Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.090
Filter
1.
Food Res Int ; 186: 114350, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729698

ABSTRACT

In this study, three types of ß-sitosterol-based oleogels (ß-sitosterol + Î³-oryzanol oleogels, ß-sitosterol + lecithin, oleogels and ß-sitosterol + monostearate oleogels), loaded with astaxanthin, were employed as the oil phase to create oleogel-based emulsions (SO, SL, and SM) using high-pressure homogenization. The microstructure revealed that fine-scale crystals were dispersed within the oil phase of the droplets in the ß-sitosterol oleogel-based emulsion. The bioaccessibility of astaxanthin was found to be 58.13 %, 51.24 %, 36.57 %, and 45.72 % for SM, SL, SO, and the control group, respectively. Interestingly, the release of fatty acids was positively correlated with the availability of astaxanthin (P = 0.981). Further analysis of FFAs release and kinetics indicated that the structural strength of the oil-phase in the emulsions influenced the degree and rate of lipolysis. Additionally, the micellar fraction analysis suggested that the nature and composition of the oleogelators in SM and SL also impacted lipolysis and the bioaccessibility of astaxanthin. Furthermore, interfacial binding of lipase and isothermal titration calorimetry (ITC) measurements revealed that the oleogel network within the oil phase of the emulsion acted as a physical barrier, hindering the interaction between lipase and lipid. Overall, ß-sitosterol oleogel-based emulsions offer a versatile platform for delivering hydrophobic molecules, enhancing the bioavailability of active compounds, and achieving sustained release.


Subject(s)
Emulsions , Organic Chemicals , Sitosterols , Xanthophylls , Sitosterols/chemistry , Xanthophylls/chemistry , Organic Chemicals/chemistry , Biological Availability , Lipolysis , Lecithins/chemistry , Fatty Acids/chemistry , Phenylpropionates
2.
PLoS One ; 19(5): e0302745, 2024.
Article in English | MEDLINE | ID: mdl-38776277

ABSTRACT

Pigmented rice, especially black rice, is gaining popularity as it is rich in antioxidants such as anthocyanins and γ-oryzanol. At present, knowledge about temporal control of biosynthesis and accumulation of antioxidants during grain development is limited. To address this, the accumulation patterns of anthocyanins and γ-oryzanol were assessed in two distinct black rice genotypes over the course of grain development, and the expression of known regulatory genes for anthocyanin biosynthesis was examined. The results indicated that total γ-oryzanol content increased continuously throughout grain development, while total anthocyanins peaked at dough stage (15 to 21 days after flowering) followed by a decline until grain maturity in both genotypes. However, the rate of decrease in anthocyanin content differed between genotypes, and a more prominent decline in cyanidin 3-O-glucoside (C3G) relative to peonidin 3-O-glucoside (P3G) was observed for both. Anthocyanin content was closely linked with the expression of key regulatory genes in the MBW (MYB-bHLH-WD40) complex. This improved knowledge of the genotype-specific biosynthesis (anthocyanins only) and accumulation patterns of anthocyanins and γ-oryzanol can inform subsequent research efforts to increase concentrations of these key antioxidants in black rice grains.


Subject(s)
Anthocyanins , Oryza , Phenylpropionates , Anthocyanins/metabolism , Anthocyanins/biosynthesis , Oryza/metabolism , Oryza/genetics , Oryza/growth & development , Phenylpropionates/metabolism , Gene Expression Regulation, Plant , Genotype , Glucosides/metabolism , Glucosides/biosynthesis , Edible Grain/metabolism , Edible Grain/genetics , Edible Grain/growth & development , Antioxidants/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics
3.
Biomacromolecules ; 25(6): 3620-3627, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38806062

ABSTRACT

Lignin is an aromatic polymer that constitutes plant cell walls. The polymerization of lignin proceeds by radical coupling, and this process requires radicalization of the phenolic end of lignin by enzymes. However, due to the steric hindrance between enzymes, lignin, and polysaccharides, the direct oxidation of the phenolic end of lignin by the enzyme would be difficult, and the details of the growth of lignin are still unknown. In this study, enzymatic dehydrogenative polymerization experiments were conducted using coniferyl alcohol (CA) and the deuterium-labeled lignin model compound (D-LM) under a noncontact condition in which horseradish peroxidase cannot directly oxidize D-LM due to separation by a dialysis membrane. Analysis of deuterium-labeled degraded compounds obtained by a combination of methylation and thioacidolysis revealed the formation of the bond between the phenolic end of D-LM and CA, suggesting that membrane-permeable, low-molecular-weight lignols functioned as a redox shuttle mediator.


