biol ; 22(5): e3002606, 2024 May.
Article in English | MEDLINE | ID: mdl-38814944

ABSTRACT

Zebrafish are popular research organisms selected for laboratory use due in part to widespread availability from the pet trade. Many contemporary colonies of laboratory zebrafish are maintained in aquaculture facilities that monitor and aim to curb infections that can negatively affect colony health and confound experiments. The impact of laboratory control on the microbial constituents associated with zebrafish in research environments compared to the pet trade are unclear. Diseases of unknown causes are common in both environments. We conducted a metatranscriptomic survey to broadly compare the zebrafish-associated microbes in pet trade and laboratory environments. We detected many microbes in animals from the pet trade that were not found in laboratory animals. Cohousing experiments revealed several transmissible microbes including a newly described non-enveloped, double-stranded RNA virus in the Birnaviridae family we name Rocky Mountain birnavirus (RMBV). Infections were detected in asymptomatic animals from the pet trade, but when transmitted to laboratory animals RMBV was associated with pronounced antiviral responses and hemorrhagic disease. These experiments highlight the pet trade as a distinct source of diverse microbes that associate with zebrafish and establish a paradigm for the discovery of newly described pathogenic viruses and other infectious microbes that can be developed for study in the laboratory.


Subject(s)
Zebrafish , Animals , Zebrafish/virology , Zebrafish/microbiology , Fish Diseases/virology , Fish Diseases/microbiology , Fish Diseases/transmission , Pets/virology , Pets/microbiology , Animals, Laboratory/virology , Animals, Laboratory/microbiology , Aquaculture
6.
Comp Immunol Microbiol Infect Dis ; 109: 102185, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663213

ABSTRACT

To evaluate the frequency of Acinetobacter spp., belonging to both Acinetobacter calcoaceticus-baumannii (ACB) and non-ACB complex, and their antibiotic resistance profiles in veterinary medicine, a three-year (2020-2022) retrospective study was carried out on sick companion animals. Epidemiological data from different clinical canine, feline, and equine samples, were acquired. For each strain, MALDI-TOF MS identification and susceptibility to a panel of 11 antibiotics, by Kirby-Bauer and E-test methods, were performed. Out of 628 bacteriological examinations, 2.5% resulted positive for strains belonging to Acinetobacter genus. Frequencies of 2.3%, 1.9%, and 3% were obtained from both in-visiting and hospitalized dogs, cats, and horses, respectively. Members of ACB-complex accounted for 50% of isolates. Since all strains resulted susceptible to aminoglycosides and polymyxins, no pandrug-resistant (PDR) species were recorded. While 12.5% A. baumannii resulted extensively-drug resistant (XDR), a higher percentage of multidrug-resistant strains was recorded among non-ACB strains (35.5%) than ACB strains (25%). Susceptibility was observed in the same percentage in both groups (62.5%). All ACB strains confirmed their intrinsic resistances. Non-ACB species showed lower resistances against antipseudomonal penicillins plus beta-lactamase inhibitors (P=0.1306), III generation cephalosporins (P=0.0547), and tetracyclines (P=0.0209) than ACB species. Carbapenem-resistance was observed for XDR A. baumannii (12.5%) and, in particular for MDR non-ACB complex members (25%). To our knowledge, A. lactucae represents the first description in two sick dogs in Italy. Furthermore, our results emphasize the role of non-ACB-complex species as important zoonotic pathogens, which could be reservoirs of clinically relevant resistance profiles.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Anti-Bacterial Agents , Cat Diseases , Dog Diseases , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Animals , Retrospective Studies , Dogs , Cats/microbiology , Acinetobacter Infections/veterinary , Acinetobacter Infections/microbiology , Acinetobacter Infections/epidemiology , Acinetobacter Infections/drug therapy , Horses/microbiology , Anti-Bacterial Agents/pharmacology , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/genetics , Dog Diseases/microbiology , Dog Diseases/drug therapy , Cat Diseases/microbiology , Cat Diseases/drug therapy , Pets/microbiology , Acinetobacter calcoaceticus/drug effects , Acinetobacter calcoaceticus/genetics , Horse Diseases/microbiology , Horse Diseases/drug therapy
7.
Res Vet Sci ; 171: 105220, 2024 May.
Article in English | MEDLINE | ID: mdl-38484448

