Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.891
Filter
1.
Chin J Nat Med ; 22(5): 441-454, 2024 May.
Article in English | MEDLINE | ID: mdl-38796217

ABSTRACT

Five novel (9,10-dihydro) phenanthrene and bibenzyl trimers, as well as two previously identified biphenanthrenes and bibenzyls, were isolated from the tubers of Bletilla striata. Their structures were elucidated through comprehensive analyses of NMR and HRESIMS spectroscopic data. The absolute configurations of these compounds were determined by calculating rotational energy barriers and comparison of experimental and calculated ECD curves. Compounds 5b and 6 exhibited inhibitory effects on LPS-induced NO production in BV-2 cells, with IC50 values of 12.59 ± 0.40 and 15.59 ± 0.83 µmol·L-1, respectively. A mechanistic study suggested that these compounds may attenuate neuroinflammation by reducing the activation of the AKT/IκB/NF-κB signaling pathway. Additionally, compounds 3a, 6, and 7 demonstrated significant PTP1B inhibitory activities, with IC50 values of 1.52 ± 0.34, 1.39 ± 0.11, and 1.78 ± 0.01 µmol·L-1, respectively. Further investigation revealed that compound 3a might inhibit LPS-induced PTP1B overexpression and NF-κB activation, thereby mitigating the neuroinflammatory response in BV-2 cells.


Subject(s)
NF-kappa B , Orchidaceae , Phenanthrenes , Plant Tubers , Signal Transduction , Phenanthrenes/pharmacology , Phenanthrenes/chemistry , NF-kappa B/metabolism , Orchidaceae/chemistry , Signal Transduction/drug effects , Plant Tubers/chemistry , Animals , Mice , Molecular Structure , Bibenzyls/pharmacology , Bibenzyls/chemistry , Cell Line , Lipopolysaccharides/pharmacology , Nitric Oxide/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Humans
2.
Sci Rep ; 14(1): 11608, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773163

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are highly toxic, carcinogenic substances. On soils contaminated with PAHs, crop cultivation, animal husbandry and even the survival of microflora in the soil are greatly perturbed, depending on the degree of contamination. Most microorganisms cannot tolerate PAH-contaminated soils, however, some microbial strains can adapt to these harsh conditions and survive on contaminated soils. Analysis of the metagenomes of contaminated environmental samples may lead to discovery of PAH-degrading enzymes suitable for green biotechnology methodologies ranging from biocatalysis to pollution control. In the present study, our goal was to apply a metagenomic data search to identify efficient novel enzymes in remediation of PAH-contaminated soils. The metagenomic hits were further analyzed using a set of bioinformatics tools to select protein sequences predicted to encode well-folded soluble enzymes. Three novel enzymes (two dioxygenases and one peroxidase) were cloned and used in soil remediation microcosms experiments. The experimental design of the present study aimed at evaluating the effectiveness of the novel enzymes on short-term PAH degradation in the soil microcosmos model. The novel enzymes were found to be efficient for degradation of naphthalene and phenanthrene. Adding the inorganic oxidant CaO2 further increased the degrading potential of the novel enzymes for anthracene and pyrene. We conclude that metagenome mining paired with bioinformatic predictions, structural modelling and functional assays constitutes a powerful approach towards novel enzymes for soil remediation.


Subject(s)
Biodegradation, Environmental , Metagenomics , Polycyclic Aromatic Hydrocarbons , Soil Microbiology , Soil Pollutants , Metagenomics/methods , Polycyclic Aromatic Hydrocarbons/metabolism , Soil Pollutants/metabolism , Soil/chemistry , Dioxygenases/metabolism , Dioxygenases/genetics , Dioxygenases/chemistry , Phenanthrenes/metabolism , Naphthalenes/metabolism , Metagenome
3.
Ecotoxicol Environ Saf ; 278: 116440, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38733806

ABSTRACT

The distribution of polycyclic aromatic hydrocarbons (PAHs) in the ocean is affected by the sorption-desorption process of sediment particles. This process is determined by the concentration of PAHs in seawater, water temperature, and organic matter content of sediment particles. Quantitative relationships between the net sorption rates (=the difference of sorption and desorption rates) and these factors have not been established yet and used in PAH transport models. In this study, phenanthrene was chosen as the representative of PAHs. Three groups of experimental data were collected to address the dependence of the net sorption processes on the initial concentration, water temperature, and organic carbon content representing organic matter content. One-site and two-compartment mass-transfer models were tested to represent the experimental data using various parameters. The results showed that the two-compartment mass-transfer model performed better than the one-site mass-transfer model. The parameters of the two-compartment mass-transfer model include the sorption rate coefficients kafand kas (L g-1 min-1), and the desorption rate coefficients kdf and kds (min-1). The parameters at different temperatures and organic carbon contents were obtained by numerical simulations. Linear relationships were obtained between the parameters and water temperature, as well as organic carbon content. kaf, kas and kdf decreased linearly, while kds increased linearly with temperature. kaf, kas and kdf increased linearly, while kds decreased linearly with organic carbon content. The r2 values between the simulation results based on the relationships and the experimental results reached 0.96-0.99, which supports the application of the model to simulate sorption-desorption processes at different water temperatures and organic carbon contents in a realistic ocean.


