Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.817
Filter
1.
Cell Mol Life Sci ; 81(1): 249, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836877

ABSTRACT

Protein ubiquitination is one of the most important posttranslational modifications (PTMs) in eukaryotes and is involved in the regulation of almost all cellular signaling pathways. The intracellular bacterial pathogen Legionella pneumophila translocates at least 26 effectors to hijack host ubiquitination signaling via distinct mechanisms. Among these effectors, SidC/SdcA are novel E3 ubiquitin ligases with the adoption of a Cys-His-Asp catalytic triad. SidC/SdcA are critical for the recruitment of endoplasmic reticulum (ER)-derived vesicles to the Legionella-containing vacuole (LCV). However, the ubiquitination targets of SidC/SdcA are largely unknown, which restricts our understanding of the mechanisms used by these effectors to hijack the vesicle trafficking pathway. Here, we demonstrated that multiple Rab small GTPases and target soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) proteins are bona fide ubiquitination substrates of SidC/SdcA. SidC/SdcA-mediated ubiquitination of syntaxin 3 and syntaxin 4 promotes their unconventional pairing with the vesicle-SNARE protein Sec22b, thereby contributing to the membrane fusion of ER-derived vesicles with the phagosome. In addition, our data reveal that ubiquitination of Rab7 by SidC/SdcA is critical for its association with the LCV membrane. Rab7 ubiquitination could impair its binding with the downstream effector Rab-interacting lysosomal protein (RILP), which partially explains why LCVs avoid fusion with lysosomes despite the acquisition of Rab7. Taken together, our study reveals the biological mechanisms employed by SidC/SdcA to promote the maturation of the LCVs.


Subject(s)
Legionella pneumophila , Phagosomes , SNARE Proteins , Ubiquitination , rab GTP-Binding Proteins , Legionella pneumophila/metabolism , Humans , Phagosomes/metabolism , Phagosomes/microbiology , SNARE Proteins/metabolism , rab GTP-Binding Proteins/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Animals , Qa-SNARE Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Vacuoles/metabolism , Vacuoles/microbiology , HEK293 Cells , Mice , rab7 GTP-Binding Proteins/metabolism , Monomeric GTP-Binding Proteins/metabolism , Endoplasmic Reticulum/metabolism
2.
Elife ; 122024 May 28.
Article in English | MEDLINE | ID: mdl-38805257

ABSTRACT

Mycobacterium tuberculosis (Mtb) is known to survive within macrophages by compromising the integrity of the phagosomal compartment in which it resides. This activity primarily relies on the ESX-1 secretion system, predominantly involving the protein duo ESAT-6 and CFP-10. CFP-10 likely acts as a chaperone, while ESAT-6 likely disrupts phagosomal membrane stability via a largely unknown mechanism. we employ a series of biochemical analyses, protein modeling techniques, and a novel ESAT-6-specific nanobody to gain insight into the ESAT-6's mode of action. First, we measure the binding kinetics of the tight 1:1 complex formed by ESAT-6 and CFP-10 at neutral pH. Subsequently, we demonstrate a rapid self-association of ESAT-6 into large complexes under acidic conditions, leading to the identification of a stable tetrameric ESAT-6 species. Using molecular dynamics simulations, we pinpoint the most probable interaction interface. Furthermore, we show that cytoplasmic expression of an anti-ESAT-6 nanobody blocks Mtb replication, thereby underlining the pivotal role of ESAT-6 in intracellular survival. Together, these data suggest that ESAT-6 acts by a pH-dependent mechanism to establish two-way communication between the cytoplasm and the Mtb-containing phagosome.


Subject(s)
Antigens, Bacterial , Bacterial Proteins , Macrophages , Mycobacterium tuberculosis , Phagosomes , Single-Domain Antibodies , Humans , Antigens, Bacterial/metabolism , Antigens, Bacterial/immunology , Bacterial Proteins/metabolism , Hydrogen-Ion Concentration , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , Molecular Dynamics Simulation , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/metabolism , Phagosomes/metabolism , Single-Domain Antibodies/metabolism
3.
PLoS Pathog ; 20(5): e1011783, 2024 May.
Article in English | MEDLINE | ID: mdl-38739652