Subject(s)
Lignin , Oxidation-Reduction , Polymerization , Lignin/chemistry , Lignin/metabolism , Phenols/chemistry , Phenols/metabolism , Horseradish Peroxidase/chemistry , Horseradish Peroxidase/metabolism , Molecular Weight , Phenylpropionates/chemistry , Phenylpropionates/metabolism
4.
Mol Biol Rep ; 51(1): 541, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642208

ABSTRACT

BACKGROUND AND PURPOSE: Liver fibrosis is a reversible liver injury that occurs as a result of many chronic inflammatory diseases and can lead to cirrhosis, which is irreversible and fatal. So, we studied the anti-fibrotic effects of saroglitazar on LX-2 cell lines, as a dual PPARα/γ agonist. METHODS: Cells, after 80% confluence, were treated with TGF-ß (2 ng/mL) for 24 h. Then cells were treated with saroglitazar at different doses (2.5, 5, 10 µM) for 24 h. After same incubation, the cells of control group, TGF-ß group, and TGF-ß + saroglitazar group were harvested for RNA and protein extraction to determine the effects of saroglitazar. RT-PCR and western blot methods were used to express genes related to fibrosis. RESULTS: Our results show that the relative expression of α-SMA, collagen1α, N-cadherin, NOX (1, 2, and 4), and phosphorylated Smad3 protein was significantly higher in TGF-ß-treated cells compared with the normal group, and E-cadherin expression was decreased in TGF-ß-treated cells. After TGF-ß-treated cells were exposed to saroglitazar, the expression of these genes was significantly reversed (P < 0.05). CONCLUSIONS: Our results clearly show the short-term inhibitory role of saroglitazar in the expression of fibrotic factors using the TGF-ß/Smad signaling pathway. These results suggest that saroglitazar can be considered as a suitable therapeutic strategy for fibrotic patients. Although more studies are needed.


Subject(s)
Liver Cirrhosis , Phenylpropionates , Pyrroles , Smad3 Protein , Transforming Growth Factor beta , Humans , Cell Line , Fibrosis/drug therapy , Fibrosis/metabolism , Liver Cirrhosis/drug therapy , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Phenylpropionates/pharmacology , Phosphorylation/drug effects , Pyrroles/pharmacology , Signal Transduction/drug effects , Smad3 Protein/genetics , Smad3 Protein/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/pharmacology
5.
Metabolism ; 155: 155912, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38609038

ABSTRACT

Saroglitazar (SARO), a dual peroxisome proliferator activated receptor (PPAR)-α/γ agonist, has been used to treat metabolic diseases such as insulin resistance and diabetic dyslipidemia in patients with non-alcoholic fatty liver disease (NAFLD). SARO, administered at a dose of 4 mg/day, has been consistently studied in clinical trials with different time points ranging from 4 to 24 weeks with NAFLD patients. Due to its PPAR-γ agonistic action, SARO prevents adipose tissue-mediated fatty acid delivery to the liver by increasing insulin sensitivity and regulating adiponectin and leptin levels in adipose tissue. In hepatocytes, SARO induces fatty acid ß-oxidation in mitochondria and transcriptionally activates lipid metabolizing genes in peroxisomes. SARO inhibits insulin resistance, thereby preventing the activation of sterol regulatory element-binding proteins -1c and carbohydrate response element binding protein in hepatocytes through its PPAR-α agonistic action. SARO treatment reduces lipotoxicity-mediated oxidative stress by activating the nuclear factor erythroid 2-related factor 2 and transcriptionally expressing the antioxidants from the antioxidant response element in the nucleus through its PPAR-γ agonistic action. SARO provides a PPAR-α/γ-mediated anti-inflammatory effect by preventing the phosphorylation of mitogen-activated protein kinases (JNK and ERK) and nuclear factor kappa B in hepatocytes. Additionally, SARO interferes with transforming growth factor-ß/Smad downstream signaling, thereby reducing liver fibrosis progression through its PPAR-α/γ agonistic actions. Thus, SARO improves insulin resistance and dyslipidemia in NAFLD, reduces lipid accumulation in the liver, and thereby prevents mitochondrial toxicity, oxidative stress, inflammation, and fibrosis progression. This review summarizes the possible molecular mechanism of SARO in the NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , PPAR alpha , PPAR gamma , Humans , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , PPAR alpha/agonists , PPAR alpha/metabolism , PPAR gamma/agonists , PPAR gamma/metabolism , Animals , Phenylpropionates/therapeutic use , Phenylpropionates/pharmacology , Insulin Resistance , Pyrroles
6.
Molecules ; 29(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38611823

