Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 775
Filter
1.
J Cell Biol ; 220(9)2021 09 06.
Article in English | MEDLINE | ID: mdl-34180943

ABSTRACT

Phagocytes engulf unwanted particles into phagosomes that then fuse with lysosomes to degrade the enclosed particles. Ultimately, phagosomes must be recycled to help recover membrane resources that were consumed during phagocytosis and phagosome maturation, a process referred to as "phagosome resolution." Little is known about phagosome resolution, which may proceed through exocytosis or membrane fission. Here, we show that bacteria-containing phagolysosomes in macrophages undergo fragmentation through vesicle budding, tubulation, and constriction. Phagosome fragmentation requires cargo degradation, the actin and microtubule cytoskeletons, and clathrin. We provide evidence that lysosome reformation occurs during phagosome resolution since the majority of phagosome-derived vesicles displayed lysosomal properties. Importantly, we show that clathrin-dependent phagosome resolution is important to maintain the degradative capacity of macrophages challenged with two waves of phagocytosis. Overall, our work suggests that phagosome resolution contributes to lysosome recovery and to maintaining the degradative power of macrophages to handle multiple waves of phagocytosis.


Subject(s)
Actin Cytoskeleton/metabolism , Lysosomes/metabolism , Microtubules/metabolism , Phagocytosis/physiology , Phagosomes/metabolism , Actin Cytoskeleton/microbiology , Actin Cytoskeleton/ultrastructure , Actins/genetics , Actins/metabolism , Animals , Clathrin/genetics , Clathrin/metabolism , Escherichia coli/chemistry , Gene Expression , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Lysosomes/microbiology , Lysosomes/ultrastructure , Membrane Fusion , Mice , Microtubules/microbiology , Microtubules/ultrastructure , Phagosomes/microbiology , Phagosomes/ultrastructure , Proteolysis , RAW 264.7 Cells
2.
Mol Reprod Dev ; 88(6): 427-436, 2021 06.
Article in English | MEDLINE | ID: mdl-34032339

ABSTRACT

Mitochondrial dysfunction is considered a crucial factor aggravating oocyte viability after vitrification-warming. To clarify the role of mitophagy in mitochondrial extinction of vitrified porcine oocytes, mitochondrial function, ultrastructural characteristics, mitochondria-lysosomes colocalization, and mitophagic proteins were detected with or without chloroquine (CQ) treatment. The results showed that vitrification caused mitochondrial dysfunction, including increasing reactive oxygen species production, decreasing mitochondrial membrane potential, and mitochondrial DNA copy number. Damaged mitochondrial cristae and mitophagosomes were observed in vitrified oocytes. A highly fused fluorescence distribution of mitochondria and lysosomes was also observed. In the detection of mitophagic flux, mitophagy was demonstrated as increasing fluorescence aggregation of microtubule-associated protein light chain 3B (LC3B), enhanced colocalization between LC3B, and voltage-dependent anion channels 1 (VDAC1), and upregulated LC3B-II/I protein expression ratio. CQ inhibited the degradation of mitophagosomes in vitrified oocytes, manifested as decreased mitochondria-lysosomes colocalization, increased fluorescence fraction of VDAC1 overlapping LC3B, increased LC3B-II/I protein expression ratio, and p62 accumulation. The inhibition of mitophagosomes degradation by CQ aggravated mitochondrial dysfunction, including increased oxidative damage, reduced mitochondrial function, and further led to loss of oocyte viability and developmental potentiality. In conclusion, mitophagy is involved in the regulation of mitochondrial function during porcine oocyte vitrification.


Subject(s)
Mitophagy , Oocytes/physiology , Vitrification , Animals , Chloroquine/pharmacology , Chloroquine/toxicity , Cryopreservation/methods , Embryonic Development/drug effects , Female , Lysosomes/drug effects , Lysosomes/ultrastructure , Microscopy, Confocal , Microscopy, Electron, Transmission , Microtubule-Associated Proteins/analysis , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/ultrastructure , Mitophagy/drug effects , Oocytes/drug effects , Oocytes/ultrastructure , Phagosomes/drug effects , Phagosomes/ultrastructure , Preservation, Biological/methods , Reactive Oxygen Species/metabolism , Swine , Voltage-Dependent Anion Channel 1/analysis
3.
Sci Rep ; 11(1): 5025, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33658544

ABSTRACT

Bioconversion of organic materials is the foundation of many applications in chemical engineering, microbiology and biochemistry. Herein, we introduce a new methodology to quantitatively determine conversion of biomass in viral infections while simultaneously imaging morphological changes of the host cell. As proof of concept, the viral replication of an unidentified giant DNA virus and the cellular response of an amoebal host are studied using soft X-ray microscopy, titration dilution measurements and thermal gravimetric analysis. We find that virions produced inside the cell are visible from 18 h post infection and their numbers increase gradually to a burst size of 280-660 virions. Due to the large size of the virion and its strong X-ray absorption contrast, we estimate that the burst size corresponds to a conversion of 6-12% of carbonaceous biomass from amoebal host to virus. The occurrence of virion production correlates with the appearance of a possible viral factory and morphological changes in the phagosomes and contractile vacuole complex of the amoeba, whereas the nucleus and nucleolus appear unaffected throughout most of the replication cycle.


Subject(s)
Acanthamoeba/virology , DNA Viruses/ultrastructure , DNA, Viral/genetics , Genome, Viral , Giant Viruses/ultrastructure , Virion/ultrastructure , Acanthamoeba/ultrastructure , Biomass , DNA Viruses/genetics , DNA Viruses/growth & development , DNA Viruses/isolation & purification , DNA, Viral/biosynthesis , Giant Viruses/genetics , Giant Viruses/growth & development , Giant Viruses/isolation & purification , Host-Pathogen Interactions/genetics , Phagosomes/ultrastructure , Phagosomes/virology , Soil Microbiology , Thermogravimetry , Vacuoles/ultrastructure , Vacuoles/virology , Virion/genetics , Virion/growth & development , Virus Replication , X-Ray Microtomography
4.
FEBS J ; 288(5): 1412-1433, 2021 03.
Article in English | MEDLINE | ID: mdl-32757358

ABSTRACT

Phagocytosis is an essential mechanism for immunity and homeostasis, performed by a subset of cells known as phagocytes. Upon target engulfment, de novo formation of specialized compartments termed phagosomes takes place. Phagosomes then undergo a series of fusion and fission events as they interact with the endolysosomal system and other organelles, in a dynamic process known as phagosome maturation. Because phagocytes play a key role in tissue patrolling and immune surveillance, phagosome maturation is associated with signaling pathways that link phagocytosis to antigen presentation and the development of adaptive immune responses. In addition, and depending on the nature of the cargo, phagosome integrity may be compromised, triggering additional cellular mechanisms including inflammation and autophagy. Upon completion of maturation, phagosomes enter a recently described phase: phagosome resolution, where catabolites from degraded cargo are metabolized, phagosomes are resorbed, and vesicles of phagosomal origin are recycled. Finally, phagocytes return to homeostasis and become ready for a new round of phagocytosis. Altogether, phagosome maturation and resolution encompass a series of dynamic events and organelle crosstalk that can be measured by biochemical, imaging, photoluminescence, cytometric, and immune-based assays that will be described in this guide.


Subject(s)
Endosomes/immunology , Lysosomes/immunology , Phagocytes/immunology , Phagocytosis , Phagosomes/immunology , Adaptive Immunity , Animals , Antigen Presentation , Autophagy/genetics , Autophagy/immunology , Endosomes/metabolism , Endosomes/ultrastructure , Humans , Immunity, Innate , Immunoassay , Immunologic Surveillance , Inflammation , Lysosomes/metabolism , Lysosomes/ultrastructure , Molecular Probe Techniques , Phagocytes/metabolism , Phagocytes/ultrastructure , Phagosomes/metabolism , Phagosomes/ultrastructure , Signal Transduction
5.
Nat Commun ; 11(1): 2270, 2020 05 08.
Article in English | MEDLINE | ID: mdl-32385301

ABSTRACT

Mycobacterium tuberculosis is a global health problem in part as a result of extensive cytotoxicity caused by the infection. Here, we show how M. tuberculosis causes caspase-1/NLRP3/gasdermin D-mediated pyroptosis of human monocytes and macrophages. A type VII secretion system (ESX-1) mediated, contact-induced plasma membrane damage response occurs during phagocytosis of bacteria. Alternatively, this can occur from the cytosolic side of the plasma membrane after phagosomal rupture in infected macrophages. This damage causes K+ efflux and activation of NLRP3-dependent IL-1ß release and pyroptosis, facilitating the spread of bacteria to neighbouring cells. A dynamic interplay of pyroptosis with ESCRT-mediated plasma membrane repair also occurs. This dual plasma membrane damage seems to be a common mechanism for NLRP3 activators that function through lysosomal damage.


Subject(s)
Cell Membrane/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis , Tuberculosis/metabolism , Tuberculosis/pathology , Antigens, Bacterial/metabolism , Bacterial Proteins/metabolism , Cathepsins/metabolism , Cell Membrane/ultrastructure , Green Fluorescent Proteins/metabolism , Humans , Hydrogen-Ion Concentration , Inflammasomes/metabolism , Inflammasomes/ultrastructure , Mitochondria/metabolism , Mycobacterium tuberculosis/metabolism , Phagosomes/metabolism , Phagosomes/ultrastructure , THP-1 Cells
6.
EMBO J ; 39(8): e102468, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32154600

ABSTRACT

Vertebrate vision relies on the daily phagocytosis and lysosomal degradation of photoreceptor outer segments (POS) within the retinal pigment epithelium (RPE). However, how these events are controlled by light is largely unknown. Here, we show that the light-responsive miR-211 controls lysosomal biogenesis at the beginning of light-dark transitions in the RPE by targeting Ezrin, a cytoskeleton-associated protein essential for the regulation of calcium homeostasis. miR-211-mediated down-regulation of Ezrin leads to Ca2+ influx resulting in the activation of calcineurin, which in turn activates TFEB, the master regulator of lysosomal biogenesis. Light-mediated induction of lysosomal biogenesis and function is impaired in the RPE from miR-211-/- mice that show severely compromised vision. Pharmacological restoration of lysosomal biogenesis through Ezrin inhibition rescued the miR-211-/- phenotype, pointing to a new therapeutic target to counteract retinal degeneration associated with lysosomal dysfunction.


Subject(s)
Calcium/metabolism , Cytoskeletal Proteins/metabolism , Gene Expression Regulation , Lysosomes/metabolism , MicroRNAs/metabolism , Animals , Autophagy , Cytoskeletal Proteins/antagonists & inhibitors , Cytoskeletal Proteins/genetics , Down-Regulation , Light , Lysosomes/ultrastructure , Mice , Mice, Knockout , MicroRNAs/genetics , Phagocytosis , Phagosomes/metabolism , Phagosomes/ultrastructure , Retinal Pigment Epithelium/metabolism
7.
Methods Mol Biol ; 2150: 167-182, 2020.
Article in English | MEDLINE | ID: mdl-30969403

ABSTRACT

The transport and targeting of internalized molecules to distinct intracellular organelles/compartments can prove challenging to visualize clearly, which can contribute to some of the difficulties associated with these studies. By combining several approaches, we show how the trafficking and processing of photoreceptor outer segments in the phagosome and autophagy-lysosomal pathways of the retinal pigment epithelium (RPE) can easily be quantified and visualized as 3D-reconstructed images. This protocol takes advantage of new developments in microscopy and image-analysis software which has the potential to help better understand dynamic intracellular processes that underlie RPE dysfunction associated with irreversible blinding diseases such as age-related macular degeneration. The method described herein can also be used to study the trafficking and co-localization of different intracellular cargos in other cell types and tissues.


Subject(s)
Autophagy , Intracellular Space/metabolism , Lysosomes/metabolism , Phagosomes/metabolism , Retinal Pigment Epithelium/metabolism , Animals , Biological Assay , Fluorescein-5-isothiocyanate/metabolism , Image Processing, Computer-Assisted , Lysosomes/ultrastructure , Phagosomes/ultrastructure , Protein Transport , Retinal Photoreceptor Cell Outer Segment/metabolism , Retinal Pigment Epithelium/ultrastructure , Software , Swine
8.
Autophagy ; 16(2): 289-312, 2020 02.
Article in English | MEDLINE | ID: mdl-30990365

ABSTRACT

Although cocaine exposure has been shown to potentiate neuroinflammation by upregulating glial activation in the brain, the role of mitophagy in this process remains an enigma. In the present study, we sought to examine the role of impaired mitophagy in cocaine-mediated activation of microglia and to determine the ameliorative potential of superoxide dismutase mimetics in this context. Our findings demonstrated that exposure of mouse primary microglial cells (mPMs) to cocaine resulted in decreased mitochondrial membrane potential, that was accompanied by increased expression of mitophagy markers, PINK1 and PRKN. Exposure of microglia to cocaine also resulted in increased expression of DNM1L and OPTN with a concomitant decrease in the rate of mitochondrial oxygen consumption as well as impaired mitochondrial functioning. Additionally, in the presence of cocaine, microglia also exhibited upregulated expression of autophagosome markers, BECN1, MAP1LC3B-II, and SQSTM1. Taken together, these findings suggested diminished mitophagy flux and accumulation of mitophagosomes in the presence of cocaine. These findings were further confirmed by imaging techniques such as transmission electron microscopy and confocal microscopy. Cocaine-mediated activation of microglia was further monitored by assessing the expression of the microglial marker (ITGAM) and the inflammatory cytokine (Tnf, Il1b, and Il6) mRNAs. Pharmacological, as well as gene-silencing approaches aimed at blocking both the autophagy/mitophagy and SIGMAR1 expression, underscored the role of impaired mitophagy in cocaine-mediated activation of microglia. Furthermore, superoxide dismutase mimetics such as TEMPOL and MitoTEMPO were shown to alleviate cocaine-mediated impaired mitophagy as well as microglial activation.Abbreviations: 3-MA: 3-methyladenine; Δψm: mitochondrial membrane potential; ACTB: actin, beta; AIF1: allograft inflammatory factor 1; ATP: adenosine triphosphate; BAF: bafilomycin A1; BECN1: beclin 1, autophagy related; CNS: central nervous system; DNM1L: dynamin 1 like; DMEM: Dulbecco modified Eagle medium; DAPI: 4,6-Diamidino-2-phenylindole; DRD2: dopamine receptor D2; ECAR: extracellular acidification rate; FBS: fetal bovine serum; FCCP: Trifluoromethoxy carbonylcyanide phenylhydrazone; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; IL1B: interleukin 1, beta; IL6: interleukin 6; ITGAM: integrin subunit alpha M; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; mPMs: mouse primary microglial cells; MRC: maximal respiratory capacity; NFKB: nuclear factor kappa B; NLRP3: NLR family pyrin domain containing 3; NTRK2: neurotrophic receptor tyrosine kinase 2; OCR: oxygen consumption rate; OPTN: optineurin; PBS: phosphate buffered saline; PINK1: PTEN induced putative kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; ROS: reactive oxygen species; siRNA: small interfering RNA; SQSTM1: sequestosome 1; TNF: tumor necrosis factor.


Subject(s)
Cocaine/adverse effects , Microglia/pathology , Mitochondria/pathology , Mitophagy , Superoxide Dismutase/metabolism , Animals , Autophagy , Beclin-1/metabolism , Biomarkers/metabolism , Cells, Cultured , Cyclic N-Oxides , Cytokines/metabolism , Down-Regulation/drug effects , Gene Silencing , Inflammation Mediators/metabolism , Membrane Potential, Mitochondrial/drug effects , Mice, Inbred C57BL , Microglia/drug effects , Microglia/metabolism , Microglia/ultrastructure , Mitochondria/drug effects , Mitochondria/ultrastructure , Mitophagy/drug effects , Models, Biological , Phagosomes/drug effects , Phagosomes/metabolism , Phagosomes/ultrastructure , Protein Kinases/metabolism , Reactive Oxygen Species/metabolism , Receptors, sigma/metabolism , Signal Transduction , Up-Regulation/drug effects
9.
Nat Cell Biol ; 21(10): 1234-1247, 2019 10.
Article in English | MEDLINE | ID: mdl-31570833

ABSTRACT

Phosphoinositides have a pivotal role in the maturation of nascent phagosomes into microbicidal phagolysosomes. Following degradation of their contents, mature phagolysosomes undergo resolution, a process that remains largely uninvestigated. Here we studied the role of phosphoinositides in phagolysosome resolution. Phosphatidylinositol-4-phosphate (PtdIns(4)P), which is abundant in maturing phagolysosomes, was depleted as they tubulated and resorbed. Depletion was caused, in part, by transfer of phagolysosomal PtdIns(4)P to the endoplasmic reticulum, a process mediated by oxysterol-binding protein-related protein 1L (ORP1L), a RAB7 effector. ORP1L formed discrete tethers between the phagolysosome and the endoplasmic reticulum, resulting in distinct regions with alternating PtdIns(4)P depletion and enrichment. Tubules emerged from PtdIns(4)P-rich regions, where ADP-ribosylation factor-like protein 8B (ARL8B) and SifA- and kinesin-interacting protein/pleckstrin homology domain-containing family M member 2 (SKIP/PLEKHM2) accumulated. SKIP binds preferentially to monophosphorylated phosphoinositides, of which PtdIns(4)P is most abundant in phagolysosomes, contributing to their tubulation. Accordingly, premature hydrolysis of PtdIns(4)P impaired SKIP recruitment and phagosome resolution. Thus, resolution involves phosphoinositides and tethering of phagolysosomes to the endoplasmic reticulum.


Subject(s)
Endoplasmic Reticulum/metabolism , Monocytes/metabolism , Phagosomes/metabolism , Phosphatidylinositol Phosphates/metabolism , Receptors, Steroid/genetics , Signal Transduction , ADP-Ribosylation Factors/genetics , ADP-Ribosylation Factors/metabolism , Animals , CRISPR-Cas Systems , Endoplasmic Reticulum/ultrastructure , Gene Editing , Gene Expression Regulation , Humans , Mice , Monocytes/ultrastructure , Phagocytosis , Phagosomes/ultrastructure , Primary Cell Culture , Proteolysis , RAW 264.7 Cells , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Receptors, Steroid/antagonists & inhibitors , Receptors, Steroid/metabolism , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins
10.
Nat Cell Biol ; 21(11): 1357-1369, 2019 11.
Article in English | MEDLINE | ID: mdl-31659275

ABSTRACT

αMß2 integrin (complement receptor 3) is a major receptor for phagocytosis in macrophages. In other contexts, integrins' activities and functions are mechanically linked to actin dynamics through focal adhesions. We asked whether mechanical coupling of αMß2 integrin to the actin cytoskeleton mediates phagocytosis. We found that particle internalization was driven by formation of Arp2/3 and formin-dependent actin protrusions that wrapped around the particle. Focal complex-like adhesions formed in the phagocytic cup that contained ß2 integrins, focal adhesion proteins and tyrosine kinases. Perturbation of talin and Syk demonstrated that a talin-dependent link between integrin and actin and Syk-mediated recruitment of vinculin enable force transmission to target particles and promote phagocytosis. Altering target mechanical properties demonstrated more efficient phagocytosis of stiffer targets. Thus, macrophages use tyrosine kinase signalling to build a mechanosensitive, talin- and vinculin-mediated, focal adhesion-like molecular clutch, which couples integrins to cytoskeletal forces to drive particle engulfment.


Subject(s)
Macrophages/immunology , Mechanotransduction, Cellular , Phagocytosis/immunology , Syk Kinase/genetics , Talin/genetics , Vinculin/genetics , Actin Cytoskeleton/immunology , Actin Cytoskeleton/ultrastructure , Actin-Related Protein 2-3 Complex/genetics , Actin-Related Protein 2-3 Complex/immunology , Actins/genetics , Actins/immunology , Animals , Extracellular Matrix/immunology , Extracellular Matrix/metabolism , Focal Adhesions/immunology , Focal Adhesions/ultrastructure , Formins/genetics , Formins/immunology , Gene Expression Regulation , Humans , Macrophage-1 Antigen/genetics , Macrophage-1 Antigen/immunology , Macrophages/cytology , Mice , Mice, Inbred C57BL , Microspheres , Phagosomes/immunology , Phagosomes/ultrastructure , Polystyrenes , Primary Cell Culture , RAW 264.7 Cells , Syk Kinase/immunology , THP-1 Cells , Talin/immunology , Vinculin/immunology
11.
Elife ; 82019 10 15.
Article in English | MEDLINE | ID: mdl-31612854

ABSTRACT

Antibodies are a key resource in biomedical research yet there are no community-accepted standards to rigorously characterize their quality. Here we develop a procedure to validate pre-existing antibodies. Human cell lines with high expression of a target, determined through a proteomics database, are modified with CRISPR/Cas9 to knockout (KO) the corresponding gene. Commercial antibodies against the target are purchased and tested by immunoblot comparing parental and KO. Validated antibodies are used to definitively identify the most highly expressing cell lines, new KOs are generated if needed, and the lines are screened by immunoprecipitation and immunofluorescence. Selected antibodies are used for more intensive procedures such as immunohistochemistry. The pipeline is easy to implement and scalable. Application to the major ALS disease gene C9ORF72 identified high-quality antibodies revealing C9ORF72 localization to phagosomes/lysosomes. Antibodies that do not recognize C9ORF72 have been used in highly cited papers, raising concern over previously reported C9ORF72 properties.


Subject(s)
Amyotrophic Lateral Sclerosis/diagnosis , Antibodies, Monoclonal/chemistry , C9orf72 Protein/genetics , Frontotemporal Dementia/diagnosis , Immunohistochemistry/standards , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/immunology , Amyotrophic Lateral Sclerosis/metabolism , Animals , Antibodies, Monoclonal/classification , Antibodies, Monoclonal/immunology , Biomarkers/metabolism , C9orf72 Protein/immunology , CRISPR-Cas Systems , Cell Line, Tumor , Frontotemporal Dementia/genetics , Frontotemporal Dementia/immunology , Frontotemporal Dementia/metabolism , Gene Editing , Gene Expression , HEK293 Cells , Humans , Lysosomes/genetics , Lysosomes/metabolism , Lysosomes/ultrastructure , Mice , Mice, Inbred C57BL , Mice, Transgenic , Osteoblasts/metabolism , Osteoblasts/ultrastructure , Phagosomes/genetics , Phagosomes/metabolism , Phagosomes/ultrastructure , RAW 264.7 Cells
12.
EMBO Rep ; 20(10): e47911, 2019 10 04.
Article in English | MEDLINE | ID: mdl-31441223

ABSTRACT

Iron overload, a common clinical occurrence, is implicated in the metabolic syndrome although the contributing pathophysiological mechanisms are not fully defined. We show that prolonged iron overload results in an autophagy defect associated with accumulation of dysfunctional autolysosomes and loss of free lysosomes in skeletal muscle. These autophagy defects contribute to impaired insulin-stimulated glucose uptake and insulin signaling. Mechanistically, we show that iron overload leads to a decrease in Akt-mediated repression of tuberous sclerosis complex (TSC2) and Rheb-mediated mTORC1 activation on autolysosomes, thereby inhibiting autophagic-lysosome regeneration. Constitutive activation of mTORC1 or iron withdrawal replenishes lysosomal pools via increased mTORC1-UVRAG signaling, which restores insulin sensitivity. Induction of iron overload via intravenous iron-dextran delivery in mice also results in insulin resistance accompanied by abnormal autophagosome accumulation, lysosomal loss, and decreased mTORC1-UVRAG signaling in muscle. Collectively, our results show that chronic iron overload leads to a profound autophagy defect through mTORC1-UVRAG inhibition and provides new mechanistic insight into metabolic syndrome-associated insulin resistance.


Subject(s)
Autophagy , Insulin Resistance , Iron Overload/pathology , Animals , Autophagy/drug effects , Cell Line , Iron/pharmacology , Iron Chelating Agents/pharmacology , Lysosomes/drug effects , Lysosomes/metabolism , Lysosomes/ultrastructure , Mechanistic Target of Rapamycin Complex 1 , Mice , Models, Biological , Muscle Cells/drug effects , Muscle Cells/metabolism , Phagosomes/drug effects , Phagosomes/metabolism , Phagosomes/ultrastructure , Proteolysis/drug effects , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Tumor Suppressor Proteins/metabolism
13.
Cell Microbiol ; 21(11): e13083, 2019 11.
Article in English | MEDLINE | ID: mdl-31290267

ABSTRACT

Integrated with both a historical perspective and an evolutionary angle, this opinion article presents a brief and personal view of the emergence of cellular microbiology research. From the very first observations of phagocytosis by Goeze in 1777 to the exhaustive analysis of the cellular defence mechanisms performed in modern laboratories, the studies by cell biologists and microbiologists have converged into an integrative research field distinct from, but fully coupled to immunity: cellular microbiology. In addition, this brief article is thought as a humble patchwork of the motivations that have guided the research in my group over a quarter century.


Subject(s)
Dictyostelium/immunology , Mycobacterium marinum/immunology , Phagocytosis/immunology , Animals , Dictyostelium/growth & development , Dictyostelium/microbiology , Dictyostelium/ultrastructure , History, 18th Century , History, 19th Century , History, 21st Century , Host-Pathogen Interactions , Humans , Immunity, Innate , Microbiology/history , Mycobacterium marinum/growth & development , Mycobacterium marinum/pathogenicity , Phagosomes/immunology , Phagosomes/microbiology , Phagosomes/ultrastructure
14.
Dev Cell ; 50(4): 397-410.e3, 2019 08 19.
Article in English | MEDLINE | ID: mdl-31231039

ABSTRACT

Phagocytosis, the engulfment of particulate matter, requires the coordinated polymerization of F-actin; however, the nature and dynamics of the F-actin structures generated during the process are incompletely defined. Using super-resolution microscopy, we observed the formation of podosome-like structures during Fc receptor-mediated phagocytosis. Unlike conventional podosomes, these structures are short lived and vectorial, expanding radially from the sites where phagocytic targets are initially engaged. The expanding ring of podosome-like structures requires the localized formation of PtdIns(3,4,5)P3. Concomitantly, the initial podosome-like structures disappear from the center of the phagocytic cup, enabling membrane bending around the target. This coordinated disappearance is mediated by localized hydrolysis of PtdIns(4,5)P2 at the center of the cup. Interference reflection microscopy revealed that the podosome-like structures attach tightly to the target, facilitating the progressive engagement and activation of phagocytic receptors, creating a diffusion barrier and serving as support for the extension of exploratory lamellipodia that probe the target surface.


Subject(s)
Actins/genetics , Phagocytosis/genetics , Phagosomes/genetics , Podosomes/genetics , Actins/ultrastructure , Female , Humans , Integrins/genetics , Male , Microscopy, Fluorescence , Microscopy, Interference , Monocytes , Phagosomes/ultrastructure , Phosphatidylinositol Phosphates/genetics , Phosphatidylinositol Phosphates/metabolism , Phosphatidylinositols/genetics , Phosphatidylinositols/metabolism , Podosomes/ultrastructure , Pseudopodia/genetics , Pseudopodia/ultrastructure , Receptors, Fc/genetics , Surface Properties
15.
J Cell Biol ; 218(8): 2619-2637, 2019 08 05.
Article in English | MEDLINE | ID: mdl-31235480

ABSTRACT

Phagocytic removal of apoptotic cells involves formation, maturation, and digestion of cell corpse-containing phagosomes. The retrieval of lysosomal components following phagolysosomal digestion of cell corpses remains poorly understood. Here we reveal that the amino acid transporter SLC-36.1 is essential for lysosome reformation during cell corpse clearance in Caenorhabditis elegans embryos. Loss of slc-36.1 leads to formation of phagolysosomal vacuoles arising from cell corpse-containing phagosomes. In the absence of slc-36.1, phagosome maturation is not affected, but the retrieval of lysosomal components is inhibited. Moreover, loss of PPK-3, the C. elegans homologue of the PtdIns3P 5-kinase PIKfyve, similarly causes accumulation of phagolysosomal vacuoles that are defective in phagocytic lysosome reformation. SLC-36.1 and PPK-3 function in the same genetic pathway, and they directly interact with one another. In addition, loss of slc-36.1 and ppk-3 causes strong defects in autophagic lysosome reformation in adult animals. Our findings thus suggest that the PPK-3-SLC-36.1 axis plays a central role in both phagocytic and autophagic lysosome formation.


Subject(s)
Amino Acid Transport Systems/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/cytology , Caenorhabditis elegans/metabolism , Lysosomes/metabolism , Phagocytosis , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Solute Carrier Proteins/metabolism , Animals , Apoptosis , Autophagy , Caenorhabditis elegans/ultrastructure , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/metabolism , Lysosomes/ultrastructure , Phagosomes/metabolism , Phagosomes/ultrastructure , Vacuoles/metabolism , Vacuoles/ultrastructure
16.
PLoS Pathog ; 15(6): e1007812, 2019 06.
Article in English | MEDLINE | ID: mdl-31220187

ABSTRACT

While considered solely an extracellular pathogen, increasing evidence indicates that Pseudomonas aeruginosa encounters intracellular environment in diverse mammalian cell types, including macrophages. In the present study, we have deciphered the intramacrophage fate of wild-type P. aeruginosa PAO1 strain by live and electron microscopy. P. aeruginosa first resided in phagosomal vacuoles and subsequently could be detected in the cytoplasm, indicating phagosomal escape of the pathogen, a finding also supported by vacuolar rupture assay. The intracellular bacteria could eventually induce cell lysis, both in a macrophage cell line and primary human macrophages. Two bacterial factors, MgtC and OprF, recently identified to be important for survival of P. aeruginosa in macrophages, were found to be involved in bacterial escape from the phagosome as well as in cell lysis caused by intracellular bacteria. Strikingly, type III secretion system (T3SS) genes of P. aeruginosa were down-regulated within macrophages in both mgtC and oprF mutants. Concordantly, cyclic di-GMP (c-di-GMP) level was increased in both mutants, providing a clue for negative regulation of T3SS inside macrophages. Consistent with the phenotypes and gene expression pattern of mgtC and oprF mutants, a T3SS mutant (ΔpscN) exhibited defect in phagosomal escape and macrophage lysis driven by internalized bacteria. Importantly, these effects appeared to be largely dependent on the ExoS effector, in contrast with the known T3SS-dependent, but ExoS independent, cytotoxicity caused by extracellular P. aeruginosa towards macrophages. Moreover, this macrophage damage caused by intracellular P. aeruginosa was found to be dependent on GTPase Activating Protein (GAP) domain of ExoS. Hence, our work highlights T3SS and ExoS, whose expression is modulated by MgtC and OprF, as key players in the intramacrophage life of P. aeruginosa which allow internalized bacteria to lyse macrophages.


Subject(s)
Bacterial Proteins/biosynthesis , Down-Regulation , Gene Expression Regulation, Bacterial , Macrophages/microbiology , Pseudomonas aeruginosa , Type III Secretion Systems/metabolism , ADP Ribose Transferases/genetics , ADP Ribose Transferases/metabolism , Animals , Bacterial Proteins/genetics , Bacterial Toxins/genetics , Bacterial Toxins/metabolism , Cell Line , Humans , Macrophages/metabolism , Macrophages/ultrastructure , Mice , Mutation , Phagosomes/microbiology , Phagosomes/ultrastructure , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Pseudomonas aeruginosa/pathogenicity , Type III Secretion Systems/genetics
17.
Microsc Microanal ; 25(4): 1004-1016, 2019 08.
Article in English | MEDLINE | ID: mdl-31106722

ABSTRACT

The process of autophagy has been detected in the midgut epithelium of four millipede species: Julus scandinavius, Polyxenus lagurus, Archispirostreptus gigas, and Telodeinopus aoutii. It has been examined using transmission electron microscopy (TEM), which enabled differentiation of cells in the midgut epithelium, and some histochemical methods (light microscope and fluorescence microscope). While autophagy appeared in the cytoplasm of digestive, secretory, and regenerative cells in J. scandinavius and A. gigas, in the two other species, T. aoutii and P. lagurus, it was only detected in the digestive cells. Both types of macroautophagy, the selective and nonselective processes, are described using TEM. Phagophore formation appeared as the first step of autophagy. After its blind ends fusion, the autophagosomes were formed. The autophagosomes fused with lysosomes and were transformed into autolysosomes. As the final step of autophagy, the residual bodies were detected. Autophagic structures can be removed from the midgut epithelium via, e.g., atypical exocytosis. Additionally, in P. lagurus and J. scandinavius, it was observed as the neutralization of pathogens such as Rickettsia-like microorganisms. Autophagy and apoptosis ca be analyzed using TEM, while specific histochemical methods may confirm it.


Subject(s)
Apoptosis , Arthropods , Autophagy , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Animals , Lysosomes/ultrastructure , Microscopy , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Phagosomes/ultrastructure , Rickettsia/immunology
18.
Dev Cell ; 49(1): 77-88.e7, 2019 04 08.
Article in English | MEDLINE | ID: mdl-30880002

ABSTRACT

Phagocytic immune cells such as microglia can engulf and process pathogens and dying cells with high efficiency while still maintaining their dynamic behavior and morphology. Effective intracellular processing of ingested cells is likely to be crucial for microglial function, but the underlying cellular mechanisms are poorly understood. Using both living fish embryos and mammalian macrophages, we show that processing depends on the shrinkage and packaging of phagosomes into a unique cellular compartment, the gastrosome, with distinct molecular and ultra-structural characteristics. Loss of the transporter Slc37a2 blocks phagosomal shrinkage, resulting in the expansion of the gastrosome and the dramatic bloating of the cell. This, in turn, affects the ability of microglia to phagocytose and migrate toward brain injuries. Thus, this work identifies a conserved crucial step in the phagocytic pathway of immune cells and provides a potential entry point for manipulating their behavior in development and disease.


Subject(s)
Antiporters/genetics , Macrophages/metabolism , Membrane Transport Proteins/genetics , Microglia/metabolism , Phagosomes/ultrastructure , Animals , Apoptosis/genetics , Cell Compartmentation/genetics , HeLa Cells , Humans , Macrophages/ultrastructure , Mice , Microglia/ultrastructure , Neurons/metabolism , Neurons/ultrastructure , Phagocytes/ultrastructure , Phagocytosis/genetics , Phagosomes/genetics , RAW 264.7 Cells , Zebrafish/genetics , Zebrafish/growth & development
19.
Autophagy ; 15(8): 1356-1375, 2019 08.
Article in English | MEDLINE | ID: mdl-30774023

ABSTRACT

SIRT3 (sirtuin 3), a mitochondrial protein deacetylase, maintains respiratory function, but its role in the regulation of innate immune defense is largely unknown. Herein, we show that SIRT3 coordinates mitochondrial function and macroautophagy/autophagy activation to promote anti-mycobacterial responses through PPARA (peroxisome proliferator activated receptor alpha). SIRT3 deficiency enhanced inflammatory responses and mitochondrial dysfunction, leading to defective host defense and pathological inflammation during mycobacterial infection. Antibody-mediated depletion of polymorphonuclear neutrophils significantly increased protection against mycobacterial infection in sirt3-/- mice. In addition, mitochondrial oxidative stress promoted excessive inflammation induced by Mycobacterium tuberculosis infection in sirt3-/- macrophages. Notably, SIRT3 was essential for the enhancement of PPARA, a key regulator of mitochondrial homeostasis and autophagy activation in the context of infection. Importantly, overexpression of either PPARA or TFEB (transcription factor EB) in sirt3-/- macrophages recovered antimicrobial activity through autophagy activation. Furthermore, pharmacological activation of SIRT3 enhanced antibacterial autophagy and functional mitochondrial pools during mycobacterial infection. Finally, the levels of SIRT3 and PPARA were downregulated and inversely correlated with TNF (tumor necrosis factor) levels in peripheral blood mononuclear cells from tuberculosis patients. Collectively, these data demonstrate a previously unappreciated function of SIRT3 in orchestrating mitochondrial and autophagic functions to promote antimycobacterial responses. Abbreviations: Ab: antibody; BCG: M. bovis Bacillus Calmette-Guérin; Baf-A1: bafilomycin A1; BMDMs: bone marrow-derived macrophages; CFU: colony forming unit; CXCL5: C-X-C motif chemokine ligand 5; EGFP: enhanced green fluorescent protein; ERFP: enhanced red fluorescent protein; FOXO3: forkhead box O3; HC: healthy controls; H&E: haematoxylin and eosin; HKL: honokiol; IHC: immunohistochemistry; IL1B: interleukin 1 beta; IL6: interleukin 6; IL12B: interleukin 12B; MDMs: monocyte-derived macrophages; MMP: mitochondrial membrane potential; Mtb: Mycobacterium tuberculosis; PBMC: peripheral blood mononuclear cells; PBS: phosphate buffered saline; PMN: polymorphonuclear neutrophil; PPARA: peroxisome proliferator activated receptor alpha; ROS: reactive oxygen species; SIRT3: sirtuin 3; TB: tuberculosis; TEM: transmission electron microscopy; TFEB: transcription factor EB; TNF: tumor necrosis factor.


Subject(s)
Anti-Bacterial Agents/metabolism , Autophagy , Mitochondria/metabolism , Mycobacterium/metabolism , Sirtuin 3/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Female , Homeostasis , Humans , Inflammation/pathology , Lung/microbiology , Lung/pathology , Lung/ultrastructure , Lysosomes/metabolism , Lysosomes/ultrastructure , Macrophages/microbiology , Macrophages/ultrastructure , Male , Middle Aged , Mitochondria/ultrastructure , Mycobacterium/ultrastructure , Neutrophils/pathology , Oxidative Stress , PPAR alpha/metabolism , Phagosomes/metabolism , Phagosomes/ultrastructure , Sirtuin 3/deficiency , Tuberculosis/blood , Tuberculosis/microbiology , Tuberculosis/pathology , Tumor Necrosis Factor-alpha/metabolism
20.
Front Immunol ; 10: 125, 2019.
Article in English | MEDLINE | ID: mdl-30766538

ABSTRACT

Mycobacterium abscessus complex (MAB) is a rapidly growing mycobacterium(RGM) whose clinical significance as an emerging human pathogen has been increasing worldwide. It has two types of colony morphology, a smooth (S) type, producing high glycopeptidolipid (GPL) content, and a rough (R) type, which produces low levels of GPLs and is associated with increased virulence. However, the mechanism responsible for their difference in virulence is poorly known. By ultrastructural examination of murine macrophages infected, we found that MAB-R strains could replicate more actively in the macrophage phagosome than the S variants and that they could escape into cytosol via phagosomal rupture. The cytosolic access of MAB-R strains via phagosomal rupture led to enhanced Type I interferon (IFN) production and cell death, which resulted in their cell-to-cell spreading. This behavior can provide an additional niche for the survival of MAB-R strains. In addition, we found that their enhancement of cell death mediated cell spreading are dependent on Type I IFN signaling via comparison of wild-type and IFNAR1 knockout mice. In conclusion, our data indicated that a transition of MAB-S strains into MAB-R variants increased their virulence via enhanced Type I IFN production, which led to enhanced survival in infected macrophage via cell death mediated cell-to-cell spreading. This result provides not only a novel insight into the difference in virulence between MAB-R and -S variants but also hints to their treatment strategy.


Subject(s)
Interferon Type I/metabolism , Macrophages/immunology , Mycobacterium Infections, Nontuberculous/immunology , Mycobacterium abscessus/physiology , Phagosomes/ultrastructure , Animals , Cell Death , Cell Line , Humans , Immune Evasion , Macrophages/microbiology , Macrophages/ultrastructure , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mycobacterium Infections, Nontuberculous/transmission , Mycobacterium abscessus/pathogenicity , Phagosomes/microbiology , Receptor, Interferon alpha-beta/genetics , Signal Transduction , Species Specificity , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...