Subject(s)
Geologic Sediments , Phenanthrenes , Seawater , Temperature , Water Pollutants, Chemical , Phenanthrenes/chemistry , Geologic Sediments/chemistry , Adsorption , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Seawater/chemistry , Environmental Monitoring/methods , Models, Theoretical , Models, Chemical
4.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731894

ABSTRACT

Triptolide is a natural compound in herbal remedies with anti-inflammatory and anti-proliferative properties. We studied its effects on critical signaling processes within the cell, including Notch1 and STAT3 signaling. Our research showed that triptolide reduces cancer cell proliferation by decreasing the expression of downstream targets of these signals. The levels of each signal-related protein and mRNA were analyzed using Western blot and qPCR methods. Interestingly, inhibiting one signal with a single inhibitor alone did not significantly reduce cancer cell proliferation. Instead, MTT assays showed that the simultaneous inhibition of Notch1 and STAT3 signaling reduced cell proliferation. The effect of triptolide was similar to a combination treatment with inhibitors for both signals. When we conducted a study on the impact of triptolide on zebrafish larvae, we found that it inhibited muscle development and interfered with muscle cell proliferation, as evidenced by differences in the staining of myosin heavy chain and F-actin proteins in confocal fluorescence microscopy. Additionally, we noticed that inhibiting a single type of signaling did not lead to any significant muscle defects. This implies that triptolide obstructs multiple signals simultaneously, including Notch1 and STAT3, during muscle development. Chemotherapy is commonly used to treat cancer, but it may cause muscle loss due to drug-related adverse reactions or other complex mechanisms. Our study suggests that anticancer agents like triptolide, inhibiting essential signaling pathways including Notch1 and STAT3 signaling, may cause muscle atrophy through anti-proliferative activity.


Subject(s)
Cell Proliferation , Diterpenes , Epoxy Compounds , Phenanthrenes , Receptor, Notch1 , STAT3 Transcription Factor , Signal Transduction , Zebrafish , Animals , Epoxy Compounds/pharmacology , Phenanthrenes/pharmacology , Diterpenes/pharmacology , STAT3 Transcription Factor/metabolism , Cell Proliferation/drug effects , Signal Transduction/drug effects , Humans , Receptor, Notch1/metabolism , Receptor, Notch1/genetics , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Cell Line, Tumor , Receptors, Notch/metabolism
5.
Int J Nanomedicine ; 19: 3737-3751, 2024.
Article in English | MEDLINE | ID: mdl-38699684

ABSTRACT

Background: Chemo-photodynamic combination therapy has demonstrated significant potential in the treatment of cancer. Triptolide (TPL), a naturally derived anticancer agent, when combined with the photosensitizer Chlorin e6 (Ce6), has shown to provide enhanced anti-tumor benefits. However, the development of stimuli-responsive nanovehicles for the co-delivery of TPL and Ce6 could further enhance the efficacy of this combination therapy. Methods: In this study, we synthesized a pH/ROS dual-responsive mPEG-TK-PBAE copolymer, which contains a pH-sensitive PBAE moiety and a ROS-sensitive thioketal (TK) linkage. Through a self-assembly process, TPL and Ce6 were successfully co-loaded into mPEG-TK-PBAE nanoparticles, hereafter referred to as TPL/Ce6 NPs. We evaluated the pH- and ROS-sensitive drug release and particle size changes. Furthermore, we investigated both the in vitro suppression of cellular proliferation and induction of apoptosis in HepG2 cells, as well as the in vivo anti-tumor efficacy of TPL/Ce6 NPs in H22 xenograft nude mice. Results: The mPEG-TK-PBAE copolymer was synthesized through a one-pot Michael-addition reaction and successfully co-encapsulated both TPL and Ce6 by self-assembly. Upon exposure to acid pH values and high ROS levels, the payloads in TPL/Ce6 NPs were rapidly released. Notably, the abundant ROS generated by the released Ce6 under laser irradiation further accelerated the degradation of the nanosystem, thereby amplifying the tumor microenvironment-responsive drug release and enhancing anticancer efficacy. Consequently, TPL/Ce6 NPs significantly increased PDT-induced oxidative stress and augmented TPL-induced apoptosis in HepG2 cells, leading to synergistic anticancer effects in vitro. Moreover, administering TPL/Ce6 NPs (containing 0.3 mg/kg of TPL and 4 mg/kg of Ce6) seven times, accompanied by 650 nm laser irradiation, efficiently inhibited tumor growth in H22 tumor-bearing mice, while exhibiting lower systemic toxicity. Conclusion: Overall, we have developed a tumor microenvironment-responsive nanosystem for the co-delivery of TPL and Ce6, demonstrating amplified synergistic effects of chemo-photodynamic therapy (chemo-PDT) for hepatocellular carcinoma (HCC) treatment.