ABSTRACT

(1) Background: Diabetes is a common metabolic disease that seriously endangers human health. In the present study, we investigated the therapeutic effects of the active ingredient Eleutheroside B (EB) from the traditional Chinese medicine Eleutheroside on diabetes mellitus in a zebrafish model. Concomitant hepatic injury was also analysed, along with the study of possible molecular mechanisms using metabolomics technology. This work should provide some theoretical references for future experimental studies. (2) Methods: A zebrafish diabetes model was constructed by soaking in a 1.75% glucose solution and feeding a high-fat diet. The intervention drug groups were metformin (100 µg∙mL-1) and EB (50, 100, and 150 µg∙mL-1) via water-soluble exposure for 30 days. Glucose, TG, TC, LDL-C, and HDL-C were evaluated in different treatment groups. GLUT4 protein expression was also evaluated in each group, and liver injury was observed by HE staining. Metabolomics techniques were used to investigate the mechanism by which EB regulates endogenous markers and metabolic pathways during the development of diabetes. (3) Results: All EB treatment groups in diabetic zebrafish showed significantly reduced body mass index (BMI) and improved blood glucose and lipid profiles. EB was found to upregulate GLUT4 protein expression and ameliorate the liver injury caused by diabetes. Metabolomics studies showed that EB causes changes in the metabolic profile of diabetic zebrafish. These were related to the regulation of purine metabolism, cytochrome P450, caffeine metabolism, arginine and proline metabolism, the mTOR signalling pathway, insulin resistance, and glycerophospholipid metabolism. (4) Conclusions: EB has a hypoglycaemic effect in diabetic zebrafish as well as significantly improving disorders of glycolipid metabolism. The mechanism of action of EB may involve regulation of the mTOR signalling pathway, purine metabolism, caffeine metabolism, and glycerophospholipid metabolism.


Subject(s)
Diabetes Mellitus , Glucose , Glucosides , Phenylpropionates , Humans , Animals , Lipid Metabolism , Zebrafish , Caffeine , Glucose Transporter Type 4 , TOR Serine-Threonine Kinases , Glycerophospholipids
7.
Nutrients ; 16(8)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38674927

ABSTRACT

The excessive activation of glutamate in the brain is a factor in the development of vascular dementia. γ-Oryzanol is a natural compound that has been shown to enhance brain function, but more research is needed to determine its potential as a treatment for vascular dementia. This study investigated if γ-oryzanol can delay or improve glutamate neurotoxicity in an in vitro model of differentiated HT-22 cells and explored its neuroprotective mechanisms. The differentiated HT-22 cells were treated with 0.1 mmol/L glutamate for 24 h then given γ-oryzanol at appropriate concentrations or memantine (10 µmol/L) for another 24 h. Glutamate produced reactive oxygen species and depleted glutathione in the cells, which reduced their viability. Mitochondrial dysfunction was also observed, including the inhibition of mitochondrial respiratory chain complex I activity, the collapse of mitochondrial transmembrane potential, and the reduction of intracellular ATP levels in the HT-22 cells. Calcium influx triggered by glutamate subsequently activated type II calcium/calmodulin-dependent protein kinase (CaMKII) in the HT-22 cells. The activation of CaMKII-ASK1-JNK MAP kinase cascade, decreased Bcl-2/Bax ratio, and increased Apaf-1-dependent caspase-9 activation were also observed due to glutamate induction, which were associated with increased DNA fragmentation. These events were attenuated when the cells were treated with γ-oryzanol (0.4 mmol/L) or the N-methyl-D-aspartate receptor antagonist memantine. The results suggest that γ-oryzanol has potent neuroprotective properties against glutamate excitotoxicity in differentiated HT-22 cells. Therefore, γ-oryzanol could be a promising candidate for the development of therapies for glutamate excitotoxicity-associated neurodegenerative diseases, including vascular dementia.