ABSTRACT

Legionella pneumophila strains harboring wild-type rpsL such as Lp02rpsLWT cannot replicate in mouse bone marrow-derived macrophages (BMDMs) due to induction of extensive lysosome damage and apoptosis. The bacterial factor directly responsible for inducing such cell death and the host factor involved in initiating the signaling cascade that leads to lysosome damage remain unknown. Similarly, host factors that may alleviate cell death induced by these bacterial strains have not yet been investigated. Using a genome-wide CRISPR/Cas9 screening, we identified Hmg20a and Nol9 as host factors important for restricting strain Lp02rpsLWT in BMDMs. Depletion of Hmg20a protects macrophages from infection-induced lysosomal damage and apoptosis, allowing productive bacterial replication. The restriction imposed by Hmg20a was mediated by repressing the expression of several endo-lysosomal proteins, including the small GTPase Rab7. We found that SUMOylated Rab7 is recruited to the bacterial phagosome via SulF, a Dot/Icm effector that harbors a SUMO-interacting motif (SIM). Moreover, overexpression of Rab7 rescues intracellular growth of strain Lp02rpsLWT in BMDMs. Our results establish that L. pneumophila exploits the lysosomal network for the biogenesis of its phagosome in BMDMs.


Subject(s)
Legionella pneumophila , Lysosomes , Macrophages , Phagosomes , rab GTP-Binding Proteins , rab7 GTP-Binding Proteins , Legionella pneumophila/metabolism , Legionella pneumophila/genetics , Animals , rab GTP-Binding Proteins/metabolism , Mice , Phagosomes/metabolism , Phagosomes/microbiology , Lysosomes/metabolism , Lysosomes/microbiology , Macrophages/microbiology , Macrophages/metabolism , Legionnaires' Disease/metabolism , Legionnaires' Disease/microbiology , Sumoylation , Mice, Inbred C57BL , Endosomes/metabolism , Endosomes/microbiology
4.
Infect Immun ; 92(6): e0014124, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38722166

ABSTRACT

The human-specific bacterial pathogen group A Streptococcus (GAS) is a significant cause of morbidity and mortality. Macrophages are important to control GAS infection, but previous data indicate that GAS can persist in macrophages. In this study, we detail the molecular mechanisms by which GAS survives in THP-1 macrophages. Our fluorescence microscopy studies demonstrate that GAS is readily phagocytosed by macrophages, but persists within phagolysosomes. These phagolysosomes are not acidified, which is in agreement with our findings that GAS cannot survive in low pH environments. We find that the secreted pore-forming toxin Streptolysin O (SLO) perforates the phagolysosomal membrane, allowing leakage of not only protons but also large proteins including the lysosomal protease cathepsin B. Additionally, GAS recruits CD63/LAMP-3, which may contribute to lysosomal permeabilization, especially in the absence of SLO. Thus, although GAS does not inhibit fusion of the lysosome with the phagosome, it has multiple mechanisms to prevent proper phagolysosome function, allowing for persistence of the bacteria within the macrophage. This has important implications for not only the initial response but also the overall functionality of the macrophages, which may lead to the resulting pathologies in GAS infection. Our data suggest that therapies aimed at improving macrophage function may positively impact patient outcomes in GAS infection.


Subject(s)
Bacterial Proteins , Lysosomes , Macrophages , Streptococcus pyogenes , Streptolysins , Streptococcus pyogenes/immunology , Humans , Macrophages/microbiology , Macrophages/immunology , Macrophages/metabolism , Lysosomes/metabolism , Lysosomes/microbiology , Streptolysins/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Phagosomes/microbiology , Phagosomes/metabolism , THP-1 Cells , Phagocytosis , Streptococcal Infections/immunology , Streptococcal Infections/microbiology , Streptococcal Infections/metabolism , Cathepsin B/metabolism , Hydrogen-Ion Concentration
5.
J Neurosci ; 44(20)2024 May 15.
Article in English | MEDLINE | ID: mdl-38589228