Subject(s)
Apoptosis , Chlorophyllides , Diterpenes , Liver Neoplasms , Mice, Nude , Phenanthrenes , Photochemotherapy , Photosensitizing Agents , Porphyrins , Reactive Oxygen Species , Animals , Humans , Photochemotherapy/methods , Reactive Oxygen Species/metabolism , Hep G2 Cells , Liver Neoplasms/drug therapy , Porphyrins/chemistry , Porphyrins/pharmacology , Porphyrins/administration & dosage , Porphyrins/pharmacokinetics , Diterpenes/chemistry , Diterpenes/pharmacology , Diterpenes/pharmacokinetics , Diterpenes/administration & dosage , Hydrogen-Ion Concentration , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/administration & dosage , Apoptosis/drug effects , Mice , Carcinoma, Hepatocellular/drug therapy , Epoxy Compounds/chemistry , Epoxy Compounds/pharmacology , Epoxy Compounds/administration & dosage , Nanoparticles/chemistry , Xenograft Model Antitumor Assays , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Drug Liberation , Cell Proliferation/drug effects , Polyethylene Glycols/chemistry , Combined Modality Therapy
6.
Bull Environ Contam Toxicol ; 112(5): 74, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733375

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs), dust, and wax were measured in pine needles, and PAHs were also measured in surface soil. Pearson correlation analysis was performed between the analytical values. The main compounds responsible for the increase in total PAHs were non-carcinogenic phenanthrene and fluoranthene. Therefore, the % content of carcinogenic PAHs decreased with a slope = -0.037 (r = 0.47, p < 0.01), as the total PAH concentration in pine needles increased. Correlations between individual PAHs in pine needles and surface soil were very high when only low-number ring PAHs (2R- and 3R-PAHs) were statistically analyzed and significant when only high-number ring PAHs were statistically analyzed. Low-number ring PAH mainly moves in the gas phase and diffuses into the wax layer, so it was found to be statistically significant with the wax content of pine needles. High-number ring PAHs showed a high correlation with the amount of dust in pine needles because they mainly attached to dust particles and accumulated on the surface of pine needles. The ratios of fluoranthene/pyrene and methylphenanthrene/phenanthrene for predicting the origin of atmospheric PAHs have also been proven valid for pine needles.


Subject(s)
Environmental Monitoring , Pinus , Polycyclic Aromatic Hydrocarbons , Polycyclic Aromatic Hydrocarbons/analysis , Pinus/chemistry , Republic of Korea , Plant Leaves/chemistry , Phenanthrenes/analysis , Soil Pollutants/analysis , Air Pollutants/analysis
7.
J Ethnopharmacol ; 331: 118281, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38701934

ABSTRACT

Lung cancer causes the most cancer deaths and needs new treatment strategies urgently. Salvia miltiorrhiza is a classical Chinese herb and a strong candidate for tumor treatment. The study found that the aqueous extract of Salvia miltiorrhiza (DSAE), ethanol extract of Salvia miltiorrhiza (DSEE), and its active components danshensu (DSS) and dihydrotanshinone I (DHI), exhibited antineoplastic effects in vivo and in vitro. Meanwhile, DSAE, DSEE, DSS, and DHI reduced glycolysis metabolites (ATP, lactate, and pyruvate contents) production, decreased aerobic glycolysis enzymes, and inhibited Seahorse indexes (OCR and ECAR) in Lewis lung cancer cells (LLC). Data suggests that aerobic glycolysis could be inhibited by Salvia miltiorrhiza and its components. The administration of DSS and DHI further reduced the level of HKII in lung cancer cell lines that had been inhibited with HK-II antagonists (2-deoxyglucose, 2-DG; 3-bromo-pyruvate, 3-BP) or knocked down with siRNA, thereby exerting an anti-lung cancer effect. Although DSS and DHI decreased the level of HKII in HKII-Knock-In lung cancer cell line, their anti-lung cancer efficacy remained limited due to the persistent overexpression of HKII in these cells. Reiterating the main points, we have discovered that the anti-lung cancer effects of Salvia miltiorrhiza may be attributed to its ability to regulate HKII expression levels, thereby inhibiting aerobic glycolysis. This study not only provides a new research paradigm for the treatment of cancer by Salvia miltiorrhiza, but also highlights the important link between glucose metabolism and the effect of Salvia Miltiorrhiza.


Subject(s)
Antineoplastic Agents, Phytogenic , Glycolysis , Lung Neoplasms , Salvia miltiorrhiza , Salvia miltiorrhiza/chemistry , Glycolysis/drug effects , Animals , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Line, Tumor , Humans , Plant Extracts/pharmacology , Mice, Inbred C57BL , Carcinoma, Lewis Lung/drug therapy , Carcinoma, Lewis Lung/metabolism , Carcinoma, Lewis Lung/pathology , Mice , Male , Phenanthrenes/pharmacology , Phenanthrenes/isolation & purification , Drugs, Chinese Herbal/pharmacology , Quinones/pharmacology , Furans , Lactates
8.
Sci Rep ; 14(1): 11976, 2024 05 25.
Article in English | MEDLINE | ID: mdl-38796616