Subject(s)
Glutamic Acid , Mitochondria , Neuroprotective Agents , Phenylpropionates , Reactive Oxygen Species , Glutamic Acid/toxicity , Phenylpropionates/pharmacology , Animals , Neuroprotective Agents/pharmacology , Mice , Cell Line , Reactive Oxygen Species/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Oryza/chemistry , Membrane Potential, Mitochondrial/drug effects , Cell Differentiation/drug effects , Cell Survival/drug effects , Memantine/pharmacology , Apoptosis/drug effects , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Neurons/drug effects , Neurons/metabolism
8.
J Nutr Biochem ; 127: 109607, 2024 May.
Article in English | MEDLINE | ID: mdl-38432453

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease associated with obesity and diabetes prevalence. The use of natural compounds has become an attractive approach to prevent NAFLD and its progression. Gamma-oryzanol (Orz) is a natural compound whose beneficial effects on chronic metabolic diseases have been reported. Therefore, we aimed to investigate the preventive effect of Orz on the hepatic proteome in a diet induced NAFLD model. Wistar rats were randomly distributed into three experimental groups (n=6/group) according to the diet received for 30 weeks: Control group, high sugar-fat (HSF) group, and HSF+Orz group. The isolated Orz was added to the chow at the dose of 0.5% (w/w). We evaluated the nutritional profile, characterized the presence of steatosis through histological analysis, triglyceride content in liver tissue and hepatic inflammation. Next, we performed label-free quantitative proteomics of hepatic tissue. Network analysis was performed to describe involved protein pathways. NAFLD induction was characterized by the presence of hepatic steatosis. Orz prevented lipid accumulation. The compound prevented alterations of the hepatic proteome, highlighted by the modulation of lipid metabolism, inflammation, oxidative stress, xenobiotic metabolism, and the sirtuin signaling pathway. It was possible to identify key altered pathways of NAFLD pathophysiology modulated by Orz which may provide insights into NAFLD treatment targets.


Subject(s)
Insulin Resistance , Non-alcoholic Fatty Liver Disease , Phenylpropionates , Rats , Animals , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/prevention & control , Non-alcoholic Fatty Liver Disease/drug therapy , Proteome/metabolism , Proteomics , Rats, Wistar , Liver/metabolism , Diet , Lipid Metabolism , Inflammation/metabolism , Diet, High-Fat/adverse effects
9.
Curr Nutr Rep ; 13(2): 186-193, 2024 06.
Article in English | MEDLINE | ID: mdl-38436884

ABSTRACT

PURPOSE OF REVIEW: Propolis is a bee product that has been used for thousands of years. The chemical composition and biological activity of propolis, which has been investigated in the twentieth century, may vary according to location. Propolis polyphenols can induce thermogenesis in brown and beige fat tissue via the uncoupled protein-1 and creatinine kinase metabolic pathways. This review provides a comprehensive investigation of the structural and biological properties of propolis and provides insights into their promising potential strategies in body weight management. RECENT FINDINGS: By raising overall energy expenditure, it might lead to body weight management. Furthermore, the phenolic components artepillin C, quercetin, catechin, and chlorogenic acid found in its composition may have anti-obesogenic effect by stimulating the sympathetic nervous system, enhancing browning in white adipose tissue, and triggering AMP-activated protein kinase activation and mitochondrial biogenesis. Propolis, a natural product, is effective in preventing obesity which is a contemporary pandemic.


