Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57.730
Filter
1.
Pak J Pharm Sci ; 37(2(Special)): 443-450, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38822548

ABSTRACT

Gastric cancer remains a global health concern, driving the exploration of natural products with anticancer potential. This study investigated the antiproliferative activity and chemical composition of a 70% ethanolic extract from Melissa officinalis L. against human gastric cancer cells. The extract was prepared and evaluated for total phenolic content, antioxidant capacity and flavonoid content. The MTT test checked how well it stopped the growth of human gastric adenocarcinoma (AGS) and normal dermal fibroblast (HDF) cells. Data analysis (SPSS Statistics) determined viable cell percentages and performed regression analysis (p<0.05). The extract exhibited significant antiproliferative activity against AGS cells compared to normal cells (p<0.05), with decreasing IC50 values (564.3, 258.0 and 122.5 µg/ml) over 24, 48 and 72 hours. It also displayed antioxidant activity (IC50=16.8±1.41µg/ml) and contained substantial phenolics (225.76±4.1 mg GAE/g) and flavonoids (22.36±2.6 mg RUT/g). This study suggests the 70% ethanolic extract of M. officinalis effectively suppresses AGS cell growth and possesses promising antioxidant properties, highlighting its potential as a natural source of anticancer and antioxidant agents, deserving further investigation.


Subject(s)
Adenocarcinoma , Antineoplastic Agents, Phytogenic , Antioxidants , Cell Proliferation , Melissa , Phenols , Plant Extracts , Stomach Neoplasms , Humans , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Melissa/chemistry , Phenols/pharmacology , Phenols/analysis , Cell Line, Tumor , Antioxidants/pharmacology , Antioxidants/isolation & purification , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Proliferation/drug effects , Flavonoids/pharmacology , Flavonoids/analysis , Cell Survival/drug effects
2.
Food Res Int ; 188: 114510, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823887

ABSTRACT

The aim of this study was to explore the copigmentation effect of gallic acid on red wine color and to dissect its mechanism at the molecular level. Three-dimensional studies, e.g., in model wine, in real wine and in silico, and multiple indicators, e.g., color, spectrum, thermodynamics and phenolic dynamics, were employed. The results showed that gallic acid significantly enhanced the color quality and stability of red wine. Physico-chemical interactions and chemical transformations should be the most likely mechanism, and physico-chemical interactions are also a prerequisite for chemical transformations. QM calculations of the physico-chemical interactions proved that the binding between gallic acid and malvidin-3-O-glucoside is a spontaneous exothermic reaction driven by hydrogen bonding and dispersion forces. The sugar moiety of malvidin-3-O-glucoside and the phenolic hydroxyl groups of gallic acid affect the formation of hydrogen bonds, while the dispersion interaction was related to the stacking of the molecular skeleton.


Subject(s)
Anthocyanins , Color , Gallic Acid , Glucosides , Hydrogen Bonding , Thermodynamics , Wine , Gallic Acid/chemistry , Wine/analysis , Glucosides/chemistry , Anthocyanins/chemistry , Quantum Theory , Phenols/chemistry
3.
World J Microbiol Biotechnol ; 40(7): 221, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38811440

ABSTRACT

Phenolic compounds are a group of non-essential dietary compounds that are widely recognized for their beneficial health effects, primarily due to their bioactive properties. These compounds which found in a variety of plant-based foods, including fruits, vegetables, and grains are known to possess antimicrobial, antioxidant, anti-inflammatory, and anti-carcinogenic properties. However, the health effects of these compounds depend on their bioaccessibility and bioavailability. In recent years, there has been growing interest in the use of probiotics for promoting human health. Saccharomyces cerevisiae is a yeast with potential probiotic properties and beneficial health effects. Biosorption of phenolic compounds on Saccharomyces cerevisiae cell walls improves their bioaccessibility. This characteristic has also allowed the use of this yeast as a biosorbent in the biosorption process due to its low cost, safety, and easy availability. S. cerevisiae enhances the bioaccessibility of phenolic compounds as a delivery system under in vitro digestion conditions. The reason for this phenomenon is the protective effects of yeast on various phenolic compounds under digestion conditions. This article shows the role of S. cerevisiae yeast on the bioaccessibility of various phenolic compounds and contributes to our understanding of the potential impact of yeasts in human health.