ABSTRACT

Hydrocarbon contamination, including contamination with polycyclic aromatic hydrocarbons (PAHs), is a major concern in Antarctica due to the toxicity, recalcitrance and persistence of these compounds. Under the Antarctic Treaty, nonindigenous species are not permitted for use in bioremediation at polluted sites in the Antarctic region. In this study, three bacterial consortia (C13, C15, and C23) were isolated from Antarctic soils for phenanthrene degradation. All isolated bacterial consortia demonstrated phenanthrene degradation percentages ranging from 45 to 85% for 50 mg/L phenanthrene at 15 â„ƒ within 5 days. Furthermore, consortium C13 exhibited efficient phenanthrene degradation potential across a wide range of environmental conditions, including different temperature (4-30 â„ƒ) and water availability (without polyethylene glycol (PEG) 6000 or 30% PEG 6000 (w/v)) conditions. Sequencing analysis of 16S rRNA genes revealed that Pseudomonas and Pseudarthrobacter were the dominant genera in the phenanthrene-degrading consortia. Moreover, six cultivable strains were isolated from these consortia, comprising four strains of Pseudomonas, one strain of Pseudarthrobacter, and one strain of Paeniglutamicibacter. These isolated strains exhibited the ability to degrade 50 mg/L phenanthrene, with degradation percentages ranging from 4 to 22% at 15 â„ƒ within 15 days. Additionally, the constructed consortia containing Pseudomonas spp. and Pseudarthrobacter sp. exhibited more effective phenanthrene degradation (43-52%) than did the individual strains. These results provide evidence that Pseudomonas and Pseudarthrobacter can be potential candidates for synergistic phenanthrene degradation at low temperatures. Overall, our study offers valuable information for the bioremediation of PAH contamination in Antarctic environments.


Subject(s)
Biodegradation, Environmental , Phenanthrenes , Pseudomonas , Phenanthrenes/metabolism , Pseudomonas/metabolism , Pseudomonas/genetics , Cold Temperature , RNA, Ribosomal, 16S/genetics , Soil Microbiology , Soil Pollutants/metabolism , Antarctic Regions , Microbial Consortia , Phylogeny
9.
Environ Sci Pollut Res Int ; 31(24): 35853-35863, 2024 May.
Article in English | MEDLINE | ID: mdl-38743334

ABSTRACT

Phenolic root exudates (PREs) secreted by wetland plants facilitate the accumulation of iron in the rhizosphere, potentially providing the essential active iron required for the generation of enzymes that degrade polycyclic aromatic hydrocarbon, thereby enhancing their biodegradation. However, the underlying mechanisms involved are yet to be elucidated. This study focuses on phenanthrene (PHE), a typical polycyclic aromatic hydrocarbon pollutant, utilizing representative PREs from wetland plants, including p-hydroxybenzoic, p-coumaric, caffeic, and ferulic acids. Using hydroponic experiments, 16S rRNA sequencing, and multiple characterization techniques, we aimed to elucidate the interaction mechanism between the accelerated degradation of PHE and the formation of rhizosphere biofilm/iron plaque influenced by PREs. Although all four types of PREs altered the biofilm composition and promoted the formation of iron plaque on the root surface, only caffeic acid, possessing a similar structure to the intermediate metabolite of PHE (catechol), could accelerate the PHE degradation rate. Caffeic acid, notable for its catechol structure, plays a significant role in enhancing PHE degradation through two main mechanisms: (a) it directly boosts PHE co-metabolism by fostering the growth of PHE-degrading bacteria, specifically Burkholderiaceae, and by facilitating the production of the key metabolic enzyme catechol 1,2-dioxygenase (C12O) and (b) it indirectly supports PHE biodegradation by promoting iron plaque formation on root surfaces, thereby enriching free iron for efficient microbial synthesis of C12O, a crucial factor in PHE decomposition.


Subject(s)
Biodegradation, Environmental , Biofilms , Iron , Phenanthrenes , Plant Roots , Rhizosphere , Phenanthrenes/metabolism , Iron/metabolism , Phenols/metabolism , Wetlands
10.
Langmuir ; 40(21): 11106-11115, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38745419

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs), as persistent environmental pollutants, often reside in nonaqueous-phase liquids (NAPLs). Mycobacterium sp. WY10, boasting highly hydrophobic surfaces, can adsorb to the oil-water interface, stabilizing the Pickering emulsion and directly accessing PAHs for biodegradation. We investigated the impact of Triton X-100 (TX100) on this interfacial uptake of phenanthrene (PHE) by Mycobacteria, using n-tetradecane (TET) and bis-(2-ethylhexyl) phthalate (DEHP) as NAPLs. Interfacial tension, phase behavior, and emulsion stability studies, alongside confocal laser scanning microscopy and electron microscope observations, unveiled the intricate interplay. In surfactant-free systems, Mycobacteria formed stable W/O Pickering emulsions, directly degrading PHE within the NAPLs because of their intimate contact. Introducing low-dose TX100 disrupted this relationship. Preferentially binding to the cells, the surfactant drastically increased the cell hydrophobicity, triggering desorption from the interface and phase separation. Consequently, PAH degradation plummeted due to hindered NAPL access. Higher TX100 concentrations flipped the script, creating surfactant-stabilized O/W emulsions devoid of interfacial cells. Surprisingly, PAH degradation remained efficient. This paradox can be attributed to NAPL emulsification, driven by the surfactant, which enhanced mass transfer and brought the substrate closer to the cells, despite their absence at the interface. This study sheds light on the complex effect of surfactants on Mycobacteria and PAH uptake, revealing an antagonistic effect at low concentrations that ultimately leads to enhanced degradation through emulsification at higher doses. These findings offer valuable insights into optimizing bioremediation strategies in PAH-contaminated environments.


Subject(s)
Biodegradation, Environmental , Mycobacterium , Octoxynol , Phenanthrenes , Surface-Active Agents , Phenanthrenes/chemistry , Phenanthrenes/pharmacology , Phenanthrenes/metabolism , Surface-Active Agents/chemistry , Surface-Active Agents/pharmacology , Mycobacterium/metabolism , Mycobacterium/drug effects , Mycobacterium/chemistry , Octoxynol/chemistry , Emulsions/chemistry , Alkanes/chemistry , Alkanes/metabolism , Hydrophobic and Hydrophilic Interactions
11.
Brain Res Bull ; 211: 110939, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38574865

ABSTRACT

PURPOSE: To evaluate the potential efficacy of Triptolide (TP) on cerebral ischemia/reperfusion injury (CIRI) and to uncover the underlying mechanism through which TP regulates CIRI. METHODS: We constructed a middle cerebral artery occlusion/reperfusion (MCAO/R) mouse model to simulate CIRI, and established a lipopolysaccharide (LPS)-stimulated BV-2 cell model to mimic the inflammatory state during CIRI. The neurological deficits score (NS) of mice were measured for assessment of neurologic functions. Both the severity of cerebral infarction and the apoptosis level in mouse brain tissues or cells were respectively evaluated using corresponding techniques. The expression levels of Ionized calcium binding adapter molecule 1 (IBA-1), Inductible Nitric Oxide Synthase (iNOS), Arginase 1 (Arg-1), Tumor necrosis factor-α (TNF-α), Interleukin 1ß (IL-1ß), Cysteine histoproteinase S (CTSS), Fractalkine, chemokine C-X3-C motif receptor 1 (CX3CR1), BCL-2-associated X protein (BAX), and antiapoptotic proteins (Bcl-2) were detected using immunofluorescence, qRT-PCR as well as Western blot, respectively. RESULTS: Relative to the Sham group, treatment with TP attenuated the increased NS, infarct area and apoptosis levels observed in MCAO/R mice. Upregulated expression levels of IBA-1, iNOS, Arg-1, TNF-α and IL-1ß were found in MCAO/R mice, while TP suppressed iNOS, TNF-α and IL-1ß expression, and enhanced Arg-1 expression in both MCAO/R mice and LPS-stimulated BV-2 cells. Besides, TP inhibited the CTSS/Fractalkine/CX3CR1 pathway activation in both MCAO/R mice and LPS-induced BV-2 cells, while overexpression of CTSS reversed such effect. Co-culturing HT-22 cells with TP+LPS-treated BV-2 cells led to enhanced cell viability and decreased apoptosis levels. However, overexpression of CTSS further aggravated HT-22 cell injury. CONCLUSION: TP inhibits not only microglia polarization towards the M1 phenotype by suppressing the CTSS/Fractalkine/CX3CR1 pathway activation, but also HT-22 apoptosis by crosstalk with BV-2 cells, thereby ameliorating CIRI. These findings reveal a novel mechanism of TP in improving CIRI, and offer potential implications for addressing the preventive and therapeutic strategies of CIRI.


Subject(s)
Brain Ischemia , Diterpenes , Epoxy Compounds , Infarction, Middle Cerebral Artery , Phenanthrenes , Reperfusion Injury , Signal Transduction , Animals , Male , Mice , Apoptosis/drug effects , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Chemokine CX3CL1/drug effects , Chemokine CX3CL1/metabolism , CX3C Chemokine Receptor 1/drug effects , CX3C Chemokine Receptor 1/metabolism , Disease Models, Animal , Diterpenes/pharmacology , Epoxy Compounds/pharmacology , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/metabolism , Mice, Inbred C57BL , Microglia/drug effects , Microglia/metabolism , Neuroprotective Agents/pharmacology , Phenanthrenes/pharmacology , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , Signal Transduction/drug effects
12.
Int J Pharm ; 656: 124096, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38583821

ABSTRACT

Pulmonary fibrosis (PF) is a chronic, progressive and irreversible interstitial lung disease that seriously threatens human life and health. Our previous study demonstrated the unique superiority of traditional Chinese medicine cryptotanshinone (CTS) combined with sustained pulmonary drug delivery for treating PF. In this study, we aimed to enhance the selectivity, targeting efficiency and sustained-release capability based on this delivery system. To this end, we developed and evaluated CTS-loaded modified liposomes-chitosan (CS) microspheres SM(CT-lipo) and liposome-exosome hybrid bionic vesicles-CS microspheres SM(LE). The prepared nano-in-micro particles system integrates the advantages of the carriers and complements each other. SM(CT-lipo) and SM(LE) achieved lung myofibroblast-specific targeting through CREKA peptide binding specifically to fibronectin (FN) and the homing effect of exosomes on parent cells, respectively, facilitating efficient delivery of anti-fibrosis drugs to lung lesions. Furthermore, compared with daily administration of conventional microspheres SM(NC) and positive control drug pirfenidone (PFD), inhaled administration of SM(CT-lipo) and SM(LE) every two days still attained similar efficacy, exhibiting excellent sustained drug release ability. In summary, our findings suggest that the developed SM(CT-lipo) and SM(LE) delivery strategies could achieve more accurate, efficient and safe therapy, providing novel insights into the treatment of chronic PF.