ABSTRACT

Protein misfolding, aggregation, and spread through the brain are primary drivers of neurodegenerative disease pathogenesis. Phagocytic glia are responsible for regulating the load of pathological proteins in the brain, but emerging evidence suggests that glia may also act as vectors for aggregate spread. Accumulation of protein aggregates could compromise the ability of glia to eliminate toxic materials from the brain by disrupting efficient degradation in the phagolysosomal system. A better understanding of phagocytic glial cell deficiencies in the disease state could help to identify novel therapeutic targets for multiple neurological disorders. Here, we report that mutant huntingtin (mHTT) aggregates impair glial responsiveness to injury and capacity to degrade neuronal debris in male and female adult Drosophila expressing the gene that causes Huntington's disease (HD). mHTT aggregate formation in neurons impairs engulfment and clearance of injured axons and causes accumulation of phagolysosomes in glia. Neuronal mHTT expression induces upregulation of key innate immunity and phagocytic genes, some of which were found to regulate mHTT aggregate burden in the brain. A forward genetic screen revealed Rab10 as a novel component of Draper-dependent phagocytosis that regulates mHTT aggregate transmission from neurons to glia. These data suggest that glial phagocytic defects enable engulfed mHTT aggregates to evade lysosomal degradation and acquire prion-like characteristics. Together, our findings uncover new mechanisms that enhance our understanding of the beneficial and harmful effects of phagocytic glia in HD and other neurodegenerative diseases.


Subject(s)
Disease Models, Animal , Drosophila Proteins , Drosophila , Huntingtin Protein , Huntington Disease , Neuroglia , Animals , Huntington Disease/metabolism , Huntington Disease/pathology , Huntington Disease/genetics , Neuroglia/metabolism , Neuroglia/pathology , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Female , Male , Phagocytosis/physiology , Lysosomes/metabolism , Phagosomes/metabolism , Animals, Genetically Modified , Prions/metabolism , Prions/genetics , Neurons/metabolism
6.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38673839

ABSTRACT

Phagocytosis (and endocytosis) is an unusual cellular process that results in the formation of a novel subcellular organelle, the phagosome. This phagosome contains not only the internalised target of phagocytosis but also the external medium, creating a new border between extracellular and intracellular environments. The boundary at the plasma membrane is, of course, tightly controlled and exploited in ionic cell signalling events. Although there has been much work on the control of phagocytosis by ions, notably, Ca2+ ions influxing across the plasma membrane, increasing our understanding of the mechanism enormously, very little work has been done exploring the phagosome/cytosol boundary. In this paper, we explored the changes in the intra-phagosomal Ca2+ ion content that occur during phagocytosis and phagosome formation in human neutrophils. Measuring Ca2+ ion concentration in the phagosome is potentially prone to artefacts as the intra-phagosomal environment experiences changes in pH and oxidation. However, by excluding such artefacts, we conclude that there are open Ca2+ channels on the phagosome that allow Ca2+ ions to "drain" into the surrounding cytosol. This conclusion was confirmed by monitoring the translocation of the intracellularly expressed YFP-tagged C2 domain of PKC-γ. This approach marked regions of membrane at which Ca2+ influx occurred, the earliest being the phagocytic cup, and then the whole cell. This paper therefore presents data that have novel implications for understanding phagocytic Ca2+ signalling events, such as peri-phagosomal Ca2+ hotspots, and other phenomena.


Subject(s)
Calcium Signaling , Calcium , Neutrophils , Phagocytosis , Phagosomes , Humans , Calcium/metabolism , Phagosomes/metabolism , Neutrophils/metabolism , Cytosol/metabolism , Cell Membrane/metabolism
7.
Cell Rep ; 43(4): 114096, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38607919

ABSTRACT

Receptors controlling the cross-presentation of tumor antigens by macrophage subsets in cancer tissues are poorly explored. Here, we show that TIM4+ large peritoneal macrophages efficiently capture and cross-present tumor-associated antigens at early stages of peritoneal infiltration by ovarian cancer cells. The phosphatidylserine (PS) receptor TIM4 promotes maximal uptake of dead cells or PS-coated artificial targets and triggers inflammatory and metabolic gene programs in combination with cytoskeletal remodeling and upregulation of transcriptional signatures related to antigen processing. At the cellular level, TIM4-mediated engulfment induces nucleation of F-actin around nascent phagosomes, delaying the recruitment of vacuolar ATPase, acidification, and cargo degradation. In vivo, TIM4 deletion blunts induction of early anti-tumoral effector CD8 T cells and accelerates the progression of ovarian tumors. We conclude that TIM4-mediated uptake drives the formation of specialized phagosomes that prolong the integrity of ingested antigens and facilitate cross-presentation, contributing to immune surveillance of the peritoneum.