Subject(s)
Biological Availability , Phenols , Probiotics , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Phenols/metabolism , Humans , Probiotics/metabolism , Antioxidants/metabolism , Antioxidants/pharmacology , Cell Wall/metabolism , Cell Wall/chemistry
4.
Int J Med Mushrooms ; 26(6): 69-80, 2024.
Article in English | MEDLINE | ID: mdl-38801088

ABSTRACT

Although mushrooms are widely used for nutraceutical purposes, post-harvest storage is extremely crucial to avoid degradation and quality reduction in fresh mushrooms. Drying treatments are commonly applied in the mushroom industry to extend shelf life. Drying may cause instability of food quality and antioxidant parameters due to unsuitable drying temperatures. Therefore, in this research a common set of temperatures typically used by mushroom growers was applied (50°C, 60°C, 70°C) to Ganoderma lucidum, Lignosus rhinocerus, Auricularia auricula-judae, and Schizophyllum commune to analyze color changes and concentration of elements and phenolic compounds. Mushrooms were chosen based on commonly cultivated species among growers. L. rhinocerus dried at 70°C indicated significantly lower L* (78.90) compared to control (89.94). Element retention in each sample differed depending on the species. The amount of calcium was significantly higher in L. rhinocerus (11,893 mg/kg) and A. auricula-judae (10,941.81 mg/kg) when dried at 60°C. Drying at 70°C resulted in significantly higher magnesium for Sch. commune (13,054.38 mg/kg) and A. auricula-judae (80,56.92 mg/kg). Higher levels of iron and manganese were observed in Sch. commune dried at 70°C (216.54 and 10.02 mg/kg, respectively). Gallic acid had significantly higher retention at 50°C for A. auricula-judae and G. lucidum. Meanwhile, L. rhinocerus and Sch. commune showed significantly higher gallic acid at 60°C. It is evident from these results that temperature does affect the food quality and elemental parameters during the drying process for each mushroom.


Subject(s)
Agaricales , Color , Desiccation , Phenols , Temperature , Phenols/analysis , Phenols/chemistry , Agaricales/chemistry , Desiccation/methods , Antioxidants/analysis , Antioxidants/chemistry
5.
NPJ Syst Biol Appl ; 10(1): 56, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802371

ABSTRACT

Despite significant advances in reconstructing genome-scale metabolic networks, the understanding of cellular metabolism remains incomplete for many organisms. A promising approach for elucidating cellular metabolism is analysing the full scope of enzyme promiscuity, which exploits the capacity of enzymes to bind to non-annotated substrates and generate novel reactions. To guide time-consuming costly experimentation, different computational methods have been proposed for exploring enzyme promiscuity. One relevant algorithm is PROXIMAL, which strongly relies on KEGG to define generic reaction rules and link specific molecular substructures with associated chemical transformations. Here, we present a completely new pipeline, PROXIMAL2, which overcomes the dependency on KEGG data. In addition, PROXIMAL2 introduces two relevant improvements with respect to the former version: i) correct treatment of multi-step reactions and ii) tracking of electric charges in the transformations. We compare PROXIMAL and PROXIMAL2 in recovering annotated products from substrates in KEGG reactions, finding a highly significant improvement in the level of accuracy. We then applied PROXIMAL2 to predict degradation reactions of phenolic compounds in the human gut microbiota. The results were compared to RetroPath RL, a different and relevant enzyme promiscuity method. We found a significant overlap between these two methods but also complementary results, which open new research directions into this relevant question in nutrition.


Subject(s)
Algorithms , Computational Biology , Gastrointestinal Microbiome , Metabolic Networks and Pathways , Phenols , Gastrointestinal Microbiome/physiology , Humans , Phenols/metabolism , Computational Biology/methods
6.
Arch Environ Contam Toxicol ; 86(4): 375-382, 2024 May.
Article in English | MEDLINE | ID: mdl-38775938

ABSTRACT

Alkylphenol ethoxylates comprise of many anthropogenic chemicals such as nonylphenol (NP), octylphenol (OP) and nonylphenol ethoxylates (NPEOs). The objectives of this study were to assess the frequency and magnitude of detections of 4-NP, OP and NPEOs in Canadian sediment downstream of textile associated municipal wastewater treatment plants (MWWTPs) to determine if regulatory actions have had a beneficial impact on the receiving environment. Surficial sediments were obtained in four locations in the province of Québec (Canada) and were analyzed for nonylphenol, nonylphenol monoethoxylates (NP1EO), nonylphenol diethoxylates (NP2EO) and octylphenol from 2015 to 2018. Individual concentrations of the compounds varied from non detect to 419 ng/g. Of the four compounds analyzed, NP was detected the most frequently with a 75% detection rate while OPs were not detected in any of the samples. Since the Canadian regulatory actions have drastically reduced NP/NPEOs usage in textile mill factories and manufactured products, the potential source of these compounds in sediment for this study could stem from the outfall from the MWWTPs but not related to textile mills as well as from the usage of these compounds as formulants in pesticide products. Lastly, there were no exceedances to the Canadian Sediment Quality guideline toxic equivalency approach (TEQ) of 1400 ng/g or the 1310 ng/g guideline for NP in freshwater sediment from the European Scientific Committee on Health, Environmental and Emerging Risks. We hypothesize that the significant concentrations of these compounds in sediment may be a relevant and continuous source of 4NP in surface waters due to resuspension of sediment in the water column.


Subject(s)
Environmental Monitoring , Fresh Water , Geologic Sediments , Wastewater , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Geologic Sediments/chemistry , Geologic Sediments/analysis , Wastewater/chemistry , Wastewater/analysis , Fresh Water/chemistry , Phenols/analysis , Quebec , Waste Disposal, Fluid , Textiles/analysis , Textile Industry
7.
Int J Med Mushrooms ; 26(5): 59-71, 2024.
Article in English | MEDLINE | ID: mdl-38780423

ABSTRACT

To fully utilize Phellinus igniarius fermentation mycelia, the present study investigated the in vitro antioxidant and α-amylase inhibitory properties of four Ph. igniarius strains. Organic solvents were used to extract fatty acids, phenolics, and flavonoids from the selected mushrooms. The composition and bioactivity of the extracts were evaluated. The lipid yield obtained using petroleum ether (7.1%) was higher than that obtained using 1:1 n-hex-ane+methanol (5.5%) or 2:1 dichloromethane+methanol (3.3%). The composition and relative content of saturated and unsaturated fatty acids in the petroleum ether extract were higher than those in other solvent extracts. Furthermore, ethyl acetate extracts had higher flavonoid and phenolic content and better antioxidant activity than other extracts; however, the 70% ethanol extracts had the best α-amylase inhibitory activity. The supernatant from the ethanol precipitation of aqueous and 1% (NH4)2C2O4 extracts could also be biocompound sources. This comparative study is the first highlighting the in vitro antioxidant and α-amylase inhibitory properties of the four strains of Ph. igniarius extracts prepared using different organic solvents, which makes the investigated species and extracts promising for biological application.


Subject(s)
Antioxidants , Flavonoids , Mycelium , Phenols , alpha-Amylases , Antioxidants/pharmacology , Antioxidants/chemistry , alpha-Amylases/antagonists & inhibitors , Mycelium/chemistry , Flavonoids/pharmacology , Flavonoids/analysis , Flavonoids/chemistry , Phenols/pharmacology , Phenols/chemistry , Phenols/analysis , Fatty Acids/analysis , Fatty Acids/chemistry , Solvents/chemistry , Basidiomycota/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Fermentation
8.
J Mass Spectrom ; 59(6): e5033, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38726726

ABSTRACT

A total of 43 compounds, including phenolic acids, flavonoids, lignans, and diterpene, were identified and characterized using UPLC-ESI-Q-TOF-MS coupled with UNIFI software. The identified flavonoids were mostly isomers of luteolin, apigenin, and quercetin, which were elucidated and distinguished for the first time in pepper cultivars. The use of multivariate data analytics for sample discrimination revealed that luteolin derivatives played the most important role in differentiating pepper cultivars. The content of phenolic acids and flavonoids in immature green peppers was generally higher than that of mature red peppers. The pepper extracts possessed significant antioxidant activities, and the antioxidant activities correlated well with phenolic contents and their molecular structure. In conclusion, the findings expand our understanding of the phytochemical components of the Chinese pepper genotype at two maturity stages. Moreover, a UPLC-ESI-Q-TOF-MS in negative ionization mode rapid methods for characterization and isomers differentiation was described.


Subject(s)
Antioxidants , Capsicum , Phenols , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Electrospray Ionization/methods , Antioxidants/chemistry , Antioxidants/analysis , Antioxidants/pharmacology , Chromatography, High Pressure Liquid/methods , Capsicum/chemistry , Isomerism , Phenols/chemistry , Phenols/analysis , Flavonoids/chemistry , Flavonoids/analysis , Plant Extracts/chemistry , East Asian People
9.
J Sep Sci ; 47(9-10): e2300898, 2024 May.
Article in English | MEDLINE | ID: mdl-38726747

ABSTRACT

Based on the specific binding of drug molecules to cell membrane receptors, a screening and separation method for active compounds of natural products was established by combining phospholipase C (PLC) sensitized hollow fiber microscreening by a solvent seal with high-performance liquid chromatography technology. In the process, the factors affecting the screening were optimized. Under the optimal screening conditions, we screened honokiol (HK), magnolol (MG), negative control drug carbamazepine, and positive control drug amentoflavone, the repeatability of the method was tested. The PLC activity was determined before and after the screening. Experimental results showed that the sensitization factors of PLC of HK and MG were 61.0 and 48.5, respectively, and amentoflavone was 15.0, carbamazepine could not bind to PLC. Moreover, the molecular docking results were consistent with this measurement, indicating that HK and MG could be combined with PLC, and they were potential interacting components with PLC. This method used organic solvent to seal the PLC greatly ensuring the activity, so this method had the advantage of integrating separation, and purification with screening, it not only exhibited good reproducibility and high sensitivity but was also suitable for screening the active components in natural products by various targets in vitro.


Subject(s)
Biological Products , Type C Phospholipases , Biological Products/chemistry , Biological Products/pharmacology , Biological Products/isolation & purification , Type C Phospholipases/metabolism , Type C Phospholipases/chemistry , Type C Phospholipases/antagonists & inhibitors , Chromatography, High Pressure Liquid , Molecular Docking Simulation , Lignans/chemistry , Lignans/isolation & purification , Lignans/pharmacology , Biphenyl Compounds/antagonists & inhibitors , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/isolation & purification , Humans , Allyl Compounds , Phenols
10.
Biomed Environ Sci ; 37(4): 367-376, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38727159

ABSTRACT

Objective: This study aimed to clarify the intervention effect of salidroside (SAL) on lung injury caused by PM 2.5 in mice and illuminate the function of SIRT1-PGC-1ɑ axis. Methods: Specific pathogen-free (SPF) grade male C57BL/6 mice were randomly assigned to the following groups: control group, SAL group, PM 2.5 group, SAL+PM 2.5 group. On the first day, SAL was given by gavage, and on the second day, PM 2.5 suspension was given by intratracheal instillation. The whole experiment consist of a total of 10 cycles, lasting 20 days. At the end of treatment, blood samples and lung tissues were collected and analyzed. Observation of pathological changes in lung tissue using inverted microscopy and transmission electron microscopy. The expression of inflammatory, antioxidants, apoptosis, and SIRT1-PGC-1ɑ proteins were detected by Western blotting. Results: Exposure to PM 2.5 leads to obvious morphological and pathologica changes in the lung of mice. PM 2.5 caused a decline in levels of antioxidant-related enzymes and protein expressions of HO-1, Nrf2, SOD2, SIRT1 and PGC-1ɑ, and an increase in the protein expressions of IL-6, IL-1ß, Bax, caspase-9 and cleaved caspase-3. However, SAL reversed the aforementioned changes caused by PM 2.5 by activating the SIRT1-PGC-1α pathway. Conclusion: SAL can activate SIRT1-PGC-1ɑ to ameliorate PM 2.5-induced lung injury.


Subject(s)
Glucosides , Lung Injury , Mice, Inbred C57BL , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Phenols , Sirtuin 1 , Animals , Glucosides/pharmacology , Glucosides/therapeutic use , Sirtuin 1/metabolism , Sirtuin 1/genetics , Male , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Mice , Lung Injury/drug therapy , Particulate Matter/toxicity , Particulate Matter/adverse effects , Particle Size , Lung/drug effects , Lung/pathology , Lung/metabolism
11.
Drug Des Devel Ther ; 18: 1439-1457, 2024.
Article in English | MEDLINE | ID: mdl-38707616

ABSTRACT

Background: Acteoside, an active ingredient found in various medicinal herbs, is effective in the treatment of diabetic kidney disease (DKD); however, the intrinsic pharmacological mechanism of action of acteoside in the treatment of DKD remains unclear. This study utilizes a combined approach of network pharmacology and experimental validation to investigate the potential molecular mechanism systematically. Methods: First, acteoside potential targets and DKD-associated targets were aggregated from public databases. Subsequently, utilizing protein-protein interaction (PPI) networks, alongside GO and KEGG pathway enrichment analyses, we established target-pathway networks to identify core potential therapeutic targets and pathways. Further, molecular docking facilitated the confirmation of interactions between acteoside and central targets. Finally, the conjectured molecular mechanisms of acteoside against DKD were verified through experimentation on unilateral nephrectomy combined with streptozotocin (STZ) rat model. The underlying downstream mechanisms were further investigated. Results: Network pharmacology identified 129 potential intersected targets of acteoside for DKD treatment, including targets such as AKT1, TNF, Casp3, MMP9, SRC, IGF1, EGFR, HRAS, CASP8, and MAPK8. Enrichment analyses indicated the PI3K-Akt, MAPK, Metabolic, and Relaxin signaling pathways could be involved in this therapeutic context. Molecular docking revealed high-affinity binding of acteoside to PIK3R1, AKT1, and NF-κB1. In vivo studies validated the therapeutic efficacy of acteoside, demonstrating reduced blood glucose levels, improved serum Scr and BUN levels, decreased 24-hour urinary total protein (P<0.05), alongside mitigated podocyte injury (P<0.05) and ameliorated renal pathological lesions. Furthermore, this finding indicates that acteoside inhibits the expression of pyroptosis markers NLRP3, Caspase-1, IL-1ß, and IL-18 through the modulation of the PI3K/AKT/NF-κB pathway. Conclusion: Acteoside demonstrates renoprotective effects in DKD by regulating the PI3K/AKT/NF-κB signaling pathway and alleviating pyroptosis. This study explores the pharmacological mechanism underlying acteoside's efficacy in DKD treatment, providing a foundation for further basic and clinical research.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Glucosides , Molecular Docking Simulation , Network Pharmacology , Phenols , Polyphenols , Streptozocin , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Animals , Rats , Glucosides/pharmacology , Glucosides/chemistry , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Male , Phenols/pharmacology , Phenols/chemistry , Rats, Sprague-Dawley
12.
Anim Sci J ; 95(1): e13950, 2024.
Article in English | MEDLINE | ID: mdl-38712489

ABSTRACT

The utilization of polyphenol-modified starch in ruminants has not undergone extensive exploration. This study aimed to investigate the impact of the complex formed between starch and Melastoma candidum D. Don fruit extract on physicochemical properties, phenol release kinetics in various buffers simulating the gastrointestinal tract, methane production, and post-rumen digestibility. The interaction between starch and M. candidum D. Don fruit extract significantly (p < 0.001) increased resistant starch and particle size diameter. The maximum phenolic release from complex between starch and M. candidum D. Don fruit extract, due to gastrointestinal tract-simulated buffers, ranged from 22.96 to 34.60 mg/100 mg tannic acid equivalent. However, rumen and abomasum-simulated buffers released more phenolic content, whereas the intestine-simulated buffer showed higher antioxidant activity (ferric ion-reducing antioxidant power). Furthermore, complex between starch and M. candidum D. Don fruit extract significantly decreased dry matter rumen digestibility (p < 0.001) and maximum methane gas production (p < 0.001).


Subject(s)
Antioxidants , Chemical Phenomena , Digestion , Fermentation , Melastomataceae , Plant Extracts , Rumen , Starch , Rumen/metabolism , Animals , Starch/metabolism , Antioxidants/metabolism , Melastomataceae/chemistry , Melastomataceae/metabolism , Rheology , Methane/metabolism , Fruit/chemistry , In Vitro Techniques , Phenols/metabolism , Phenols/analysis , Particle Size , Polyphenols/metabolism
13.
Molecules ; 29(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731406

ABSTRACT

The effects of canopy treatment with chitosan and the effects of the vineyard location on the quality parameters, volatile and non-volatile profiles, and sensory profile of Pinot Noir wines from South Tyrol (Italy) were studied. Multivariate statistical analysis was applied to identify the most relevant compounds associated with the variability in phenolics and anthocyanins (analyzed by UHPLC-MS), volatile components (HS-SPME-GCxGC-ToF/MS), and basic enological parameters. A clear separation of low-altitude wines (350 m.a.s.l.), which had a high concentration of most of the identified volatile compounds, compared to high-altitude wines (800 and 1050-1150 m.a.s.l.) was pointed out. Low altitude minimized the concentration of the most significant anthocyanins in wines from a valley bottom, presumably due to reduced sun exposure. Wines obtained from chitosan-treated canopies, and, more particularly, those subjected to multiple treatments per year showed a higher amount of the main non-volatile phenolics and were sensorially described as having "unpleasant flavors" and "odors", which might suggest that grape metabolism is slightly altered compared to untreated grapevines. Thus, optimization of the treatment with chitosan should be further investigated.


Subject(s)
Anthocyanins , Chitosan , Phenols , Vitis , Volatile Organic Compounds , Wine , Anthocyanins/analysis , Chitosan/chemistry , Wine/analysis , Vitis/chemistry , Phenols/analysis , Volatile Organic Compounds/analysis , Italy , Chromatography, High Pressure Liquid
14.
Molecules ; 29(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731432

ABSTRACT

Dairy products are highly susceptible to contamination from microorganisms. This study aimed to evaluate the efficacy of hydroxypropyl methylcellulose (HPMC) and propolis film as protective coatings for cheese. For this, microbiological analyses were carried out over the cheese' ripening period, focusing on total mesophilic bacteria, yeasts and moulds, lactic acid bacteria, total coliforms, Escherichia coli, and Enterobacteriaceae. Physicochemical parameters (pH, water activity, colour, phenolic compounds content) were also evaluated. The statistical analysis (conducted using ANOVA and PERMANOVA) showed a significant interaction term between the HPMC film and propolis (factor 1) and storage days (factor 2) with regard to the dependent variables: microbiological and physicochemical parameters. A high level of microbial contamination was identified at the baseline. However, the propolis films were able to reduce the microbial count. Physicochemical parameters also varied with storage time, with no significant differences found for propolis-containing films. Overall, the addition of propolis to the film influenced the cheeses' colour and the quantification of phenolic compounds. Regarding phenolic compounds, their loss was verified during storage, and was more pronounced in films with a higher percentage of propolis. The study also showed that, of the three groups of phenolic compounds (hydroxybenzoic acids, hydroxycinnamic acids, and flavonoids), hydroxycinnamic acids showed the most significant losses. Overall, this study reveals the potential of using HPMC/propolis films as a coating for cheese in terms of microbiological control and the preservation of physicochemical properties.


Subject(s)
Cheese , Food Preservation , Hypromellose Derivatives , Propolis , Cheese/microbiology , Cheese/analysis , Propolis/chemistry , Hypromellose Derivatives/chemistry , Food Preservation/methods , Phenols/chemistry , Phenols/analysis , Food Microbiology , Escherichia coli/drug effects
15.
Molecules ; 29(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731494

ABSTRACT

Figs are the edible fruits of the fig tree, Ficus carica L., that have been used for centuries for human consumption and in traditional medicine, to treat skin problems, inflammation, and gastrointestinal disorders. Our previous study investigated the presence of phenolic compounds in aqueous extracts of two Algerian popular fig varieties, azendjar (Az) and taamriouth (Ta), as well as their in vitro antioxidant activity. In this study, we assessed hydroethanolic extracts of these fig varieties. The total phenolic content was measured, along with the phenolic profile. Rutin was determined to be the dominant phenolic compound, followed by vanillic acid, 3,4-dihydroxybenzoic acid, quercetin, 4-hydroxybenzoic acid, rosmarinic acid (in Az only), and cinnamic acid. The antioxidant activity of the extracts was evaluated both in vitro (DPPH and FRAP assays) and in vivo, in rats intoxicated with carbon tetrachloride. In all assays, the fig extract-especially the dark-peeled fig variety azendjar-showed antioxidant potency. The administration of fig extract resulted in a reduction in liver damage, expressed by both different biochemical markers and histopathological study (less degraded liver architecture, reduced fibrosis, and only mild inflammation). A dose-dependent therapeutic effect was observed. The extract from the dark-peeled fig variety, Az, was characterized by a higher phenolic content and a stronger antioxidant activity than the extract from the light-peeled variety-Ta. Our study justifies the use of figs in traditional healing and shows the potential of using fig extracts in natural medicines and functional foods.


Subject(s)
Antioxidants , Carbon Tetrachloride , Ficus , Oxidative Stress , Plant Extracts , Animals , Ficus/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Rats , Oxidative Stress/drug effects , Phenols/pharmacology , Phenols/chemistry , Male , Liver/drug effects , Liver/metabolism , Liver/pathology , Rats, Wistar
16.
Molecules ; 29(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38731503

ABSTRACT

This current article was dedicated to the determination of the composition of phenolic compounds in extracts of four species of the genus Filipendula in order to establish a connection between the composition of polyphenols and biological effects. A chemical analysis revealed that the composition of the extracts studied depended both on the plant species and its part (leaf or flower) and on the extractant used. All four species of Filipendula were rich sources of phenolic compounds and contained hydrolyzable tannins, condensed tannins, phenolic acids and their derivatives, and flavonoids. The activities included data on those that are most important for creating functional foods with Filipendula plant components: the influence on blood coagulation measured by prothrombin and activated partial thromboplastin time, and on the activity of the digestive enzymes (pancreatic amylase and lipase). It was established that plant species, their parts, and extraction methods contribute meaningfully to biological activity. The most prominent result is as follows: the plant organ determines the selective inhibition of either amylase or lipase; thus, the anticoagulant activities of F. camtschatica and F. stepposa hold promise for health-promoting food formulations associated with general metabolic disorders.


Subject(s)
Phenols , Plant Extracts , Plant Extracts/chemistry , Plant Extracts/pharmacology , Phenols/chemistry , Phenols/analysis , Phenols/pharmacology , Lipase/antagonists & inhibitors , Lipase/metabolism , Flavonoids/chemistry , Flavonoids/pharmacology , Flavonoids/analysis , Polyphenols/chemistry , Polyphenols/pharmacology , Polyphenols/analysis , Amylases/antagonists & inhibitors , Amylases/metabolism , Blood Coagulation/drug effects , Humans , Anticoagulants/pharmacology , Anticoagulants/chemistry , Plant Leaves/chemistry
17.
Molecules ; 29(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38731535

ABSTRACT

Pre-fermentation treatment has an important impact on the color, aroma, taste, and other characteristics of fruit wine. To discover suitable pre-treatment techniques and conditions that yield strawberry wine of excellent quality, the influences of juice fermentation, pulp maceration, thermovinification, and enzymatic hydrolysis pre-treatments on the basic chemical composition, color, antioxidant capacity, and volatile organic compounds in strawberry wines were investigated. The results showed that the color, antioxidant properties, and volatile aroma of strawberry wines fermented with juice were different from those with pulp. Strawberry wines fermented from juice after 50 °C maceration had more desirable qualities, such as less methanol content (72.43 ± 2.14 mg/L) compared with pulp-fermented wines (88.16 ± 7.52 mg/L) and enzymatic maceration wines (136.72 ± 11.5 mg/L); higher total phenolic content (21.78%) and total flavonoid content (13.02%); enhanced DPPH (17.36%) and ABTS (27.55%) free radical scavenging activities; richer essential terpenoids and fatty acid ethyl esters, such as linalool (11.28%), ethyl hexanoate (14.41%), ethyl octanoate (17.12%), ethyl decanoate (32.49%), and ethyl 9-decenoate (60.64%); pleasant floral and fruity notes compared with juice-fermented wines macerated at normal temperatures; and a lighter color. Overall, juice thermovinification at 50 °C is a potential pre-treatment technique to enhance the nutrition and aroma of strawberry wine.


Subject(s)
Antioxidants , Fermentation , Fragaria , Volatile Organic Compounds , Wine , Wine/analysis , Volatile Organic Compounds/analysis , Fragaria/chemistry , Antioxidants/analysis , Antioxidants/chemistry , Odorants/analysis , Phenols/analysis , Flavonoids/analysis , Fruit/chemistry , Color
18.
Molecules ; 29(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38731544

ABSTRACT

Berberis vulgaris (L.) has remarkable ethnopharmacological properties and is widely used in traditional medicine. The present study investigated B. vulgaris stem bark (Berberidis cortex) by extraction with 50% ethanol. The main secondary metabolites were quantified, resulting in a polyphenols content of 17.6780 ± 3.9320 mg Eq tannic acid/100 g extract, phenolic acids amount of 3.3886 ± 0.3481 mg Eq chlorogenic acid/100 g extract and 78.95 µg/g berberine. The dried hydro-ethanolic extract (BVE) was thoroughly analyzed using Ultra-High-Performance Liquid Chromatography coupled with High-Resolution Mass Spectrometry (UHPLC-HRMS/MS) and HPLC, and 40 bioactive phenolic constituents were identified. Then, the antioxidant potential of BVE was evaluated using three methods. Our results could explain the protective effects of Berberidis cortex EC50FRAP = 0.1398 mg/mL, IC50ABTS = 0.0442 mg/mL, IC50DPPH = 0.2610 mg/mL compared to ascorbic acid (IC50 = 0.0165 mg/mL). Next, the acute toxicity and teratogenicity of BVE and berberine-berberine sulfate hydrate (BS)-investigated on Daphnia sp. revealed significant BS toxicity after 24 h, while BVE revealed considerable toxicity after 48 h and induced embryonic developmental delays. Finally, the anticancer effects of BVE and BS were evaluated in different tumor cell lines after 24 and 48 h of treatments. The MTS assay evidenced dose- and time-dependent antiproliferative activity, which was higher for BS than BVE. The strongest diminution of tumor cell viability was recorded in the breast (MDA-MB-231), colon (LoVo) cancer, and OSCC (PE/CA-PJ49) cell lines after 48 h of exposure (IC50 < 100 µg/mL). However, no cytotoxicity was reported in the normal epithelial cells (HUVEC) and hepatocellular carcinoma (HT-29) cell lines. Extensive data analysis supports our results, showing a significant correlation between the BVE concentration, phenolic compounds content, antioxidant activity, exposure time, and the viability rate of various normal cells and cancer cell lines.


Subject(s)
Antioxidants , Berberis , Plant Bark , Plant Extracts , Berberis/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Plant Bark/chemistry , Humans , Cell Line, Tumor , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Cell Survival/drug effects , Phenols/pharmacology , Phenols/chemistry , Chromatography, High Pressure Liquid , Plant Stems/chemistry
19.
Molecules ; 29(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38731557

ABSTRACT

The supramolecular solvent (SUPRAS) has garnered significant attention as an innovative, efficient, and environmentally friendly solvent for the effective extraction and separation of bioactive compounds from natural resources. However, research on the use of a SUPRAS for the extraction of phenolic compounds from plants, which are highly valued in food products due to their exceptional antioxidant properties, remains scarce. The present study developed a green, ultra-sound-assisted SUPRAS method for the simultaneous determination of three phenolic acids in Prunella vulgaris using high-performance liquid chromatography (HPLC). The experimental parameters were meticulously optimized. The efficiency and antioxidant properties of the phenolic compounds obtained using different extraction methods were also compared. Under optimal conditions, the extraction efficiency of the SUPRAS, prepared with octanoic acid reverse micelles dispersed in ethanol-water, significantly exceeded that of conventional organic solvents. Moreover, the SUPRAS method demonstrated greater antioxidant capacity. Confocal laser scanning microscopy (CLSM) images revealed the spherical droplet structure of the SUPRAS, characterized by a well-defined circular fluorescence position, which coincided with the position of the phenolic acids. The phenolic acids were encapsulated within the SUPRAS droplets, indicating their efficient extraction capacity. Furthermore, molecular dynamics simulations combined with CLSM supported the proposed method's mechanism and theoretically demonstrated the superior extraction performance of the SUPRAS. In contrast to conventional methods, the higher extraction efficiency of the SUPRAS can be attributed to the larger solvent contact surface area, the formation of more types of hydrogen bonds between the extractants and the supramolecular solvents, and stronger, more stable interaction forces. The results of the theoretical studies corroborate the experimental outcomes.


Subject(s)
Antioxidants , Phenols , Plant Extracts , Solvents , Solvents/chemistry , Phenols/chemistry , Phenols/isolation & purification , Antioxidants/chemistry , Antioxidants/isolation & purification , Plant Extracts/chemistry , Chromatography, High Pressure Liquid/methods , Green Chemistry Technology , Molecular Dynamics Simulation , Hydroxybenzoates/chemistry , Hydroxybenzoates/isolation & purification
20.
Molecules ; 29(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38731583

ABSTRACT

Xanthorrhizol, an important marker of Curcuma xanthorrhiza, has been recognized for its different pharmacological activities. A green strategy for selective xanthorrhizol extraction is required. Herein, natural deep eutectic solvents (NADESs) based on glucose and organic acids (lactic acid, malic acid, and citric acid) were screened for the extraction of xanthorrhizol from Curcuma xanthorrhiza. Ultrasound-assisted extraction using glucose/lactic acid (1:3) (GluLA) gave the best yield of xanthorrhizol. The response surface methodology with a Box-Behnken Design was used to optimize the interacting variables of water content, solid-to-liquid (S/L) ratio, and extraction to optimize the extraction. The optimum conditions of 30% water content in GluLA, 1/15 g/mL (S/L), and a 20 min extraction time yielded selective xanthorrhizol extraction (17.62 mg/g) over curcuminoids (6.64 mg/g). This study indicates the protective effect of GluLA and GluLA extracts against oxidation-induced DNA damage, which was comparable with those obtained for ethanol extract. In addition, the stability of the xanthorrhizol extract over 90 days was revealed when stored at -20 and 4 °C. The FTIR and NMR spectra confirmed the hydrogen bond formation in GluLA. Our study reported, for the first time, the feasibility of using glucose/lactic acid (1:3, 30% water v/v) for the sustainable extraction of xanthorrhizol.


Subject(s)
Antioxidants , Curcuma , Phenols , Plant Extracts , Rhizome , Curcuma/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Rhizome/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Phenols/chemistry , Phenols/isolation & purification , Phenols/pharmacology , Deep Eutectic Solvents/chemistry , Ultrasonic Waves
SELECTION OF CITATIONS
SEARCH DETAIL
...