Subject(s)
Chitosan , Exosomes , Fibronectins , Liposomes , Pulmonary Fibrosis , Animals , Humans , Male , Administration, Inhalation , Antifibrotic Agents/administration & dosage , Antifibrotic Agents/chemistry , Chitosan/chemistry , Chitosan/administration & dosage , Delayed-Action Preparations , Drug Delivery Systems/methods , Drug Liberation , Exosomes/chemistry , Fibronectins/administration & dosage , Liposomes/chemistry , Lung/metabolism , Lung/drug effects , Microspheres , Phenanthrenes/administration & dosage , Phenanthrenes/chemistry , Phenanthrenes/pharmacokinetics , Pulmonary Fibrosis/drug therapy , Pyridones , Rats, Sprague-Dawley , Rats
13.
Bioorg Chem ; 147: 107387, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643561

ABSTRACT

Histamine 4 receptor (H4R), the most recently identified subtype of histamine receptor, primarily induces inflammatory reactions upon activation. Several H4R antagonists have been developed for the treatment of inflammatory bowel disease (IBD) and atopic dermatitis (AD), but their use has been limited by adverse side effects, such as a short half-life and toxicity. Natural products, as an important source of anti-inflammatory agents, offer minimal side effects and reduced toxicity. This work aimed to identify novel H4R antagonists from natural products. An H4R target-pathway model deconvoluted downstream Gi and MAPK signaling pathways was established utilizing cellular label-free integrative pharmacology (CLIP), on which 148 natural products were screened. Cryptotanshinone was identified as selective H4R antagonist, with an IC50 value of 11.68 ± 1.30 µM, which was verified with Fluorescence Imaging Plate Reader (FLIPR) and Cellular Thermal Shift (CTS) assays. The kinetic binding profile revealed the noncompetitive antagonistic property of cryptotanshinone. Two allosteric binding sites of H4R were predicted using SiteMap, Fpocket and CavityPlus. Subsequent molecular docking and dynamics simulation indicated that cryptotanshinone interacts with H4R at a pocket formed by the outward interfaces between TM3/4/5, potentially representing a new allosteric binding site for H4R. Overall, this study introduced cryptotanshinone as a novel H4R antagonist, offering promise as a new hit for drug design of H4R antagonist. Additionally, this study provided a novel screening model for the discovery of H4R antagonists.


Subject(s)
Biological Products , Dose-Response Relationship, Drug , Drug Discovery , Receptors, Histamine H4 , Humans , Biological Products/chemistry , Biological Products/pharmacology , Receptors, Histamine H4/antagonists & inhibitors , Receptors, Histamine H4/metabolism , Structure-Activity Relationship , Molecular Structure , Phenanthrenes/pharmacology , Phenanthrenes/chemistry , Histamine Antagonists/pharmacology , Histamine Antagonists/chemistry , Molecular Docking Simulation , Phenotype
14.
Chem Res Toxicol ; 37(5): 711-722, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38602333

ABSTRACT

A growing body of literature has linked early-life exposures to polycyclic aromatic hydrocarbons (PAH) with adverse neurodevelopmental effects. Once in the body, metabolism serves as a powerful mediator of PAH toxicity by bioactivating and detoxifying PAH metabolites. Since enzyme expression and activity vary considerably throughout human development, we evaluated infant metabolism of PAHs as a potential contributing factor to PAH susceptibility. We measured and compared rates of phenanthrene and retene (two primary PAH constituents of woodsmoke) metabolism in human hepatic microsomes from individuals ≤21 months of age to a pooled sample (n = 200) consisting primarily of adults. We used activity-based protein profiling (ABPP) to characterize cytochrome P450 enzymes (CYPs) in the same hepatic microsome samples. Once incubated in microsomes, phenanthrene demonstrated rapid depletion. Best-fit models for phenanthrene metabolism demonstrated either 1 or 2 phases, depending on the sample, indicating that multiple enzymes could metabolize phenanthrene. We observed no statistically significant differences in phenanthrene metabolism as a function of age, although samples from the youngest individuals had the slowest phenanthrene metabolism rates. We observed slower rates of retene metabolism compared with phenanthrene also in multiple phases. Rates of retene metabolism increased in an age-dependent manner until adult (pooled) metabolism rates were achieved at ∼12 months. ABPP identified 28 unique CYPs among all samples, and we observed lower amounts of active CYPs in individuals ≤21 months of age compared to the pooled sample. Phenanthrene metabolism correlated to CYPs 1A1, 1A2, 2C8, 4A22, 3A4, and 3A43 and retene metabolism correlated to CYPs 1A1, 1A2, and 2C8 measured by ABPP and vendor-supplied substrate marker activities. These results will aid efforts to determine human health risk and susceptibility to PAHs exposure during early life.