Subject(s)
Antigens, Neoplasm , Carcinogenesis , Macrophages, Peritoneal , Animals , Macrophages, Peritoneal/metabolism , Macrophages, Peritoneal/immunology , Female , Mice , Carcinogenesis/pathology , Carcinogenesis/immunology , Carcinogenesis/metabolism , Humans , Antigens, Neoplasm/metabolism , Antigens, Neoplasm/immunology , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/genetics , Membrane Proteins/metabolism , Mice, Inbred C57BL , Cross-Priming/immunology , Cell Line, Tumor , Phagosomes/metabolism , Antigen Presentation/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Actins/metabolism
9.
Nature ; 628(8007): 408-415, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38480883

ABSTRACT

During development, inflammation or tissue injury, macrophages may successively engulf and process multiple apoptotic corpses via efferocytosis to achieve tissue homeostasis1. How macrophages may rapidly adapt their transcription to achieve continuous corpse uptake is incompletely understood. Transcriptional pause/release is an evolutionarily conserved mechanism, in which RNA polymerase (Pol) II initiates transcription for 20-60 nucleotides, is paused for minutes to hours and is then released to make full-length mRNA2. Here we show that macrophages, within minutes of corpse encounter, use transcriptional pause/release to unleash a rapid transcriptional response. For human and mouse macrophages, the Pol II pause/release was required for continuous efferocytosis in vitro and in vivo. Interestingly, blocking Pol II pause/release did not impede Fc receptor-mediated phagocytosis, yeast uptake or bacterial phagocytosis. Integration of data from three genomic approaches-precision nuclear run-on sequencing, RNA sequencing, and assay for transposase-accessible chromatin using sequencing (ATAC-seq)-on efferocytic macrophages at different time points revealed that Pol II pause/release controls expression of select transcription factors and downstream target genes. Mechanistic studies on transcription factor EGR3, prominently regulated by pause/release, uncovered EGR3-related reprogramming of other macrophage genes involved in cytoskeleton and corpse processing. Using lysosomal probes and a new genetic fluorescent reporter, we identify a role for pause/release in phagosome acidification during efferocytosis. Furthermore, microglia from egr3-deficient zebrafish embryos displayed reduced phagocytosis of apoptotic neurons and fewer maturing phagosomes, supporting defective corpse processing. Collectively, these data indicate that macrophages use Pol II pause/release as a mechanism to rapidly alter their transcriptional programs for efficient processing of the ingested apoptotic corpses and for successive efferocytosis.


Subject(s)
Efferocytosis , Macrophages , RNA Polymerase II , Transcription Elongation, Genetic , Animals , Humans , Male , Mice , Apoptosis , Cytoskeleton/metabolism , Early Growth Response Protein 3/deficiency , Early Growth Response Protein 3/genetics , Efferocytosis/genetics , Hydrogen-Ion Concentration , Macrophages/immunology , Macrophages/metabolism , Neurons/metabolism , Phagosomes/metabolism , RNA Polymerase II/metabolism , Transcription Factors/genetics , Zebrafish/embryology , Zebrafish/genetics , Time Factors
10.
Sci Rep ; 14(1): 6297, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38491095

ABSTRACT

Pseudomonas aeruginosa often colonizes immunocompromised patients, causing acute and chronic infections. This bacterium can reside transiently inside cultured macrophages, but the contribution of the intramacrophic stage during infection remains unclear. MgtC and OprF have been identified as important bacterial factors when P. aeruginosa resides inside cultured macrophages. In this study, we showed that P. aeruginosa mgtC and oprF mutants, particular the latter one, had attenuated virulence in both mouse and zebrafish animal models of acute infection. To further investigate P. aeruginosa pathogenesis in zebrafish at a stage different from acute infection, we monitored bacterial load and visualized fluorescent bacteria in live larvae up to 4 days after infection. Whereas the attenuated phenotype of the oprF mutant was associated with a rapid elimination of bacteria, the mgtC mutant was able to persist at low level, a feature also observed with the wild-type strain in surviving larvae. Interestingly, these persistent bacteria can be visualized in macrophages of zebrafish. In a short-time infection model using a macrophage cell line, electron microscopy revealed that internalized P. aeruginosa wild-type bacteria were either released after macrophage lysis or remained intracellularly, where they were localized in vacuoles or in the cytoplasm. The mgtC mutant could also be detected inside macrophages, but without causing cell damage, whereas the oprF mutant was almost completely eliminated after phagocytosis, or localized in phagolysosomes. Taken together, our results show that the main role of OprF for intramacrophage survival impacts both acute and persistent infection by this bacterium. On the other hand, MgtC plays a clear role in acute infection but is not essential for bacterial persistence, in relation with the finding that the mgtC mutant is not completely eliminated by macrophages.