ABSTRACT

The relationship between pet and owner has already been studied in several studies. Reviewing and summarizing studies on human and pet microbiota and their effects due to keeping pets is the purpose of the current study. Microbiota of the gut, oral cavity, and skin are unique to each individual, and this is also true of their pets (cats and dogs). Microbiota homeostasis is essential for the health of pets and their owners. Dysbiosis or imbalances in the microbiota can increase the risk of disorder progressions such as IBD or Clostridium difficile infections, among others. The microbial communities of humans change as a result of various factors, such as keeping pets. Pet owners frequently contact domestic dogs and cats, which affects their microbiota. As a result of keeping pets, the microbiota of different areas of the human body has changed, which has been associated with a decrease in pathogenic bacteria and an increase in beneficial bacteria.


Subject(s)
Cat Diseases , Dog Diseases , Humans , Animals , Cats , Dogs , Pets/microbiology , Ownership , Surveys and Questionnaires
8.
Int J Mol Sci ; 25(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38542095

ABSTRACT

Skin wounds and their infections by antibiotic-resistant bacteria (ARB) are very common in small animals, posing the risk of acquiring ARB by pet owners or antibiotic resistance gene (ARG) transfer to the owners' microbiota. The aim of this study was to identify the most common pathogens infecting wounds of companion animals, assess their antibiotic resistance, and determine the ARGs using culture-based, molecular, and proteomic methods. A total of 136 bacterial strains were isolated from wound swabs. Their species was identified using chromogenic media, followed by MALDI-TOF spectrometry. Antibiotic resistance was tested using disc diffusion, and twelve ARGs were detected using PCRs. The dominant species included Staphylococcus pseudintermedius (9.56%), E. coli, and E. faecalis (both n = 11, 8.09%). Enterobacterales were mostly resistant to amoxicillin/clavulanic acid (68.3% strains), all Pseudomonas were resistant to ceftazidime, piperacillin/tazobactam, imipenem, and tylosin, Acinetobacter were mostly resistant to tylosin (55.5%), all Enterococcus were resistant to imipenem, and 39.2% of Staphylococci were resistant to clindamycin. Among ARGs, strA (streptomycin resistance), sul3 (sulfonamide resistance), and blaTEM, an extended-spectrum beta-lactamase determinant, were the most frequent. The risk of ARB and ARG transfer between animals and humans causes the need to search for new antimicrobial therapies in future veterinary medicine.


Subject(s)
Anti-Bacterial Agents , Pets , Humans , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Pets/microbiology , Escherichia coli , Tylosin , Angiotensin Receptor Antagonists , Proteomics , Angiotensin-Converting Enzyme Inhibitors , Bacteria/genetics , Imipenem , Ecosystem , Microbial Sensitivity Tests
9.
J Infect Public Health ; 16 Suppl 1: 194-202, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37973494

ABSTRACT

BACKGROUND: Companion animals may act as antimicrobial resistance (AMR) reservoirs. This study investigated the prevalence and AMR patterns of Escherichia coli in pets and people in close contact with pets. METHODS: A total of 955 samples were collected from veterinary clinics across Thailand by rectal and skin or ear swabs from dogs and cats and fecal swabs from veterinarians, veterinary assistants, and pet owners. The minimum inhibitory concentrations (MICs) of the obtained isolates were investigated using Sensititre™ MIC plates against 21 different antimicrobial drugs. RESULTS: Escherichia coli from pets was frequently resistant to ampicillin (100%) and amoxicillin-clavulanic acid (100%), whereas E. coli from pet owners, veterinarians, and veterinary assistants was mostly resistant to tetracycline. The multiple antibiotic resistance index revealed that multidrug-resistant E. coli isolates were frequently found in dogs (34.92%), cats (62.12%), veterinarians (61.11%), veterinarian assistants (36.36%), and pet owners (47.62%). The most common AMR genes identified in this study were blaCTX-M, blaTEM, tetA, and tetB, which were associated with the antimicrobial susceptibility results. Additionally, extended-spectrum beta-lactamase (ESBL)-associated genes (i.e., blaCTX-M, blaTEM, and blaSHV) were found in 21.69%, 71.97%, 27.78%, and 21.43% of E. coli isolated from dogs, cats, veterinarians, and pet owners, respectively. CONCLUSIONS: Our findings demonstrated the presence of AMR genes, particularly ESBL-associated genes, in E. coli isolated from healthy pets and veterinarians. This implies that these sources of E. coli could potentially be reservoirs for antibiotic resistance, thereby increasing the risk of harm to both humans and animals. These findings highlight the importance of implementing effective AMR control measures in veterinary practices, as bacteria resistant to commonly used antimicrobials are present in humans and animals.