Subject(s)
Cytochrome P-450 Enzyme System , Microsomes, Liver , Phenanthrenes , Phenanthrenes/metabolism , Humans , Cytochrome P-450 Enzyme System/metabolism , Microsomes, Liver/metabolism , Infant , Adult , Female , Male , Polycyclic Aromatic Hydrocarbons/metabolism
15.
Chem Res Toxicol ; 37(5): 771-778, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38658839

ABSTRACT

In the current situation, peroxynitrite (ONOO-) is drawing the increasing attention of researchers for its pivotal role in diverse pathological and physiological processes on grounds of robust oxidation and nitrification. Herein, we have successfully designed and synthesized a phenanthrenequinone benzyl borate-based chemosensor for fast and selective detection of ONOO-. The probe PTDP itself had an orange fluorescence, which was changed to strong blue fluorescence upon the addition of ONOO-, indicating the ratiometric response of the probe. This is so because of the cleavage of the benzyl boronate-protecting group of PTDP upon the addition of ONOO- with simultaneous releasing of pyridinyl-based chemosensor PPI. The PTDP showed outstanding performance in the various photophysical studies such as good selectivity, excellent sensitivity with a very low detection limit of 2.74 nM, and a very fast response time (<15 s). Furthermore, for practical applicability, it was successfully applied in the ratiometric detection of ONOO- in osteoblast precursor cells.


Subject(s)
Fluorescent Dyes , Osteoblasts , Peroxynitrous Acid , Phenanthrenes , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Peroxynitrous Acid/analysis , Osteoblasts/drug effects , Phenanthrenes/chemistry , Molecular Structure , Optical Imaging , Limit of Detection , Animals , Humans , Spectrometry, Fluorescence
16.
Int J Mol Sci ; 25(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38673898

ABSTRACT

The absolute configuration and stability of two thianthrene chiral sulfoxides has been determined by means of X-ray single-crystal structure determinations. The analyses and configurations allow verification that the diastereomeric sulfoxides are stable in solution and are not interconverting, which has been suggested in some studies of sulfoxides. The two thianthrene sulfoxides have slightly different Rf values, which allowed their separation using flash chromatography on silica. The spots run back-to-back, which posed a challenge for their separation. The pure, separated compounds in solution remain as separate, single spots on a Thin Layer Chromatography (TLC) plate.


Subject(s)
Sulfoxides , Stereoisomerism , Sulfoxides/chemistry , Crystallography, X-Ray/methods , Models, Molecular , Chromatography, Thin Layer/methods , Phenanthrenes/chemistry , Molecular Structure
17.
JCI Insight ; 9(9)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38602775

ABSTRACT

Allogeneic hematopoietic stem cell transplantation (aHSCT) can cure patients with otherwise fatal leukemias and lymphomas. However, the benefits of aHSCT are limited by graft-versus-host disease (GVHD). Minnelide, a water-soluble analog of triptolide, has demonstrated potent antiinflammatory and antitumor activity in several preclinical models and has proven both safe and efficacious in clinical trials for advanced gastrointestinal malignancies. Here, we tested the effectiveness of Minnelide in preventing acute GVHD as compared with posttransplant cyclophosphamide (PTCy). Strikingly, we found Minnelide improved survival, weight loss, and clinical scores in an MHC-mismatched model of aHSCT. These benefits were also apparent in minor MHC-matched aHSCT and xenogeneic HSCT models. Minnelide was comparable to PTCy in terms of survival, GVHD clinical score, and colonic length. Notably, in addition to decreased donor T cell infiltration early after aHSCT, several regulatory cell populations, including Tregs, ILC2s, and myeloid-derived stem cells in the colon were increased, which together may account for Minnelide's GVHD suppression after aHSCT. Importantly, Minnelide's GVHD prevention was accompanied by preservation of graft-versus-tumor activity. As Minnelide possesses anti-acute myeloid leukemia (anti-AML) activity and is being applied in clinical trials, together with the present findings, we conclude that this compound might provide a new approach for patients with AML undergoing aHSCT.


Subject(s)
Diterpenes , Epoxy Compounds , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Phenanthrenes , Graft vs Host Disease/prevention & control , Graft vs Host Disease/drug therapy , Animals , Mice , Hematopoietic Stem Cell Transplantation/methods , Diterpenes/pharmacology , Diterpenes/therapeutic use , Epoxy Compounds/pharmacology , Epoxy Compounds/therapeutic use , Phenanthrenes/pharmacology , Phenanthrenes/therapeutic use , Humans , Transplantation, Homologous , Female , Cyclophosphamide/pharmacology , Cyclophosphamide/therapeutic use , Disease Models, Animal , Graft vs Leukemia Effect/drug effects , Mice, Inbred C57BL , Male
18.
Chemosphere ; 357: 141915, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38582162

ABSTRACT

Standard OECD tests are used to generate data on biodegradation (OECD 307) and sorption (OECD 106) of test chemicals in soil. In such tests, data on abiotic degradation using sterile samples are utilised to investigate any losses due to abiotic processes. The data from sterile samples are also used to interpret results and findings of non-sterile samples, especially in the context of sorption and non-extractable residue (NER) formation. However, to ensure the comparability of the data obtained from sterile and non-sterile experiments, effects of sterilisation on the soil matrix should be minimal. The objective of this study was to investigate the efficiencies of different sterilisation techniques and the impact of the sterilisation on sorption and NER formation in soil. In this study, experiments in accordance with OECD 307 and OECD 106 guidelines were performed with two soils covering wide range of soil characteristics and treated with the three sterilisation techniques autoclaving, gamma(γ)-radiation and adding 1% (w/w) sodium azide. As a test item, 14C-labelled phenanthrene and bromoxynil was used for OECD 307 test, whereas non-labelled phenanthrene and atrazine was used for OECD 106. The sterilisation efficiencies were investigated using traditional viable plate count and molecular approaches (RNA extraction method). The results suggest that none of the tested techniques resulted in completely sterilised soil with autoclaving being the most efficient technique. Adding sodium azide led to most inefficient sterilisation and a significant increase (0.56 units) in soil pH. OECD 307 results showed differences in NER formation of the test chemicals, especially for soil poisoning and γ-radiation, which could be due to inefficient sterilisation and/or change in soil physico-chemical properties. OECD 106 results suggest that none of the sterilisation techniques considerably affected sorption behaviour of the test chemicals. Based on our results, we recommend autoclaving as most suitable sterilisation technique.