Subject(s)
Bacterial Proteins , Pseudomonas Infections , Humans , Animals , Mice , Bacterial Proteins/metabolism , Zebrafish/metabolism , Pseudomonas Infections/genetics , Phagocytosis , Phagosomes/metabolism , Pseudomonas aeruginosa/metabolism
11.
Am J Respir Cell Mol Biol ; 70(6): 457-467, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38346220

ABSTRACT

Sepsis is a systemic inflammatory response that requires effective macrophage metabolic functions to resolve ongoing inflammation. Previous work showed that the mechanosensitive cation channel, transient receptor potential vanilloid 4 (TRPV4), mediates macrophage phagocytosis and cytokine production in response to lung infection. Here, we show that TRPV4 regulates glycolysis in a stiffness-dependent manner by augmenting macrophage glucose uptake by GLUT1. In addition, TRPV4 is required for LPS-induced phagolysosome maturation in a GLUT1-dependent manner. In a cecal slurry mouse model of sepsis, TRPV4 regulates sepsis-induced glycolysis as measured by BAL fluid (BALF) lactate and sepsis-induced lung injury as measured by BALF total protein and lung compliance. TRPV4 is necessary for bacterial clearance in the peritoneum to limit sepsis-induced lung injury. It is interesting that BALF lactate is increased in patients with sepsis compared with healthy control participants, supporting the relevance of lung cell glycolysis to human sepsis. These data show that macrophage TRPV4 is required for glucose uptake through GLUT1 for effective phagolysosome maturation to limit sepsis-induced lung injury. Our work presents TRPV4 as a potential target to protect the lung from injury in sepsis.


Subject(s)
Glucose Transporter Type 1 , Glycolysis , Lung Injury , Macrophages , Sepsis , TRPV Cation Channels , Animals , TRPV Cation Channels/metabolism , Sepsis/metabolism , Sepsis/complications , Glucose Transporter Type 1/metabolism , Glucose Transporter Type 1/genetics , Mice , Lung Injury/metabolism , Macrophages/metabolism , Mice, Inbred C57BL , Humans , Male , Glucose/metabolism , Phagosomes/metabolism , Bronchoalveolar Lavage Fluid , Lipopolysaccharides/pharmacology , Phagocytosis , Disease Models, Animal , Lung/metabolism , Lung/pathology , Lung/immunology
12.
Emerg Microbes Infect ; 13(1): 2322663, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38380651

ABSTRACT

The discovery of promising cytokines and clarification of their immunological mechanisms in controlling the intracellular fate of Mycobacterium tuberculosis (Mtb) are necessary to identify effective diagnostic biomarkers and therapeutic targets. To escape immune clearance, Mtb can manipulate and inhibit the normal host process of phagosome maturation. Phagosome maturation arrest by Mtb involves multiple effectors and much remains unknown about this important aspect of Mtb pathogenesis. In this study, we found that interleukin 16 (IL-16) is elevated in the serum samples of Tuberculosis (TB) patients and can serve as a specific target for treatment TB. There was a significant difference in IL-16 levels among active TB, latent TB infection (LTBI), and non-TB patients. This study first revealed that macrophages are the major source of IL-16 production in response to Mtb infection, and elucidated that IL-16 can promote Mtb intracellular survival by inhibiting phagosome maturation and suppressing the expression of Rev-erbα which can inhibit IL-10 secretion. The experiments using zebrafish larvae infected with M. marinum and mice challenged with H37Rv demonstrated that reducing IL-16 levels resulted in less severe pathology and improved survival, respectively. In conclusion, this study provided direct evidence that Mtb hijacks the host macrophages-derived interleukin 16 to enhance intracellular growth. It is suggesting the immunosuppressive role of IL-16 during Mtb infection, supporting IL-16 as a promising therapeutic target.