Subject(s)
Cat Diseases , Dog Diseases , Animals , Humans , Cats , Dogs , Escherichia coli , Prevalence , Thailand/epidemiology , Cat Diseases/microbiology , Pets/microbiology , Dog Diseases/epidemiology , Dog Diseases/microbiology , Anti-Bacterial Agents/pharmacology , beta-Lactamases/genetics
10.
BMC Vet Res ; 19(1): 85, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37464252

ABSTRACT

BACKGROUND: The characterization of staphylococcal species that colonize pets is important to maintain animal health and to minimize the risk of transmission to owners. Here, the prevalence of Staphylococcus spp. and methicillin resistance was investigated in canine and feline isolates, and risk factors of staphylococcal colonization were determined. Pets were examined and separated into four groups: (1) healthy dogs, (2) healthy cats, and (3) dogs and (4) cats with clinical signs of bacterial infections of skin, mucous membranes, or wounds. Specimens were collected by a veterinary physician from six anatomic sites (external ear canal, conjunctival sacs, nares, mouth, skin [groin], and anus). In total, 274 animals (cats n = 161, dogs n = 113) were enrolled. RESULTS: Staphylococcus species were highly diverse (23 species; 3 coagulase-positive and 20 coagulase-negative species), with the highest variety in healthy cats (19 species). The most frequent feline isolates were S. felis and S. epidermidis, while S. pseudintermedius was the most prevalent isolate in dogs. Risk factors of staphylococcal colonization included the presence of other animals in the same household, medical treatment within the last year, and a medical profession of at least one owner. Methicillin resistance was higher in coagulase-negative (17.86%) compared to coagulase-positive (1.95%) staphylococci. The highest prevalence of methicillin-resistant CoNS colonization was observed in animals kept in homes as the most common (dogs and cats). CONCLUSIONS: The association of methicillin-resistant CoNS colonization with animals most often chosen as pets, represents a high risk of transmission between them and owners. The importance of nosocomial transmission of CoNS was also confirmed. This information could guide clinical decisions during the treatment of veterinary bacterial infections. In conclusion, the epidemiologic characteristics of CoNS and their pathogenicity in pets and humans require further research.


Subject(s)
Cat Diseases , Dog Diseases , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Animals , Cats , Dogs , Methicillin Resistance , Cat Diseases/epidemiology , Cat Diseases/microbiology , Staphylococcal Infections/epidemiology , Staphylococcal Infections/veterinary , Staphylococcal Infections/microbiology , Coagulase , Prevalence , Dog Diseases/epidemiology , Dog Diseases/microbiology , Staphylococcus , Pets/microbiology , Risk Factors , Anti-Bacterial Agents/pharmacology
11.
Vet Microbiol ; 280: 109695, 2023 May.
Article in English | MEDLINE | ID: mdl-36848815

ABSTRACT

The emergence of mcr plasmid-mediated colistin-resistant extended-spectrum ß-lactamase (ESBL)-producing Enterobacterales among companion dogs and cats poses a risk of the animals acting as reservoirs for cross-species transmission. However, current knowledge of mcr-harboring ESBL-producing Enterobacterales in companion dogs and cats is still limited; thus, the genetic and phenotypic characteristics of the bacterial isolates and plasmids, in companion dogs and cats, remain to be elucidated. Here, we identified mcr gene-harboring ESBL-producing Escherichia coli isolates during whole-genome sequencing of ESBL-producing E. coli isolates from a dog and a cat in Osaka, Japan. Colistin-resistant MY732 isolate from a dog carried two plasmids: mcr-1.1-harboring IncI2 plasmid and blaCTX-M-14-harboring IncFIB plasmid. Conjugation assays revealed that both plasmids can be co-transferred even though the IncFIB plasmid lacked a conjugal transfer gene cassette. The other isolate MY504 from a cat harbored two bla genes and mcr-9 on the identical IncHI2 plasmid. This isolate was not resistant to colistin, which is likely to be due to deletion of the regulatory two-component QseBC system associated with the mcr-9 expression. To the best of our knowledge, this is the first report of a colistin-resistant ESBL-producing E. coli isolate harboring mcr-1 from a companion dog in Japan. Given that the mcr gene-harboring IncI2 and IncHI2 plasmids in this study shared high homology with plasmids from human or animal-derived Enterobacterales, companion dogs and cats may act as important reservoirs for cross-species transmission of the mcr gene in the community, in Japan.


Subject(s)
Cat Diseases , Dog Diseases , Escherichia coli Infections , Escherichia coli Proteins , Cats , Animals , Dogs , Humans , Escherichia coli , Pets/microbiology , Colistin , Escherichia coli Proteins/genetics , Anti-Bacterial Agents/pharmacology , Japan/epidemiology , Dog Diseases/epidemiology , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Plasmids/genetics , beta-Lactamases/genetics , beta-Lactamases/metabolism , Microbial Sensitivity Tests/veterinary
12.
Vet Dermatol ; 34(1): 22-27, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36331035

ABSTRACT

BACKGROUND: Household pets can carry meticillin-resistant Staphylococcus aureus (MRSA) introduced to the home by their human companions. Specific factors promoting pet carriage of this pathogen have not been fully elucidated. OBJECTIVE: This study evaluated MRSA cultured from pets and the home environment in households where a human infected with MRSA had been identified, and aimed to determine potential risk factors for pet MRSA carriage. MATERIALS AND METHODS: Humans diagnosed with community-associated MRSA (CA-MRSA) skin or soft-tissue infection (SSTI) in the mid-Atlantic United States were identified. One hundred forty-two dogs and cats from 57 affected households were identified of which 134 (94.4%) pets and the household environment were sampled for bacterial culture, PCR confirmation and spa-typing for MRSA strain determination. Samples were obtained 3 months later from 86 pets. RESULTS: At baseline, 12 (9.0%) pets carried MRSA. Potential risk factors associated with carriage included pet bed (environmental) MRSA contamination, flea infestation and prior antimicrobial use in the pet. Pets tended to carry human-adapted MRSA strains and spa-types of MRSA isolates cultured from pets were concordant with strains cultured from the home environment in seven of eight homes (87.5%) at baseline. CONCLUSIONS AND CLINICAL RELEVANCE: Results may inform risk-based veterinary clinical recommendations and provide evidence for selective pet testing as a possible alternative to early removal of pets from the homes of humans infected with MRSA. MRSA contamination of the home environment is likely an important risk factor for pet MRSA carriage, and household interventions should be considered to reduce risk of MRSA carriage in exposed pets.


Subject(s)
Cat Diseases , Dog Diseases , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Animals , Humans , Cats , Dogs , Methicillin , Staphylococcal Infections/epidemiology , Staphylococcal Infections/veterinary , Staphylococcal Infections/microbiology , Cat Diseases/epidemiology , Cat Diseases/microbiology , Carrier State/veterinary , Carrier State/microbiology , Dog Diseases/epidemiology , Dog Diseases/microbiology , Risk Factors , Pets/microbiology
13.
Zoonoses Public Health ; 69(5): 550-559, 2022 08.
Article in English | MEDLINE | ID: mdl-35420715

ABSTRACT

It has been suggested that pets play a critical role in the maintenance of methicillin-resistant (MR) and multidrug-resistant (MDR) Staphylococcus spp. in the household. We examined risk factors for carriage of antimicrobial-resistant coagulase-positive staphylococci, with particular attention to Staphylococcus aureus and Staphylococcus pseudintermedius isolated from pets living in households of people diagnosed with methicillin-resistant S. aureus (MRSA) skin or soft-tissue infection. We analyzed data collected cross-sectionally from a study conducted in 2012 that evaluated the transmission of MRSA and other staphylococci from humans, their pets and the environment (Pets and Environmental Transmission of Staphylococci [PETS] study). We used unadjusted and adjusted stratified logistic regression analyses with household-clustered standard errors to evaluate the association between demographic, healthcare-related, contact-related and environmental risk factors and MDR Staphylococcus spp. isolated from dogs and cats. Staphylococcal isolates obtained from dogs (n = 63) and cats (n = 47) were included in these analyses. The use of oral or injectable antimicrobials by the pets during the prior year was the main risk factor of interest. Based on our results, 50% (12/24) of S. aureus, 3.3% (1/30) of S. pseudintermedius and 25% (14/56) of other coagulase-positive staphylococci (CPS) were determined to be MDR. S. aureus isolates were more likely to be MDR compared with S. pseudintermedius. We did not find a significant statistical association between the use of oral or injectable antimicrobials in the prior year and the presence of MDR bacteria. The results suggest that drivers of antimicrobial resistance in household staphylococci may vary by bacterial species, which could have implications for one health intervention strategies for staphylococci and inform the investigation of other reverse zoonoses, such as COVID-19.