Subject(s)
Biodegradation, Environmental , Soil Pollutants , Soil , Sterilization , Soil Pollutants/chemistry , Soil Pollutants/analysis , Sterilization/methods , Soil/chemistry , Adsorption , Gamma Rays , Phenanthrenes/chemistry
19.
Chemosphere ; 357: 142089, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643846

ABSTRACT

Alkylated polycyclic aromatic hydrocarbons are abundant in crude oil and are enriched during petroleum refinement but knowledge of their cardiotoxicity remains limited. Polycyclic aromatic hydrocarbons (PAHs) are considered the main hazardous components in crude oil and the tricyclic PAH phenanthrene has been singled out for its direct effects on cardiac tissue in mammals and fish. Here we test the impact of the monomethylated phenanthrene, 3-methylphenanthrene (3-MP), on the contractile and electrical function of the atrium and ventricle of a polar fish, the navaga cod (Eleginus nawaga). Using patch-clamp electrophysiology in atrial and ventricular cardiomyocytes we show that 3-MP is a potent inhibitor of the delayed rectifier current IKr (IC50 = 0.25 µM) and prolongs ventricular action potential duration. Unlike the parent compound phenanthrene, 3-MP did not reduce the amplitude of the L-type Ca2+ current (ICa) but it accelerated current inactivation thus reducing charge transfer across the myocyte membrane and compromising pressure development of the whole heart. 3-MP was a potent inhibitor (IC50 = 4.7 µM) of the sodium current (INa), slowing the upstroke of the action potential in isolated cells, slowing conduction velocity across the atrium measured with optical mapping, and increasing atrio-ventricular delay in a working whole heart preparation. Together, these findings reveal the strong cardiotoxic potential of this phenanthrene derivative on the fish heart. As 3-MP and other alkylated phenanthrenes comprise a large fraction of the PAHs in crude oil mixtures, these findings are worrisome for Arctic species facing increasing incidence of spills and leaks from the petroleum industry. 3-MP is also a major component of polluted air but is not routinely measured. This is also of concern if the hearts of humans and other terrestrial animals respond to this PAH in a similar manner to fish.


Subject(s)
Heart , Myocytes, Cardiac , Phenanthrenes , Animals , Phenanthrenes/toxicity , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Heart/drug effects , Heart/physiology , Action Potentials/drug effects , Water Pollutants, Chemical/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Perciformes/physiology
20.
Chem Biol Interact ; 395: 111010, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38679114

ABSTRACT

The incidence and mortality rate of myocardial infarction are increasing per year in China. The polarization of macrophages towards the classically activated macrophages (M1) phenotype is of utmost importance in the progression of inflammatory stress subsequent to myocardial infarction. Poly (ADP-ribose) polymerase 1(PARP1) is the ubiquitous and best characterized member of the PARP family, which has been reported to support macrophage polarization towards the pro-inflammatory phenotype. Yet, the role of PARP1 in myocardial ischemic injury remains to be elucidated. Here, we demonstrated that a myocardial infarction mouse model induced cardiac damage characterized by cardiac dysfunction and increased PARP1 expression in cardiac macrophages. Inhibition of PARP1 by the PJ34 inhibitors could effectively alleviate M1 macrophage polarization, reduce infarction size, decrease inflammation and rescue the cardiac function post-MI in mice. Mechanistically, the suppression of PARP1 increase NLRC5 gene expression, and thus inhibits the NF-κB pathway, thereby decreasing the production of inflammatory cytokines such as IL-1ß and TNF-α. Inhibition of NLRC5 promote infection by effectively abolishing the influence of this mechanism discussed above. Interestingly, inhibition of NLRC5 promotes cardiac macrophage polarization toward an M1 phenotype but without having major effects on M2 macrophages. Our results demonstrate that inhibition of PARP1 increased NLRC5 gene expression, thereby suppressing M1 polarization, improving cardiac function, decreasing infarct area and attenuating inflammatory injury. The aforementioned findings provide new insights into the proinflammatory mechanisms that drive macrophage polarization following myocardial infarction, thereby introducing novel potential targets for future therapeutic interventions in individuals affected by myocardial infarction.


Subject(s)
Intracellular Signaling Peptides and Proteins , Macrophages , Mice, Inbred C57BL , Myocardial Infarction , NF-kappa B , Poly (ADP-Ribose) Polymerase-1 , Up-Regulation , Animals , Myocardial Infarction/metabolism , Myocardial Infarction/drug therapy , Myocardial Infarction/pathology , Mice , Macrophages/metabolism , Macrophages/drug effects , Male , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Up-Regulation/drug effects , NF-kappa B/metabolism , Phenanthrenes/pharmacology , Phenanthrenes/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...