Subject(s)
Anti-Obesity Agents , Obesity , Propolis , Propolis/pharmacology , Obesity/drug therapy , Humans , Anti-Obesity Agents/pharmacology , Animals , Energy Metabolism/drug effects , Thermogenesis/drug effects , Polyphenols/pharmacology , Catechin/pharmacology , Quercetin/pharmacology , Adipose Tissue, Brown/drug effects , Adipose Tissue, Brown/metabolism , Chlorogenic Acid/pharmacology , Adipose Tissue, White/drug effects , Adipose Tissue, White/metabolism , Phenylpropionates
10.
Int Immunopharmacol ; 131: 111830, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38520788

ABSTRACT

Syringin (SRG) is a bioactive principle possessing extensive activities including scavenging of free radicals, inhibition of apoptosis, and anti-inflammatory properties. However, its effects on spermatogenic defects and testicular injury as well as the underlying mechanisms are still unclear. This study aims to investigate the protective effect of SRG on testis damage in zebrafish and explore its potential molecular events. Zebrafish testicular injury was induced by exposure to bisphenol A (BPA) (3000 µg/L) for two weeks. Fish were treated with intraperitoneal injection of SRG at different doses (5 and 50 mg/kg bodyweight) for two more weeks under BPA induction. Subsequently, the testis and sperm were collected for morphological, histological, biochemical and gene expression examination. It was found that the administration of SRG resulted in a significant protection from BPA-caused impact on sperm concentration, morphology, motility, fertility rate, testosterone level, spermatogenic dysfunction and resulted in increased apoptotic and reactive oxygen species' levels. Furthermore, testicular transcriptional profiling alterations revealed that the regulation of inflammatory response and oxidative stress were generally enriched in differentially expressed genes (DEGs) after SRG treatment. Additionally, it was identified that SRG prevented BPA-induced zebrafish testis injury through upregulation of fn1a, krt17, fabp10a, serpina1l and ctss2. These results indicate that SRG alleviated spermatogenic defects and testicular injury by suppressing oxidative stress and inflammation in male zebrafish.


Subject(s)
Glucosides , Phenols , Phenylpropionates , Semen , Zebrafish , Animals , Male , Oxidative Stress , Benzhydryl Compounds/toxicity , Inflammation/chemically induced , Inflammation/drug therapy
11.
J Med Econ ; 27(1): 596-604, 2024.
Article in English | MEDLINE | ID: mdl-38488130

ABSTRACT

AIM: Bosentan, ambrisentan, and macitentan are endothelin receptor antagonists (ERAs), currently available in Australia for treatment of pulmonary arterial hypertension (PAH). This study assessed the comparative adherence of these ERAs for PAH in Australian patients. METHODS: This retrospective, observational study used data for adults with PAH from the Services Australia 10% Pharmaceuticals Benefits Scheme (PBS) dataset (01/2006-10/2020). The primary outcome was treatment adherence (i.e. receiving ≥80% of ERA doses over 12 months). Secondary outcomes were time to treatment change (add-on or switch) and overall survival. RESULTS: The study included 436 patients who took bosentan (n = 200), ambrisentan (n = 69), or macitentan (n = 167). Treatment adherence was significantly greater in patients who received macitentan (65.3%) versus ambrisentan (56.5%) and bosentan (58.0%), with odds ratios (ORs; 95% CI) of 0.51 (0.30-0.88; p = 0.016) for bosentan versus macitentan and 0.48 (0.24-0.96; p = 0.037) for ambrisentan versus macitentan. The median time to treatment change was 47.2 and 43.4 months for bosentan and ambrisentan, respectively (not calculated for macitentan because of insufficient duration of data). LIMITATIONS AND CONCLUSIONS: Real-world data for Australian patients with PAH showed that treatment adherence for ERAs was suboptimal. Adherence was higher for macitentan compared with ambrisentan and bosentan.


Subject(s)
Hypertension, Pulmonary , Phenylpropionates , Pulmonary Arterial Hypertension , Pyridazines , Pyrimidines , Sulfonamides , Adult , Humans , Bosentan/therapeutic use , Pulmonary Arterial Hypertension/drug therapy , Retrospective Studies , Hypertension, Pulmonary/drug therapy , Australia , Endothelin Receptor Antagonists/therapeutic use
12.
Clin Respir J ; 18(3): e13736, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38504464

ABSTRACT

INTRODUCTION: Ambrisentan is a selective type A endothelin receptor antagonist that has shown significant effectiveness and safety in the management of patients with pulmonary hypertension. Its use pattern with real-world evidence in Colombia is unknown. OBJECTIVE: The objective of this study is to determine the prescription patterns of ambrisentan in some cities of Colombia. METHODS: A longitudinal descriptive study on the prescription patterns of ambrisentan in patients with pulmonary hypertension (all the groups) was conducted between January 2021 and December 2022 based on a population database of members of the Colombian Health System. Adherence at 1 year was determined using the Medication Possession Ratio (days the drug was dispensed/days from first dispensing to the end of the follow-up period × 100). Descriptive analysis was carried out. RESULTS: Sixty-seven patients taking ambrisentan were identified in 10 cities of the country. The individuals had a median age of 51.5 years (interquartile range-IQR: 39.8-64.0 years), and 82.1% were women. The drug possession rate was 82.2% (IQR: 65.0-96.8%), and persistence at 1 year was present in 49.3% (n = 33) of the cases. The average dose was 8.8 ± 5.0 mg/day, and 76.1% (n = 51) received it in combination therapy, mainly with phosphodiesterase type 5 inhibitors (61.2%, n = 41). CONCLUSIONS: Adherence to ambrisentan was good, but its persistence at 1 year was low. The dosages of the drug used were in accordance with the recommendations of the clinical practice guidelines, and it was used in combination therapy, especially with phosphodiesterase 5 inhibitors.


Subject(s)
Hypertension, Pulmonary , Phenylpropionates , Pyridazines , Humans , Female , Adult , Middle Aged , Male , Treatment Outcome , Colombia/epidemiology , Cities
13.
J Agric Food Chem ; 72(11): 5757-5765, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38445360

ABSTRACT

Thermal stability and antioxidant ability of γ-oryzanol in oil have been widely studied. However, further research is needed to explore its thermal degradation products and degradation pathways. The thermal degradation products of γ-oryzanol in stripped soybean oil were identified and quantified by employing high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) during heating at 180 °C. The results revealed that γ-oryzanol undergoes ester bond cleavage to form trans-ferulic acid and free sterols, and trans-ferulic acid generated intermediate compound 4-vinylguaiacol, which ultimately generated vanillin. Analysis of kinetic and thermodynamic parameters revealed the thermal stability ranking of the four components of γ-oryzanol as follows: CampFA > CAFA > 24MCAFA > SitoFA. Furthermore, γ-oryzanol exhibited superior antioxidant activity at lower temperatures. The results of this study provide a theoretical basis for a better understanding of the thermal stability and antioxidant properties of γ-oryzanol in oil under thermal oxidation conditions.


Subject(s)
Antioxidants , Coumaric Acids , Phenylpropionates , Antioxidants/chemistry , Oxidation-Reduction , Phenylpropionates/chemistry , Oxidative Stress
14.
Fitoterapia ; 174: 105854, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38331050

ABSTRACT

The chemical transformation of lathyrane nucleus through reduction and oxidation reactions using Euphorbia Factor L1 (EFL1) and Euphorbia Factor L1 (EFL3) as examples were investigated, along with a co-modification strategy of lathyrane nucleus and its side ester chain. A total of 38 lathyrane derivatives (5-42) including 34 new compounds were obtained, which greatly enriched the structural diversity of the lathyrane-type diterpenoids. Cytotoxicity against drug-sensitive and drug (adriamycin, ADM) resistant MCF-7 cells showed that 23 out of 38 transformed derivatives possessed obvious cytotoxic activity with IC50 values ranging from 7.0 to 41.1 µM and 3.2 to 45.5 µM, respectively, against both cells, compared to the noncytotoxic EFL1 and EFL3. The multidrug resistance (MDR) reversing activities of these lathyrane derivatives were further evaluated in MCF-7/ADM. Three transformed compounds (reversal fold, RF = 151.33, 62.94 and 47.3 for 27, 37 and 42) showed markedly higher activity than EFL1 (RF = 32.92) and EFL3 (RF = 39.68). Structure-activity relationship study revealed an essential role of C-6/17 and C-12/13 double bonds on lathyrane nucleus for exerting MDR reversal activity. Western blotting analysis showed that 42 could reduce the expression level of P-glycoprotein (P-gp) in MCF-7/ADM cells; however, the most active compound 27 with an unnatural 5/7/7/4 fused-ring diterpenoid skeleton, had no inhibitory effect on P-gp expression.


Subject(s)
Diterpenes , Euphorbia , Phenylpropionates , Molecular Structure , Euphorbia/chemistry , Drug Resistance, Multiple , Diterpenes/pharmacology , Diterpenes/chemistry , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/pharmacology , ATP Binding Cassette Transporter, Subfamily B
15.
Med Phys ; 51(4): 2933-2940, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38308821

ABSTRACT

BACKGROUND: The world's first clinical 0.5 T inline rotating biplanar Linac-MR system is commissioned for clinical use. For reference dosimetry, unique features to device, including an SAD = 120 cm, bore clearance of 60 cm × 110 cm, as well as 0.5 T inline magnetic field, provide some challenges to applying a standard dosimetry protocol (i.e., TG-51). PURPOSE: In this work, we propose a simple and practical clinical reference dosimetry protocol for the 0.5T biplanar Linac-MR and validated its results. METHODS: Our dosimetry protocol for this system is as follows: tissue phantom ratios at 20 and 10 cm are first measured and converted into %dd10x beam quality specifier using equations provided and Kalach and Rogers. The converted %dd10x is used to determine the ion chamber correction factor, using the equations in the TG-51 addendum for the Exradin A12 farmer chamber used, which is cross-calibrated with one calibrated at a standards laboratory. For a 0.5 T parallel field, magnetic field effect on chamber response is assumed to have no effect and is not explicitly corrected for. Once the ion chamber correction factor for a non-standard SAD (kQ,msr) is determined, TG-51 is performed to obtain dose at a depth of 10 cm at SAD = 120 cm. The dosimetry protocol is repeated with the magnetic field ramped down. To validate our dosimetry protocol, Monte Carlo (EGSnrc) simulations are performed to confirm the determined kQ,msr values. MC Simulations and magnetic Field On versus Field Off measurements are performed to confirm that the magnetic field has no effect. To validate our overall dosimetry protocol, external dose audits, based on optical simulated luminescent dosimeters, thermal luminescent dosimeters, and alanine dosimeters are performed on the 0.5 T Linac-MR system. RESULTS: Our EGSnrc results confirm our protocol-determined kQ,msr values, as well as our assumptions about magnetic field effects (kB = 1) within statistical uncertainty for the A-12 chamber. Our external dosimetry procedures also validated our overall dosimetry protocol for the 0.5 T biplanar Linac-MR hybrid. Ramping down the magnetic field has resulted in a dosimetric difference of 0.1%, well within experimental uncertainty. CONCLUSION: With the 0.5 T parallel magnetic field having minimal effect on the ion chamber response, a TPR20,10 approach to determine beam quality provides an accurate method to perform clinical dosimetry for the 0.5 T biplanar Linac-MR.


Subject(s)
Magnetic Fields , Phenylpropionates , Radiometry , Monte Carlo Method , Phantoms, Imaging , Particle Accelerators
16.
Eur J Pediatr ; 183(5): 2141-2153, 2024 May.
Article in English | MEDLINE | ID: mdl-38366267

ABSTRACT

This open-label, extension study assessed long-term safety, tolerability, and efficacy of ambrisentan in a pediatric population (age 8- < 18 years) with pulmonary arterial hypertension (PAH). Following completion of a 6-month, randomized study, participants entered the long-term extension at individualized ambrisentan dosages (2.5/5/7.5 or 10 mg/day). Safety assessments included adverse events (AEs), AEs of special interest, and serious AEs (SAEs); efficacy outcomes included 6-min walking distance (6MWD) and World Health Organization functional class (WHO FC). Thirty-eight of 41 (93%) randomized study participants entered the extension; 21 (55%) completed (reaching age 18 years). Most participants received concomitant phosphodiesterase-5 inhibitors (n = 25/38, 66%). Median ambrisentan exposure was 3.5 years. Most participants experienced ≥ 1 AE (n = 34/38, 89%), and 21 (55%) experienced SAEs, most commonly worsening PAH (n = 3/38, 8%), acute cardiac failure, pneumonia, or anemia (n = 2/38; 5% each); none considered ambrisentan-related. Seven participants (18%) died, with recorded reasons (MedDRA preferred term): cardiac failure (n = 2), PAH (n = 2), COVID-19 (n = 1), acute right ventricular failure (n = 1), and failure to thrive (n = 1); median time to death: 5.2 years. Anemia and hepatotoxicity AEs were generally mild to moderate and did not require ambrisentan dose adjustment. Assessed at study end in 29 participants (76%), mean 6MWD improved by 17% (standard deviation: 34.3%), and all (29/29, 100%) had improved or unchanged WHO FC.    Conclusion: Long-term weight-based ambrisentan dosing, alone or combined with other PAH therapies in children with PAH aged 8- < 18 years, exhibited tolerability and clinical improvements consistent with prior randomized study results.    Trial registration: NCT01342952, April 27, 2011. What is Known: • The endothelin receptor antagonist, ambrisentan, is indicated for treatment of pulmonary arterial hypertension (PAH). Previous studies have shown similar efficacy and tolerability in pediatric patients as in adults. What is New: • This open-label extension study assessed the long-term use of ambrisentan in pediatric patients (8-<18 years) with PAH, most of whom were also receiving recommended background PAH treatment. • Weight-based dosing of ambrisentan, given alone or in combination with other PAH therapies, was well tolerated with clinical improvements consistent with prior randomized study results.


Subject(s)
Phenylpropionates , Pulmonary Arterial Hypertension , Pyridazines , Humans , Pyridazines/adverse effects , Pyridazines/therapeutic use , Pyridazines/administration & dosage , Phenylpropionates/administration & dosage , Phenylpropionates/adverse effects , Phenylpropionates/therapeutic use , Male , Child , Female , Adolescent , Treatment Outcome , Pulmonary Arterial Hypertension/drug therapy , Antihypertensive Agents/adverse effects , Antihypertensive Agents/administration & dosage , Antihypertensive Agents/therapeutic use , Dose-Response Relationship, Drug , Walk Test , Hypertension, Pulmonary/drug therapy
17.
Appl Microbiol Biotechnol ; 108(1): 208, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38353763

ABSTRACT

The advent of the so-called colorful biology era is in line with the discovery of fluorescent proteins (FPs), which can be widely used to detect the intracellular locations of macromolecules or to determine the abundance of metabolites in organelles. The application of multiple FPs that emit different spectra and colors could be implemented to precisely evaluate cellular events. FPs were initially established with the emergence of the green fluorescent protein (GFP) from jellyfish. Red fluorescent proteins (RFPs) from marine anemones and several corals adopt fluorescent chromophores that are similar to GFP. Chromophores of GFP and GFP-like FPs are formed through the oxidative rearrangement of three chromophore-forming residues, thereby limiting their application to only oxidative environments. Alternatively, some proteins can be fluorescent upon their interaction with cellular prosthetic cofactors and, thus, work in aerobic and anaerobic conditions. The modification of an NADPH-dependent blue fluorescent protein (BFP) also expanded its application to the quantization of NADPH in the cellular environment. However, cofactor-dependent BFPs have an intrinsic weakness of poor photostability with a high fluorescent background. This review explores GFP-derived and NADPH-dependent BFPs with a focus on NADPH-dependent BFPs, which might be technically feasible in the near future upon coupling with two-photon fluorescence microscopy or nucleic acid-mimickers. KEY POINTS: • