Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 249
Filter
1.
J Mol Med (Berl) ; 100(2): 313-322, 2022 02.
Article in English | MEDLINE | ID: mdl-34973082

ABSTRACT

Laryngopharyngeal reflux disease (LPRD) is caused by pharyngeal mucosal damage due to the reflux of gastric contents, including acid, pepsin, and bile juice. Our previous study has demonstrated that LPRD is associated with the cleavage of E-cadherin, which is facilitated by the acid-activated matrix metalloproteinase-7 (MMP-7); however, the mechanism by which the acid activates MMP-7 remains unclear. The purpose of this study was to investigate the mechanism by which MMP-7 is activated in the pharyngeal epithelial cells that are exposed to acid. The levels of reactive oxygen species (ROS) were measured in the epithelial cells exposed to acid. To investigate the signaling mechanism of ROS in the expression of MMP-7, the mechanism of action of the mitogen-activated protein kinase was examined. The expression of various signaling factors was determined, according to the presence or absence of each inhibitor in the acid-exposed pharyngeal epithelial cells. To identify changes in the cleavage of E-cadherin, the integrity of the mucosal membrane was assessed using a transepithelial permeability test. We found that acid exposure increased the levels of ROS, phosphorylated-extracellular signal-regulated kinase (p-ERK) 1/2, and phosphorylated-c-Jun (p-c-Jun) in pharyngeal epithelial cells. The ROS inhibitor reduced the expression of p-ERK and MMP-7, while the ERK inhibitor reduced the expression of p-c-Jun and MMP-7. Moreover, the c-Jun inhibitor reduced the expression of MMP-7 and blocked the degradation of E-cadherin. In addition, decrease in the levels of immunostained E-cadherin and increase in transepithelial permeability after acid exposure were collectively alleviated by the inhibitors of ROS, ERK, and c-Jun. The degradation of E-cadherin that occurs after human mucosal cells are exposed to acid appears to be caused by an increase in the expression of MMP-7 via the ROS/ERK/c-Jun pathway, which is thought to be an important mechanism associated with the development of LPRD. KEY MESSAGES: • ROS is triggered when reflux occurs. • ROS regulates the transcription factor c-Jun via the ERK pathway. • The increase in MMP-7 that induces LPRD is induced via the ROS/ERK/c-Jun pathway. • This study revealed for the first time the expression mechanism of MMP-7, which is one of the causes of LPRD.


Subject(s)
Antigens, CD/metabolism , Cadherins/metabolism , Epithelial Cells/metabolism , Hydrochloric Acid , JNK Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Signaling System , Matrix Metalloproteinase 7/metabolism , Reactive Oxygen Species/metabolism , Adult , Antigens, CD/genetics , Cadherins/genetics , Cells, Cultured , Female , Humans , Male , Matrix Metalloproteinase 7/genetics , Middle Aged , Pharynx/cytology , Young Adult
2.
Sci Rep ; 11(1): 8200, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33859234

ABSTRACT

Group A Streptococcus (GAS) causes 700 million infections and accounts for half a million deaths per year. Biofilm formation has been implicated in both pharyngeal and dermal GAS infections. In vitro, plate-based assays have shown that several GAS M-types form biofilms, and multiple GAS virulence factors have been linked to biofilm formation. Although the contributions of these plate-based studies have been valuable, most have failed to mimic the host environment, with many studies utilising abiotic surfaces. GAS is a human specific pathogen, and colonisation and subsequent biofilm formation is likely facilitated by distinct interactions with host tissue surfaces. As such, a host cell-GAS model has been optimised to support and grow GAS biofilms of a variety of GAS M-types. Improvements and adjustments to the crystal violet biofilm biomass assay have also been tailored to reproducibly detect delicate GAS biofilms. We propose 72 h as an optimal growth period for yielding detectable biofilm biomass. GAS biofilms formed are robust and durable, and can be reproducibly assessed via staining/washing intensive assays such as crystal violet with the aid of methanol fixation prior to staining. Lastly, SEM imaging of GAS biofilms formed by this model revealed GAS cocci chains arranged into three-dimensional aggregated structures with EPS matrix material. Taken together, we outline an efficacious GAS biofilm pharyngeal cell model that can support long-term GAS biofilm formation, with biofilms formed closely resembling those seen in vivo.