Subject(s)
Interleukin-16 , Mycobacterium tuberculosis , Tuberculosis , Animals , Humans , Mice , Interleukin-16/metabolism , Macrophages/microbiology , Mycobacterium tuberculosis/physiology , Phagosomes/metabolism , Phagosomes/microbiology , Tuberculosis/microbiology , Zebrafish
13.
Proc Natl Acad Sci U S A ; 121(8): e2309465121, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38354262

ABSTRACT

Phagocytes promptly resolve ingested targets to replenish lysosomes and maintain their responsiveness. The resolution process requires that degradative hydrolases, solute transporters, and proteins involved in lipid traffic are delivered and made active in phagolysosomes. It also involves extensive membrane remodeling. We report that cation channels that localize to phagolysosomes were essential for resolution. Specifically, the conductance of Na+ by two-pore channels (TPCs) and the presence of a Na+ gradient between the phagolysosome lumen and the cytosol were critical for the controlled release of membrane tension that permits deformation of the limiting phagolysosome membrane. In turn, membrane deformation was a necessary step to efficiently transport the cholesterol extracted from cellular targets, permeabilizing them to hydrolases. These results place TPCs as regulators of endomembrane remodeling events that precede target degradation in cases when the target is bound by a cholesterol-containing membrane. The findings may help to explain lipid metabolism dysfunction and autophagic flux impairment reported in TPC KO mice and establish stepwise regulation to the resolution process that begins with lysis of the target.


Subject(s)
Phagosomes , Two-Pore Channels , Mice , Animals , Phagosomes/metabolism , Lysosomes/metabolism , Hydrolases/metabolism , Cholesterol/metabolism
14.
Microbiol Res ; 282: 127664, 2024 May.
Article in English | MEDLINE | ID: mdl-38422860

ABSTRACT

Drug-resistant tuberculosis (TB) outbreak has emerged as a global public health crisis. Therefore, new and innovative therapeutic options like host-directed therapies (HDTs) through novel modulators are urgently required to overcome the challenges associated with TB. In the present study, we have investigated the anti-mycobacterial effect of 4-(Benzyloxy)phenol. Cell-viability assay asserted that 50 µM of 4-(Benzyloxy)phenol was not cytotoxic to phorbol 12-myristate 13-acetate (PMA) differentiated THP-1 (dTHP-1) cells. It was observed that 4-(Benzyloxy)phenol activates p53 expression by hindering its association with KDM1A. Increased ROS, intracellular Ca2+ and phagosome-lysosome fusion, were also observed upon 4-(Benzyloxy)phenol treatment. 4-(Benzyloxy)phenol mediated killing of intracellular mycobacteria was abrogated in the presence of specific inhibitors of ROS, Ca2+ and phagosome-lysosome fusion like NAC, BAPTA-AM, and W7, respectively. We further demonstrate that 4-(Benzyloxy)phenol mediated enhanced ROS production is mediated by acetylation of p53. Blocking of p53 acetylation by Pifithrin-α (PFT- α) enhanced intracellular mycobacterial growth by blocking the mycobactericidal effect of 4-(Benzyloxy)phenol. Altogether, the results showed that 4-(Benzyloxy)phenol executed its anti-mycobacterial effect by modulating p53-mediated ROS production to regulate phagosome-lysosome fusion through Ca2+ production.


Subject(s)
Mycobacterium , Tumor Suppressor Protein p53 , Humans , Reactive Oxygen Species/metabolism , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/pharmacology , Macrophages , Phenol , THP-1 Cells , Phagosomes/metabolism , Phagosomes/microbiology , Lysosomes/metabolism , Mycobacterium/metabolism , Phenols/pharmacology , Phenols/metabolism
15.
J Immunol ; 212(7): 1063-1068, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38353614

ABSTRACT

Activation of naive CD8-positive T lymphocytes is mediated by dendritic cells that cross-present MHC class I (MHC-I)-associated peptides derived from exogenous Ags. The most accepted mechanism involves the translocation of Ags from phagosomes or endolysosomes into the cytosol, where antigenic peptides generated by cytosolic proteasomes are delivered by the transporter associated with Ag processing (TAP) to the endoplasmic reticulum, or an endocytic Ag-loading compartment, where binding to MHC-I occurs. We have described an alternative pathway where cross-presentation is independent of TAP but remains dependent on proteasomes. We provided evidence that active proteasomes found within the lumen of phagosomes and endolysosomal vesicles locally generate antigenic peptides that can be directly loaded onto trafficking MHC-I molecules. However, the mechanism of active proteasome delivery to the endocytic compartments remained unknown. In this study, we demonstrate that phagosome-associated LC3A/B structures deliver proteasomes into subcellular compartments containing exogenous Ags and that autophagy drives TAP-independent, proteasome-dependent cross-presentation.


Subject(s)
Cross-Priming , Proteasome Endopeptidase Complex , Proteasome Endopeptidase Complex/metabolism , Antigen Presentation , Autophagosomes , Phagosomes/metabolism , Histocompatibility Antigens Class I , Antigens , Membrane Transport Proteins/metabolism , Peptides/metabolism
16.
Nat Cell Biol ; 26(3): 366-377, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38316984

ABSTRACT

Cells convert complex metabolic information into stress-adapted autophagy responses. Canonically, multilayered protein kinase networks converge on the conserved Atg1/ULK kinase complex (AKC) to induce non-selective and selective forms of autophagy in response to metabolic changes. Here we show that, upon phosphate starvation, the metabolite sensor Pho81 interacts with the adaptor subunit Atg11 at the AKC via an Atg11/FIP200 interaction motif to modulate pexophagy by virtue of its conserved phospho-metabolite sensing SPX domain. Notably, core AKC components Atg13 and Atg17 are dispensable for phosphate starvation-induced autophagy revealing significant compositional and functional plasticity of the AKC. Our data indicate that, instead of functioning as a selective autophagy receptor, Pho81 compensates for partially inactive Atg13 by promoting Atg11 phosphorylation by Atg1 critical for pexophagy during phosphate starvation. Our work shows Atg11/FIP200 adaptor subunits bind not only selective autophagy receptors but also modulator subunits that convey metabolic information directly to the AKC for autophagy regulation.


Subject(s)
Adaptor Proteins, Signal Transducing , Macroautophagy , Adaptor Proteins, Signal Transducing/metabolism , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Carrier Proteins/metabolism , Autophagy/physiology , Phagosomes/metabolism , Transcription Factors/metabolism , Phosphates/metabolism
17.
Eur J Cell Biol ; 103(1): 151382, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38171214

ABSTRACT

The ongoing phagocytic activity of macrophages necessitates an extraordinary capacity to digest and resolve incoming material. While the initial steps leading to the formation of a terminal phagolysosome are well studied, much less is known about the later stages of this process, namely the degradation and resolution of the phagolysosomal contents. We report that the degradation of targets such as splenocytes and erythrocytes by phagolysosomes occurs in a stepwise fashion, requiring lysis of their plasmalemmal bilayer as an essential initial step. This is achieved by the direct extraction of cholesterol facilitated by Niemann-Pick protein type C2 (NPC2), which in turn hands off cholesterol to NPC1 for export from the phagolysosome. The removal of cholesterol ulimately destabilizes and permeabilizes the membrane of the phagocytic target, allowing access of hydrolases to its internal compartments. In contrast, we found that saposins, which activate the hydrolysis of sphingolipids, are required for lysosomal tubulation, yet are dispensable for the resolution of targets by macrophages. The extraction of cholesterol by NPC2 is therefore envisaged as rate-limiting in the clearance of membrane-bound targets such as apoptotic cells. Selective cholesterol removal appears to be a primary mechanism that enables professional phagocytes to distinguish the target membrane from the phagolysosomal membrane and may be conserved in the resolution of autolysosomes.


Subject(s)
Glycoproteins , Membrane Glycoproteins , Glycoproteins/metabolism , Membrane Glycoproteins/metabolism , Carrier Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Vesicular Transport Proteins/metabolism , Cholesterol/metabolism , Phagosomes/metabolism , Lysosomes/metabolism
18.
Mol Biol Cell ; 35(3): ar44, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38265888

ABSTRACT

Phagosome formation and maturation reportedly occur via sequential membrane fusion events mediated by synaptosomal-associated protein of 23 kDa (SNAP23), a plasma membrane-localized soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family. Vesicle-associated membrane protein 5 (VAMP5), also a plasmalemma SNARE, interacts with SNAP23; however, its precise function in phagocytosis in macrophages remains elusive. To elucidate this aspect, we investigated the characteristics of macrophages in the presence of VAMP5 overexpression or knockdown and found that VAMP5 participates in Fcγ receptor-mediated phagosome formation, although not directly in phagosome maturation. Overexpressed VAMP5 was localized to the early phagosomal membrane but no longer localized to the lysosomal-associated membrane protein 1-positive maturing phagosomal membrane. Analyses using compound-based selective inhibitors demonstrated that VAMP5 dissociation from early phagosomes occurs in a clathrin- and dynamin-dependent manner and is indispensable for SNAP23 function in subsequent membrane fusion during phagosome maturation. Accordingly, to the best of our knowledge, we demonstrate, for the first time, that VAMP5 exerts an immunologically critical function during phagosome formation and maturation via SNARE-based membrane trafficking in macrophages.


Subject(s)
Phagocytosis , Receptors, IgG , Receptors, IgG/metabolism , Macrophages/metabolism , Phagosomes/metabolism , SNARE Proteins/metabolism
19.
Mol Microbiol ; 121(1): 69-84, 2024 01.
Article in English | MEDLINE | ID: mdl-38017607

ABSTRACT

Ingestion and killing of bacteria by phagocytic cells are critical processes to protect the human body from bacterial infections. In addition, some immune cells (neutrophils, NK cells) can release microbicidal molecules in the extracellular medium to eliminate non-ingested microorganism. Molecular mechanisms involved in the resulting intracellular and extracellular killing are still poorly understood. In this study, we used the amoeba Dictyostelium discoideum as a model phagocyte to investigate the mechanisms allowing intracellular and extracellular killing of Pseudomonas aeruginosa. When a D. discoideum cell establishes a close contact with a P. aeruginosa bacterium, it can either ingest it and kill it in phagosomes, or kill it extracellularly, allowing a direct side-by-side comparison of these two killing modalities. Efficient intracellular destruction of P. aeruginosa requires the presence of the Kil2 pump in the phagosomal membrane. On the contrary, extracellular lysis is independent on Kil2 but requires the expression of the superoxide-producing protein NoxA, and the extracellular release of the AplA bacteriolytic protein. These results shed new light on the molecular mechanisms allowing elimination of P. aeruginosa bacteria by phagocytic cells.


Subject(s)
Dictyostelium , Humans , Dictyostelium/metabolism , Dictyostelium/microbiology , Pseudomonas aeruginosa/metabolism , Phagosomes/metabolism , Neutrophils , Anti-Bacterial Agents/metabolism , Bacteria
20.
Mol Biol Cell ; 35(3): ar26, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38117588

ABSTRACT

Phagocytosis by macrophages is a highly polarized process to destroy large target cells. Binding to particles induces extensive cortical actin-generated forces that drive the formation of elaborate pseudopods around the target particle. Postinternalization, the resultant phagosome is driven toward the cell interior on microtubules (MTs) by cytoplasmic dynein. However, it is unclear whether dynein and cargo-adaptors contribute to the earlier steps of particle internalization and phagosome formation. Here we reveal that ninein, a MT minus-end-associated protein that localizes to the centrosome, is also present at the phagocytic cup in macrophages. Ninein depletion impairs particle internalization by delaying the early F-actin recruitment to sites of particle engagement and cup formation, with no impact on F-actin dynamics beyond this initial step. Ninein forms membrane-bound clusters on phagocytic cups that do not nucleate acentrosomal MTs but instead mediate the assembly of dynein-dynactin complex at active phagocytic membranes. Both ninein depletion and pharmacological inhibition of dynein activity reduced inward displacement of bound particles into macrophages. We found that ninein and dynein motor activity were required for timely retrograde movement of phagosomes and for phagolysosome formation. Taken together, these data show that ninein, alone and with dynein, play significant roles during phagocytosis.


Subject(s)
Actins , Cytoskeletal Proteins , Phagocytosis , Actins/metabolism , Carrier Proteins/metabolism , Dyneins/metabolism , Macrophages/metabolism , Phagocytosis/physiology , Phagosomes/metabolism , Humans , Nuclear Proteins/metabolism , Cytoskeletal Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...