Subject(s)
Anti-Infective Agents , COVID-19 , Cat Diseases , Dog Diseases , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Animals , Anti-Bacterial Agents/pharmacology , COVID-19/veterinary , Cat Diseases/microbiology , Cats , Coagulase , Dog Diseases/epidemiology , Dog Diseases/microbiology , Dogs , Drug Resistance, Bacterial , Humans , Pets/microbiology , Risk Factors , Staphylococcal Infections/epidemiology , Staphylococcal Infections/microbiology , Staphylococcal Infections/veterinary , Staphylococcus , Staphylococcus aureus
14.
Parasite ; 29: 15, 2022.
Article in English | MEDLINE | ID: mdl-35315766

ABSTRACT

Enterocytozoon bieneusi, a common opportunistic pathogen, has been detected in humans and a wide range of animals worldwide. However, no information on the prevalence and molecular characterization of E. bieneusi in hamsters is available worldwide. In this study, fecal specimens were collected from 175 golden hamsters and 175 Siberian hamsters purchased from pet shops in three provinces of China. The average infection rate of E. bieneusi was 12.0% (42/350), with 14.9% (26/175) in pet golden hamsters and 9.1% (16/175) in pet Siberian hamsters. Four genotypes were identified in pet golden hamsters, including three known genotypes (D, Henan-II, and SHW5) and one novel genotype (named Ebph1). Five genotypes were found in pet Siberian hamsters, including one known genotype (D) and four novel genotypes (named Ebph2 to Ebph5). Genotypes D and Ebph2 were the dominant genotype in pet golden hamsters (23/26, 88.5%) and Siberian hamsters (9/16, 56.3%), respectively. Phylogenetic analysis showed that the E. bieneusi isolates clustered into two groups: Group 1 (D, Henan-II, SHW5, and Ebph1) and Group 3 (Ebph2 to Ebph5). To the best of our knowledge, this is the first report of E. bieneusi infection in golden hamsters and Siberian hamsters worldwide. The identification of four genotypes belonging to Group 1 of high zoonotic potential suggests that pet hamsters especially golden hamsters can be potential sources of human microsporidiosis.


Title: Première détection et génotypage d'Enterocytozoon bieneusi chez des hamsters dorés de compagnie (Mesocricetus auratus) et des hamsters sibériens (Phodopus sungorus) en Chine. Abstract: Enterocytozoon bieneusi, un agent pathogène opportuniste commun, a été détecté chez les humains et un large éventail d'animaux dans le monde. Cependant, aucune information sur la prévalence et la caractérisation moléculaire d'E. bieneusi chez les hamsters n'est disponible. Dans cette étude, des échantillons fécaux ont été prélevés sur 175 hamsters dorés et 175 hamsters sibériens achetés dans des animaleries de trois provinces de Chine. Le taux d'infection moyen d'E. bieneusi était de 12,0 % (42/350), avec 14,9 % (26/175) chez les hamsters dorés et 9,1 % (16/175) chez les hamsters sibériens. Quatre génotypes ont été identifiés chez les hamsters dorés, dont trois génotypes connus (D, Henan-II et SHW5) et un nouveau génotype (nommé Ebph1). Cinq génotypes ont été trouvés chez des hamsters sibériens, dont un génotype connu (D) et quatre nouveaux génotypes (nommés Ebph2 à Ebph5). Les génotypes D et Ebph2 étaient les génotypes dominants, respectivement chez les hamsters dorés (23/26, 88,5 %) et les hamsters sibériens (9/16, 56,3 %). L'analyse phylogénétique a montré que les isolats d'E. bieneusi se regroupaient en deux groupes : le groupe 1 (D, Henan-II, SHW5 et Ebph1) et le groupe 3 (Ebph2 à Ebph5). À notre connaissance, il s'agit du premier signalement d'infection par E. bieneusi chez des hamsters dorés et des hamsters de Sibérie dans le monde. L'identification de quatre génotypes appartenant au groupe 1, à fort potentiel zoonotique, suggère que les hamsters de compagnie, en particulier les hamsters dorés, peuvent être des sources potentielles de microsporidiose humaine.


Subject(s)
Enterocytozoon , Mesocricetus , Microsporidiosis , Pets , Phodopus , Animals , China/epidemiology , Enterocytozoon/genetics , Enterocytozoon/isolation & purification , Feces/microbiology , Genotype , Mesocricetus/microbiology , Microsporidiosis/epidemiology , Microsporidiosis/microbiology , Microsporidiosis/veterinary , Pets/microbiology , Phodopus/microbiology , Phylogeny
15.
BMC Microbiol ; 21(1): 237, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34445951

ABSTRACT

BACKGROUND: Avian tuberculosis is a chronic and zoonotic disease that affects a wide variety of birds, mammals, and humans. This study aimed to estimate the frequency of Mycobacterium avium subsp. avium in some domestic birds based on molecular diagnosis, antibiogram profile, and PCR-based detection of inhA, rpoB, rpsL, and otrB antibiotic resistance-related genes. METHODS: A total of 120 fecal samples were collected from small flocks of house-reared domestic birds at Ismailia Governorate, Egypt. The collected samples were processed and subjected to the bacteriological examination. The antimicrobial susceptibility testing of the recovered isolates was performed using the broth microdilution method for the detection of minimum inhibitory concentrations (MICs). The genetic detection of the IS901confirmatory gene, inhA, rpoB, rpsL, and otrB genes was carried out using PCR. RESULTS: The frequency of M. avium subsp. avium was 4.1% (5/120); 10% (4/40) in ducks, and 2.5% (1/10) in geese. The identification of the recovered isolates was confirmed using PCR, where all the tested isolates were positive for IS901confirmatory gene. The results of the broth microdilution method revealed that most of the recovered isolates exhibited multidrug resistance (MDR) to isoniazid, rifampicin, streptomycin, oxytetracycline, and doxycycline, and harbored the inhA, rpoB, rpsL, and otrB genes. CONCLUSION: In brief, to the best of our knowledge this is the first report that emphasized the emergence of avian tuberculosis in house-reared domestic birds in Egypt. The emergence of MDR- M. avium subsp. avium is considered a public health threat. Emerging MDR-M. avium subsp. avium in domestic birds are commonly harbored the IS901, inhA, rpoB, rpsL, and otrB genes. Azithromycin and clofazimine revealed a promising in-vitro antibacterial activity against M. avium subsp. avium.


Subject(s)
Anti-Bacterial Agents/pharmacology , Birds/microbiology , Drug Resistance, Multiple, Bacterial , Mycobacterium Infections/veterinary , Mycobacterium/drug effects , Mycobacterium/genetics , Pets/microbiology , Animals , Bacterial Zoonoses/epidemiology , Ducks/microbiology , Egypt/epidemiology , Feces/microbiology , Geese/microbiology , Microbial Sensitivity Tests , Mycobacterium/isolation & purification , Mycobacterium Infections/epidemiology
16.
Vet Microbiol ; 259: 109160, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34197979

ABSTRACT

High-level mupirocin resistance (HLMR) is determined by the plasmid-located ileS2 gene flanked by two copies of the insertion sequence 257 (IS257). The molecular epidemiology of high-level mupirocin-resistant isolates could be assessed by the determination of their IS257-ileS2 spacer regions conformation. In this study, 188 isolates of methicillin-resistant staphylococci were subjected to the detection of HLMR, and analysis of the conformation of the IS257-ileS2 spacer regions. Mupirocin resistance was detected in five (2,6%) isolates, among which two were recognized as Staphylococcus pseudintermedius, two as Staphylococcus haemolyticus, and one as Staphylococcus aureus. High-level mupirocin resistance was revealed by the agar disk diffusion method, and MIC values, and was confirmed by the detection of the ileS2 gene. The conformations of the IS257-ileS2 spacer regions were homologous in two S. haemolyticus strains tested. The remaining three isolates showed diverse IS257-ileS2 conformations. The results of this study indicate that HLMR occasionally occurs in staphylococci isolated from companion animals. The heterogeneity and the homogeneity of the IS257-ileS2 spacer regions confirm that the ileS2 gene spread among staphylococci of animal origin by the transfer of different as well as the same plasmids. Surveillance of the occurrence of mupirocin resistance and molecular characterization of resistant isolates are strongly recommended due to the possibility of plasmid-located resistance gene transfer between staphylococci.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/genetics , Mupirocin/pharmacology , Pets/microbiology , Staphylococcal Infections/veterinary , Animals , Cats/microbiology , Coagulase/biosynthesis , DNA Transposable Elements , Dogs/microbiology , Genes, Bacterial , Methicillin-Resistant Staphylococcus aureus/enzymology , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Microbial Sensitivity Tests , Plasmids/genetics , Staphylococcal Infections/microbiology , Staphylococcus/classification , Staphylococcus/drug effects , Staphylococcus/genetics
17.
Arch Microbiol ; 203(7): 3785-3792, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34146113

ABSTRACT

Human infections caused by the bacterial pathogens transmitted from pet-turtles are becoming very common and getting more importance as the turtles are considered unsafe pet animals, mainly for children and immunocompromised people. Pet-turtles are known as the reservoir of different bacterial species as their intestinal microflora. Extrinsic stressors, such as crowding, unhygienic handling, poor water quality, polluted feeding and inadequate nutrition, can predispose pet-turtles to bacterial infections. The presence of different virulence genes leads to the virulent potential of bacteria. The virulent bacteria can cause infections in turtles and humans, if the turtle owners or shopkeepers don't practice proper sanitation while handling turtles. The aim of this review paper was to provide an overview of different bacterial species isolated from pet-turtles for awareness-raising about potential health risks related to raise pet-turtles.


Subject(s)
Bacterial Physiological Phenomena , Pets , Turtles , Animals , Bacteria/genetics , Bacteria/pathogenicity , Humans , Pets/microbiology , Turtles/microbiology , Virulence/genetics
18.
PLoS One ; 16(6): e0253133, 2021.
Article in English | MEDLINE | ID: mdl-34133453

ABSTRACT

Pet ownership is an essential environmental exposure that might influence the health of the owner. This study's primary objectives were to explore the effects of cat ownership on the gut microbial diversity and composition of owners. Raw data from the American Gut Project were obtained from the SRA database. A total of 214 Caucasian individuals (111 female) with cats and 214 individuals (111 female) without cats were used in the following analysis. OTU number showed significant alteration in the Cat group and Female_cat group, compared with that of the no cat (NC) group and Female_ NC group, respectively. Compared with the NC group, the microbial phylum Proteobacteria was significantly decreased in the Cat group. The microbial families Alcaligenaceae and Pasteurellaceae were significantly reduced, while Enterobacteriaceae and Pseudomonadaceae were significantly increased in the Cat group. Fifty metabolic pathways were predicted to be significantly changed in the Cat group. Twenty-one and 13 metabolic pathways were predicted to be significantly changed in the female_cat and male_cat groups, respectively. Moreover, the microbial phylum Cyanobacteria was significantly decreased, while the families Alcaligenaceae, Pseudomonadaceae and Enterobacteriaceae were significantly changed in the normal weight cat group. In addition, 41 and 7 metabolic pathways were predicted to be significantly changed in the normal-weight cat and overweight cat groups, respectively. Therefore, this study demonstrated that cat ownership could influence owners' gut microbiota composition and function, especially in the female group and normal-weight group.


Subject(s)
Cats/microbiology , Gastrointestinal Microbiome , Pets/microbiology , Adolescent , Adult , Aged , Animals , Female , Humans , Male , Metabolic Networks and Pathways , Middle Aged , Sex Factors , Young Adult
19.
Vet Microbiol ; 257: 109072, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33965789

ABSTRACT

Brucellosis is a prevalent disease in Costa Rica (CR), with an increasing number of human infections. Close to half of homes in CR have one or more dogs, corresponding to ∼1.4 million canines, most of them in the Central Valley within or near the cities of San José, Heredia, and Alajuela. From 302 dog sera collected from this region, 19 were positive for Brucella canis antigens, and five had antibodies against smooth lipopolysaccharide, suggesting infections by both B. canis and other Brucella species. B. canis strains were isolated in the Central Valley from 26 kennel dogs and three pet dogs, all displaying clinical signs of canine brucellosis. We detected three recent introductions of different B. canis strains in kennels: two traced from Mexico and one from Panama. Multiple locus-variable number tandem repeats (MLVA-16) and whole-genome sequencing (WGSA) analyses showed that B. canis CR strains comprise three main lineages. The tree topologies obtained by WGSA and MLVA-16 just partially agreed, indicating that the latter analysis is not suitable for phylogenetic studies. The fatty acid methyl ester analysis resolved five different B. canis groups, showing less resolution power than the MLVA-16 and WGSA. Lactobacillic acid was absent in linages I and II but present in linage III, supporting the recent introductions of B. canis strains from Mexico. B. canis displaying putative functional cyclopropane synthase for the synthesis of lactobacillic acid are phylogenetically intertwined with B. canis with non-functional protein, indicating that mutations have occurred independently in the various lineages.


Subject(s)
Brucella canis/genetics , Brucellosis/epidemiology , Brucellosis/veterinary , Disease Outbreaks/veterinary , Dog Diseases/microbiology , Phylogeny , Animals , Brucella canis/classification , Brucella canis/pathogenicity , Costa Rica/epidemiology , Dog Diseases/epidemiology , Dogs , Evolution, Molecular , Female , Genetic Variation , Genome, Bacterial , Genotype , Introduced Species , Male , Mexico , Panama , Pets/microbiology , Whole Genome Sequencing
20.
Parasit Vectors ; 14(1): 260, 2021 May 17.
Article in English | MEDLINE | ID: mdl-34001256

ABSTRACT

BACKGROUND: The universal nature of the human-companion animal relationship and their shared ticks and tick-borne pathogens offers an opportunity for improving public and veterinary health surveillance. With this in mind, we describe the spatiotemporal trends for blacklegged tick (Ixodes scapularis) submissions from humans and companion animals in Ontario, along with pathogen prevalence. METHODS: We tested tick samples submitted through passive surveillance (2011-2017) from humans and companion animals for Borrelia burgdorferi, Borrelia miyamotoi, Anaplasma phagocytophilum and Babesia microti. We describe pathogen prevalence in ticks from humans and from companion animals and constructed univariable Poisson and negative binomial regression models to explore the spatiotemporal relationship between the rates of tick submissions by host type. RESULTS: During the study, there were 17,230 blacklegged tick samples submitted from humans and 4375 from companion animals. Tick submission rates from companion animals were higher than expected in several public health units (PHUs) lacking established tick populations, potentially indicating newly emerging populations. Pathogen prevalence in ticks was higher in PHUs where established blacklegged tick populations exist. Borrelia burgdorferi prevalence was higher in ticks collected from humans (maximum likelihood estimate, MLE = 17.5%; 95% confidence interval, CI 16.97-18.09%) than from companion animals (9.9%, 95% CI 9.15-10.78%). There was no difference in pathogen prevalence in ticks by host type for the remaining pathogens, which were found in less than 1% of tested ticks. The most common co-infection B. burgdorferi + B. miyamotoi occurred in 0.11% of blacklegged ticks from humans and animals combined. Borrelia burgdorferi prevalence was higher in unengorged (21.9%, 95% CI 21.12-22.65%) than engorged ticks (10.0%, 95% CI 9.45-10.56%). There were no consistent and significant spatiotemporal relationships detected via regression models between the annual rates of submission of each host type. CONCLUSIONS: While B. burgdorferi has been present in blacklegged ticks in Ontario for several decades, other tick-borne pathogens are also present at low prevalence. Blacklegged tick and pathogen surveillance data can be used to monitor risk in human and companion animal populations, and efforts are under consideration to unite surveillance efforts for the different target populations.


Subject(s)
Ixodes/microbiology , Ixodes/parasitology , Pets/microbiology , Pets/parasitology , Anaplasma phagocytophilum/isolation & purification , Anaplasma phagocytophilum/pathogenicity , Animals , Babesia microti/isolation & purification , Babesia microti/pathogenicity , Borrelia/isolation & purification , Borrelia/pathogenicity , Borrelia burgdorferi/isolation & purification , Borrelia burgdorferi/pathogenicity , Coinfection/microbiology , Coinfection/parasitology , Female , Humans , Male , Ontario , Spatio-Temporal Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...