Subject(s)
Biofilms/growth & development , Pharynx/microbiology , Streptococcus pyogenes/physiology , Calibration , Cell Culture Techniques/standards , Cells, Cultured , Humans , Microbiological Techniques/standards , Models, Biological , Pharynx/cytology , Streptococcal Infections/microbiology , Streptococcus pyogenes/growth & development , Streptococcus pyogenes/pathogenicity , Virulence Factors/metabolism
3.
J Anat ; 239(2): 290-306, 2021 08.
Article in English | MEDLINE | ID: mdl-33677835

ABSTRACT

Solitary chemosensory cells and chemosensory cell clusters are distributed in the pharynx and larynx. In the present study, the morphology and reflexogenic function of solitary chemosensory cells and chemosensory cell clusters in the nasal cavity and pharynx were examined using immunofluorescence for GNAT3 and electrophysiology. In the nasal cavity, GNAT3-immunoreactive solitary chemosensory cells were widely distributed in the nasal mucosa, particularly in the cranial region near the nostrils. Solitary chemosensory cells were also observed in the nasopharynx. Solitary chemosensory cells in the nasopharyngeal cavity were barrel like or slender in shape with long lateral processes within the epithelial layer to attach surrounding ciliated epithelial cells. Chemosensory cell clusters containing GNAT3-immunoreactive cells were also detected in the pharynx. GNAT3-immunoreactive cells gathered with SNAP25-immunoreactive cells in chemosensory clusters. GNAT3-immunoreactive chemosensory cells were in close contact with a few SP- or CGRP-immunoreactive nerve endings. In the pharynx, GNAT3-immunoreactive chemosensory cells were also attached to P2X3-immunoreactive nerve endings. Physiologically, the perfusion of 10 mM quinine hydrochloride (QHCl) solution induced ventilatory depression. The QHCl-induced reflex was diminished by bilateral section of the glossopharyngeal nerve, suggesting autonomic reflex were evoked by chemosensory cells in pharynx but not in nasal mucosa. The present results indicate that complex shape of nasopharyngeal solitary chemosensory cells may contribute to intercellular communication, and pharyngeal chemosensory cells may play a role in respiratory depression.


Subject(s)
Chemoreceptor Cells/cytology , Nasal Cavity/cytology , Nasal Mucosa/cytology , Pharynx/cytology , Transducin/metabolism , Animals , Capsaicin , Chemoreceptor Cells/metabolism , Male , Nasal Cavity/innervation , Nasal Cavity/metabolism , Nasal Mucosa/innervation , Nasal Mucosa/metabolism , Pharynx/innervation , Pharynx/metabolism , Quinine , Rats, Wistar
4.
Nat Commun ; 11(1): 5018, 2020 10 06.
Article in English | MEDLINE | ID: mdl-33024089

ABSTRACT

The re-emergence of scarlet fever poses a new global public health threat. The capacity of North-East Asian serotype M12 (emm12) Streptococcus pyogenes (group A Streptococcus, GAS) to cause scarlet fever has been linked epidemiologically to the presence of novel prophages, including prophage ΦHKU.vir encoding the secreted superantigens SSA and SpeC and the DNase Spd1. Here, we report the molecular characterization of ΦHKU.vir-encoded exotoxins. We demonstrate that streptolysin O (SLO)-induced glutathione efflux from host cellular stores is a previously unappreciated GAS virulence mechanism that promotes SSA release and activity, representing the first description of a thiol-activated bacterial superantigen. Spd1 is required for resistance to neutrophil killing. Investigating single, double and triple isogenic knockout mutants of the ΦHKU.vir-encoded exotoxins, we find that SpeC and Spd1 act synergistically to facilitate nasopharyngeal colonization in a mouse model. These results offer insight into the pathogenesis of scarlet fever-causing GAS mediated by prophage ΦHKU.vir exotoxins.


Subject(s)
Exotoxins/metabolism , Prophages/genetics , Streptococcus pyogenes/pathogenicity , Streptococcus pyogenes/virology , Animals , Bacterial Proteins/pharmacology , Cell Line , Erythrocytes/drug effects , Exotoxins/genetics , Female , Glutathione/metabolism , Humans , Male , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Pharynx/cytology , Scarlet Fever/epidemiology , Scarlet Fever/microbiology , Streptococcus pyogenes/genetics , Streptolysins/pharmacology , Superantigens/genetics , Superantigens/metabolism
5.
Dev Dyn ; 249(11): 1347-1364, 2020 11.
Article in English | MEDLINE | ID: mdl-32427396

ABSTRACT

BACKGROUND: Vertebrate cranial neural crest cells (CNCCs) are multipotent, proximal to the source CNCC form the cranial ganglia. Distally, in the pharyngeal arches, they give rise to the craniofacial skeleton and connective tissues. Fate choices are made as CNCC pattern into distinct destination compartments. In spite of this importance, the mechanism patterning CNCC is poorly defined. RESULTS: Here, we report that a novel ß-catenin-dependent regulation of N-Cadherin levels may drive CNCC patterning. In mouse embryos, at the first pharyngeal arch axial level, membrane ß-catenin levels correlate with the extent of N-cadherin-mediated adhesion and thus suggest the presence of collective and dispersed states of CNCC. Using in vitro human neural crest model and chemical modulators of ß-catenin levels, we show a requirement for down-modulating ß-catenin for regulating N-cadherin levels and cell-cell adhesion. Similarly, in ß-catenin gain-of-function mutant mouse embryos, CNCC fail to lower N-cadherin levels. This indicates a failure to reduce cell-cell adhesion, which may underlie the failure of mutant CNCC to populate first pharyngeal arch. CONCLUSION: We suggest that ß-catenin-mediated regulation of CNCC adhesion, a previously underappreciated mechanism, underlies the patterning of CNCC into fate-specific compartments.


Subject(s)
Body Patterning , Neural Crest/embryology , Pharynx/embryology , Skull/embryology , beta Catenin/metabolism , Animals , Mice , Mice, Transgenic , Neural Crest/cytology , Pharynx/cytology , Skull/cytology , beta Catenin/genetics
6.
Curr Top Dev Biol ; 138: 175-208, 2020.
Article in English | MEDLINE | ID: mdl-32220297

ABSTRACT

The pharyngeal apparatus, a transient embryological structure, includes diverse cells from all three germ layers that ultimately contribute to a variety of adult tissues. In particular, pharyngeal endoderm produces cells of the inner ear, palatine tonsils, the thymus, parathyroid and thyroid glands, and ultimobranchial bodies. Each of these structures and organs contribute to vital human physiological processes, including central immune tolerance (thymus) and metabolic homeostasis (parathyroid and thyroid glands, and ultimobranchial bodies). Thus, improper development or damage to pharyngeal endoderm derivatives leads to complicated and severe human maladies, such as autoimmunity, immunodeficiency, hypothyroidism, and/or hypoparathyroidism. To study and treat such diseases, we can utilize human pluripotent stem cells (hPSCs), which differentiate into functionally mature cells in vitro given the proper developmental signals. Here, we discuss current efforts regarding the directed differentiation of hPSCs toward pharyngeal endoderm derivatives. We further discuss model system and therapeutic applications of pharyngeal endoderm cell types produced from hPSCs. Finally, we provide suggestions for improving hPSC differentiation approaches to pharyngeal endoderm derivatives with emphasis on current single cell-omics and 3D culture system technologies.


Subject(s)
Cell Differentiation , Cell Lineage , Endoderm/cytology , Pharynx/cytology , Pluripotent Stem Cells/cytology , Cell Proliferation , Cells, Cultured , Humans
7.
Development ; 147(3)2020 02 03.
Article in English | MEDLINE | ID: mdl-32014863

ABSTRACT

Cardiopharyngeal mesoderm (CPM) gives rise to muscles of the head and heart. Using genetic lineage analysis in mice, we show that CPM develops into a broad range of pharyngeal structures and cell types encompassing musculoskeletal and connective tissues. We demonstrate that CPM contributes to medial pharyngeal skeletal and connective tissues associated with both branchiomeric and somite-derived neck muscles. CPM and neural crest cells (NCC) make complementary mediolateral contributions to pharyngeal structures, in a distribution established in the early embryo. We further show that biallelic expression of the CPM regulatory gene Tbx1, haploinsufficient in 22q11.2 deletion syndrome patients, is required for the correct patterning of muscles with CPM-derived connective tissue. Our results suggest that CPM plays a patterning role during muscle development, similar to that of NCC during craniofacial myogenesis. The broad lineage contributions of CPM to pharyngeal structures provide new insights into congenital disorders and evolution of the mammalian pharynx.


Subject(s)
Connective Tissue/embryology , Muscle Development/genetics , Pharynx/embryology , Somites/physiology , Animals , Body Patterning/genetics , Cell Lineage/genetics , Gene Expression Regulation, Developmental , Mice , Mice, Transgenic , Neural Crest/metabolism , Pharynx/cytology , Somites/cytology , T-Box Domain Proteins/metabolism
8.
Cell Rep ; 29(4): 961-973.e4, 2019 10 22.
Article in English | MEDLINE | ID: mdl-31644916

ABSTRACT

Taste drives appropriate food preference and intake. In Drosophila, taste neurons are housed in both external and internal organs, but the latter have been relatively underexplored. Here, we report that Poxn mutants with a minimal taste system of pharyngeal neurons can avoid many aversive tastants, including bitter compounds, acid, and salt, suggesting that pharyngeal taste is sufficient for rejecting intake of aversive compounds. Optogenetic activation of selected pharyngeal bitter neurons during feeding events elicits changes in feeding parameters that can suppress intake. Functional dissection experiments indicate that multiple classes of pharyngeal neurons are involved in achieving behavioral avoidance, by virtue of being inhibited or activated by aversive tastants. Tracing second-order pharyngeal circuits reveals two main relay centers for processing pharyngeal taste inputs. Together, our results suggest that the pharynx can control the ingestion of harmful compounds by integrating taste input from different classes of pharyngeal neurons.


Subject(s)
Avoidance Learning , Chemoreceptor Cells/metabolism , Drosophila Proteins/metabolism , Nerve Tissue Proteins/metabolism , Paired Box Transcription Factors/metabolism , Taste , Animals , Aversive Agents/pharmacology , Chemoreceptor Cells/drug effects , Chemoreceptor Cells/physiology , Drosophila Proteins/genetics , Drosophila melanogaster , Food Preferences , Nerve Tissue Proteins/genetics , Paired Box Transcription Factors/genetics , Pharynx/cytology , Taste Perception
9.
Int J Mol Sci ; 20(21)2019 Oct 24.
Article in English | MEDLINE | ID: mdl-31652949

ABSTRACT

Cleavage of E-cadherin and the resultant weakness in the cell-cell links in the laryngeal epithelium lining is induced by exposure to acidic contents of the refluxate. Herein, we aimed to evaluate the role of matrix metalloproteinases (MMPs) in inducing E-cadherin level changes following acid exposure to the human pharyngeal mucosal cells. E-cadherin levels were inversely correlated with the duration of acid exposure. Treatment with actinonin, a broad MMP inhibitor, inhibited this change. Immunocytochemical staining and transepithelial permeability test revealed that the cell surface staining of E-cadherin decreased and transepithelial permeability increased after acid exposure, which was significantly inhibited by the MMP inhibitor. Among the various MMPs analyzed, the mRNA for MMP-7 in the cellular component was upregulated, and the secretion and enzymatic activity of MMP-7 in the culture media increased with the acid treatment. Consequently, MMP-7 plays a significant role in the degradation of E-cadherin after exposure to a relatively weak acidic condition that would be similar to the physiologic condition that occurs in Laryngopharyngeal reflux disease patients.


Subject(s)
Cadherins/metabolism , Laryngopharyngeal Reflux/pathology , Matrix Metalloproteinase 7/metabolism , Adult , Culture Media/chemistry , Culture Media/pharmacology , Epithelial Cells/cytology , Epithelial Cells/metabolism , Female , Humans , Hydrogen-Ion Concentration , Laryngopharyngeal Reflux/metabolism , Male , Matrix Metalloproteinase 7/chemistry , Matrix Metalloproteinase 7/genetics , Matrix Metalloproteinase Inhibitors/pharmacology , Middle Aged , Pharynx/cytology , RNA Interference , RNA, Small Interfering/metabolism , Up-Regulation/drug effects , Young Adult
10.
Nat Commun ; 10(1): 3938, 2019 09 02.
Article in English | MEDLINE | ID: mdl-31477732

ABSTRACT

The nematode Caenorhabditis elegans is a bacterivore filter feeder. Through the contraction of the worm's pharynx, a bacterial suspension is sucked into the pharynx's lumen. Excess liquid is then shunted out of the buccal cavity through ancillary channels made by surrounding marginal cells. We find that many worm-bioactive small molecules (a.k.a. wactives) accumulate inside of the marginal cells as crystals or globular spheres. Through screens for mutants that resist the lethality associated with one crystallizing wactive we identify a presumptive sphingomyelin-synthesis pathway that is necessary for crystal and sphere accumulation. We find that expression of sphingomyelin synthase 5 (SMS-5) in the marginal cells is not only sufficient for wactive accumulation but is also important for absorbing exogenous cholesterol, without which C. elegans cannot develop. We conclude that sphingomyelin-rich marginal cells act as a sink to scavenge important nutrients from filtered liquid that might otherwise be shunted back into the environment.


Subject(s)
Caenorhabditis elegans/metabolism , Cholesterol/metabolism , Pharynx/metabolism , Sphingomyelins/metabolism , Animals , Bacteria/metabolism , Caenorhabditis elegans/cytology , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Cell Membrane/metabolism , Crystallization , Hydrophobic and Hydrophilic Interactions , Mutation , Pharynx/cytology , Sphingomyelins/chemistry , Transferases (Other Substituted Phosphate Groups)/genetics , Transferases (Other Substituted Phosphate Groups)/metabolism
11.
Dev Biol ; 452(2): 134-143, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31112709

ABSTRACT

The origin of the mammalian lymphatic vasculature has been studied for more than a century; however, details regarding organ-specific lymphatic development remain unknown. A recent study reported that cardiac lymphatic endothelial cells (LECs) stem from venous and non-venous origins in mice. Here, we identified Isl1-expressing progenitors as a potential non-venous origin of cardiac LECs. Genetic lineage tracing with Isl1-Cre reporter mice suggested a possible contribution from the Isl1-expressing pharyngeal mesoderm constituting the second heart field to lymphatic vessels around the cardiac outflow tract as well as to those in the facial skin and the lymph sac. Isl1+ lineage-specific deletion of Prox1 resulted in disrupted LYVE1+ vessel structures, indicating a Prox1-dependent mechanism in this contribution. Tracing back to earlier embryonic stages revealed the presence of VEGFR3+ and/or Prox1+ cells that overlapped with the Isl1+ pharyngeal core mesoderm. These data may provide insights into the developmental basis of heart diseases involving lymphatic vasculature and improve our understanding of organ-based lymphangiogenesis.


Subject(s)
Cell Lineage , Heart/embryology , LIM-Homeodomain Proteins/metabolism , Lymphangiogenesis , Lymphatic Vessels/cytology , Lymphatic Vessels/embryology , Transcription Factors/metabolism , Animals , Endothelial Cells/metabolism , Homeodomain Proteins/metabolism , Mesoderm/embryology , Mesoderm/metabolism , Mice , Pharynx/cytology , Stem Cells/metabolism , Tumor Suppressor Proteins/metabolism , Vascular Endothelial Growth Factor Receptor-3/metabolism
12.
Gene ; 701: 9-14, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-30898708

ABSTRACT

Recent studies have revealed a common cartilage genetic regulatory network among vertebrates, cephalochordates, and arthropods. It has been proposed that this network was originally established for the dense connective tissues of ancestral invertebrates and subsequently recruited for chondrocyte differentiation in various lineages. This reasoning prompted questions about whether the evolution of cartilage from dense connective tissues occurred in the common ancestors of vertebrates. Alternatively, the evolution of cartilage may have occurred independently in agnathans and in gnathostomes, because extant agnathans (cyclostomes) are known to possess a matrix composition different from that of gnathostomes. Here, we identified the gene which is likely to encode one of the matrix proteins unique to lamprey cartilage, which we designated pharymprin. Pharymprin shows specific expression in larval pharyngeal chondrocytes. Like lamprins, which are the known matrix proteins of lamprey trabecular cartilage, pharymprin is also composed of repeated sequences. However, the repeated sequence is distinct from that of lamprins. The presence of two distinct matrix proteins in lamprey cartilage supports the hypothesis that true cartilage evolved independently in cyclostomes and gnathostomes.


Subject(s)
Chondrocytes/metabolism , Extracellular Matrix Proteins/biosynthesis , Fish Proteins/biosynthesis , Gene Expression Regulation/physiology , Lampreys/metabolism , Pharynx/metabolism , Animals , Chondrocytes/cytology , Extracellular Matrix Proteins/genetics , Fish Proteins/genetics , Lampreys/genetics , Pharynx/cytology
13.
Arch Oral Biol ; 96: 80-86, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30195143

ABSTRACT

OBJECTIVE: The goal of this study was to gain a better understanding of the potential functional specialization of palatine and pharyngeal tonsils, by comparing their cellular composition in paired specimens from a large cohort of adenotonsillectomy patients. DESIGN: Resident B cell, T cell, dendritic cell, and stromal cell subsets were characterized using multicolor flow cytometry in palatine and pharyngeal tonsil specimens from 27 patients, age 2-34 years. RESULTS: Paired comparisons showed highly significant intra-individual differences in resident cell subsets of palatine and pharyngeal tonsils. Palatine tonsils harbored higher fractions of germinal center B cells/plasmablasts and IgD- CD27- double-negative B cells, and conversely lower fractions of IgD + CD38- resting naïve B cells compared to pharyngeal tonsils. Palatine tonsils also showed lower fractions of plasmacytoid dendritic cells, and higher percentages of two subsets of stromal cells - fibroblastic reticular cells and lymphatic endothelial cells - compared to pharyngeal tonsils from the same individual. CONCLUSIONS: Despite their physical proximity and histological similarities, palatine and pharyngeal tonsils display marked intra-individual differences in their cellular composition with regard to functionally important immune and stromal subsets. These differences are likely to have immunologic, pathologic, and physiologic significance.


Subject(s)
Adenoids/cytology , Palatine Tonsil/cytology , Adolescent , Adult , B-Lymphocytes/cytology , Child , Child, Preschool , Dendritic Cells/cytology , Endothelial Cells/cytology , Female , Flow Cytometry , Humans , Infant , Male , Pharynx/cytology
14.
Cell Rep ; 24(5): 1342-1354.e5, 2018 07 31.
Article in English | MEDLINE | ID: mdl-30067987

ABSTRACT

Microdeletions involving TBX1 result in variable congenital malformations known collectively as 22q11.2 deletion syndrome (22q11.2DS). Tbx1-deficient mice and zebrafish recapitulate several disease phenotypes, including pharyngeal arch artery (PAA), head muscle (HM), and cardiac outflow tract (OFT) deficiencies. In zebrafish, these structures arise from nkx2.5+ progenitors in pharyngeal arches 2-6. Because pharyngeal arch morphogenesis is compromised in Tbx1-deficient animals, the malformations were considered secondary. Here, we report that the PAA, HM, and OFT phenotypes in tbx1 mutant zebrafish are primary and arise prior to pharyngeal arch morphogenesis from failed specification of the nkx2.5+ pharyngeal lineage. Through in situ analysis and lineage tracing, we reveal that nkx2.5 and tbx1 are co-expressed in this progenitor population. Furthermore, we present evidence suggesting that gdf3-ALK4 signaling is a downstream mediator of nkx2.5+ pharyngeal lineage specification. Collectively, these studies support a cellular mechanism potentially underlying the cardiovascular and craniofacial defects observed in the 22q11.2DS population.


Subject(s)
22q11 Deletion Syndrome/pathology , Cell Differentiation , Embryonic Stem Cells/cytology , Pharynx/embryology , 22q11 Deletion Syndrome/genetics , Animals , Cell Lineage , Embryonic Stem Cells/metabolism , Homeobox Protein Nkx-2.5/genetics , Homeobox Protein Nkx-2.5/metabolism , Pharynx/cytology , Phenotype , T-Box Domain Proteins/genetics , Zebrafish , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
15.
J Morphol ; 279(8): 1185-1193, 2018 08.
Article in English | MEDLINE | ID: mdl-29893062

ABSTRACT

Tonsils form the topographically first immune barrier of an organism against the invasion of pathogens. We used histology to study the development of tonsils of pigs after birth. At birth, the tonsils consist of diffuse lymphoid tissue without any lymphoid follicle aggregations. At the age of 7 days, lymphoid follicles appeared in the soft palate tonsil. The lymphoid layer of the nasopharyngeal tonsil, soft palate tonsil, and lingual tonsil became thicker, and lymphoid follicles in the lamina propria were clearly visible at the age of 21 days. Secondary lymphoid follicles were present in the nasopharyngeal tonsil at the age of 50 days, and in the soft palate tonsil at the age of 120 days. Dendritic cells (DCs), CD3+ T cells and IgA+ B cells in the soft palate tonsil, nasopharyngeal tonsil and lingual tonsil increased continuously, especially during the first 21 days. The results suggested that tonsils have an important role in local immune defense against invading antigens after birth and will be beneficial for understanding the mechanisms of immunity in these animals after nasal and oral vaccination.


Subject(s)
Palatine Tonsil/cytology , Palatine Tonsil/growth & development , Swine/growth & development , Animals , B-Lymphocytes/metabolism , Dendritic Cells/cytology , Immunoglobulin A/metabolism , Lymphoid Tissue/cytology , Pharynx/cytology , T-Lymphocytes/metabolism
16.
Int J Parasitol Drugs Drug Resist ; 8(1): 145-157, 2018 04.
Article in English | MEDLINE | ID: mdl-29571165

ABSTRACT

Haemonchus contortus, one of the most economically important parasites of small ruminants, has become resistant to the anthelmintic ivermectin. Deciphering the role of P-glycoproteins in ivermectin resistance is desirable for understanding and overcoming this resistance. In the model nematode, Caenorhabditis elegans, P-glycoprotein-13 is expressed in the amphids, important neuronal structures for ivermectin activity. We have focused on its ortholog in the parasite, Hco-Pgp-13. A 3D model of Hco-Pgp-13, presenting an open inward-facing conformation, has been constructed by homology with the Cel-Pgp-1 crystal structure. In silico docking calculations predicted high affinity binding of ivermectin and actinomycin D to the inner chamber of the protein. Following in vitro expression, we showed that ivermectin and actinomycin D modulated Hco-Pgp-13 ATPase activity with high affinity. Finally, we found in vivo Hco-Pgp-13 localization in epithelial, pharyngeal and neuronal tissues. Taken together, these data suggest a role for Hco-Pgp-13 in ivermectin transport, which could contribute to anthelmintic resistance.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Antiparasitic Agents/metabolism , Haemonchus/drug effects , Ivermectin/metabolism , Structural Homology, Protein , ATP Binding Cassette Transporter, Subfamily B, Member 1/drug effects , Adenosine Triphosphatases/drug effects , Animals , Antiparasitic Agents/administration & dosage , Antiparasitic Agents/pharmacology , Biological Transport , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/parasitology , Computer Simulation , Dactinomycin/metabolism , Drug Resistance/genetics , Epithelium/chemistry , Haemonchus/chemistry , Haemonchus/genetics , Ivermectin/administration & dosage , Ivermectin/pharmacology , Molecular Docking Simulation , Pharynx/chemistry , Pharynx/cytology , Protein Binding
17.
Microbes Infect ; 20(1): 9-18, 2018 01.
Article in English | MEDLINE | ID: mdl-28951316

ABSTRACT

Streptococcus pyogenes is a bacterium that causes systemic diseases, such as pharyngitis and toxic shock syndrome, via oral- or nasal-cavity infection. S. pyogenes produces various molecules known to function with serum components that lead to bacterial adhesion and invasion in human tissues. In this study, we identified a novel S. pyogenes adhesin/invasin. Our results revealed that CAMP factor promoted streptococcal adhesion and invasion in pharyngeal epithelial Detroit562 cells without serum. Recombinant CAMP factor initially localized on the membranes of cells and then became internalized in the cytosol following S. pyogenes infection. Additionally, CAMP factor phosphorylated phosphoinositide 3-kinase and serine-threonine kinase in the cells. ELISA results demonstrate that CAMP factor affected the amount of phosphorylated phosphoinositide 3-kinase and serine-threonine kinase in Detroit562 cells. Furthermore, CAMP factor did not reverse the effect of phosphoinositide 3-kinase knockdown by small interfering RNA in reducing the level of adhesion and invasion of S. pyogenes isogenic cfa-deficient mutant. These results suggested that S. pyogenes CAMP factor activated the phosphoinositide 3-kinase/serine-threonine kinase signaling pathway, promoting S. pyogenes invasion of Detroit562 cells without serum. Our findings suggested that CAMP factor played an important role on adhesion and invasion in pharyngeal epithelial cells.


Subject(s)
Bacterial Adhesion , Bacterial Proteins/metabolism , Hemolysin Proteins/metabolism , Pharynx/cytology , Phosphatidylinositol 3-Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Streptococcal Infections/microbiology , Streptococcus pyogenes/physiology , Adhesins, Bacterial/genetics , Adhesins, Bacterial/metabolism , Bacterial Proteins/genetics , Cell Line , Cytosol/metabolism , Endocytosis , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Gene Knockdown Techniques , Hemolysin Proteins/genetics , Host-Pathogen Interactions , Humans , Phosphatidylinositol 3-Kinases/genetics , Phosphoinositide-3 Kinase Inhibitors , Phosphorylation , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Signal Transduction , Streptococcal Infections/metabolism
18.
J Morphol ; 278(12): 1656-1666, 2017 12.
Article in English | MEDLINE | ID: mdl-28898441

ABSTRACT

Pristionchus pacificus is a model system in evolutionary biology and for comparison to Caenorhabditis elegans. As a necromenic nematode often found in association with scarab beetles, P. pacificus exhibits omnivorous feeding that is characterized by a mouth-form dimorphism, an example of phenotypic plasticity. Eurystomatous animals have a dorsal and a sub-ventral tooth enabling predatory feeding on other nematodes whereas stenostomatous animals have only a dorsal tooth and are microbivorous. Both mouth forms of P. pacificus, like all members of the Diplogastridae family, lack the grinder in the terminal bulb of the pharynx resulting in a fundamentally different organization of several pharynx-associated structures. Here, we describe the three-dimensional reconstruction of the pharyngeal gland cells in P. pacificus based on serial transmission electron microscopical analysis of 2527 sections of 50 nm thickness. In comparison to C. elegans, P. pacificus lacks two gland cells (g2) usually associated with grinder function, whereas the three gland cells of g1 (g1D, g1VL, and g1VR) are very prominent. The largest expansion is seen for g1D, which has an anterior process that opens into the buccal cavity through a canal in the dorsal tooth. We provide the morphological description and fine structural analysis of the P. pacificus gland cells, the behavior of the pharynx and preliminary insight into exocytosis of gland cell vesicles in P. pacificus.


Subject(s)
Imaging, Three-Dimensional , Nematoda/cytology , Pharynx/cytology , Animals , Caenorhabditis elegans/cytology , Caenorhabditis elegans/ultrastructure , Cell Count , Exocytosis , Nematoda/ultrastructure , Pharynx/innervation , Pharynx/ultrastructure
19.
Mol Cells ; 40(5): 331-338, 2017 May 31.
Article in English | MEDLINE | ID: mdl-28535667

ABSTRACT

Regulation of feeding is essential for animal survival. The pharyngeal sense organs can act as a second checkpoint of food quality, due to their position between external taste organs such as the labellum which initially assess food quality, and the digestive tract. Growing evidence provides support that the pharyngeal sensory neurons regulate feeding, but much is still unknown. We found that a pair of gustatory receptor neurons in the LSO, a Drosophila adult pharyngeal organ which expresses four gustatory receptors, is involved in feeding inhibition in response to high concentrations of sodium ions. RNAi experiments and mutant analysis showed that the gustatory receptor Gr2a is necessary for this process. This feeding preference determined by whether a food source is perceived as appetizing or not is influenced by nutritional conditions, such that when the animal is hungry, the need for energy dominates over how appealing the food source is. Our results provide experimental evidence that factors involved in feeding function in a context-dependent manner.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/physiology , Receptors, Cell Surface/genetics , Sensory Receptor Cells/cytology , Sodium Chloride/pharmacology , Animals , Animals, Genetically Modified , Drosophila Proteins/metabolism , Feeding Behavior/drug effects , Gene Expression Regulation , Pharynx/cytology , RNA Interference , Receptors, Cell Surface/metabolism , Sensory Receptor Cells/drug effects , Sensory Receptor Cells/physiology , Taste Buds/drug effects
20.
Dev Cell ; 40(4): 381-391.e3, 2017 02 27.
Article in English | MEDLINE | ID: mdl-28245923

ABSTRACT

Dividing cells called neoblasts contain pluripotent stem cells and drive planarian flatworm regeneration from diverse injuries. A long-standing question is whether neoblasts directly sense and respond to the identity of missing tissues during regeneration. We used the eye to investigate this question. Surprisingly, eye removal was neither sufficient nor necessary for neoblasts to increase eye progenitor production. Neoblasts normally increase eye progenitor production following decapitation, facilitating regeneration. Eye removal alone, however, did not induce this response. Eye regeneration following eye-specific resection resulted from homeostatic rates of eye progenitor production and less cell death in the regenerating eye. Conversely, large head injuries that left eyes intact increased eye progenitor production. Large injuries also non-specifically increased progenitor production for multiple uninjured tissues. We propose a model for eye regeneration in which eye tissue production by planarian stem cells is not directly regulated by the absence of the eye itself.


Subject(s)
Eye/cytology , Planarians/cytology , Planarians/physiology , Regeneration/physiology , Stem Cells/cytology , Animals , Cell Proliferation , Models, Biological , Organ Specificity , Pharynx/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...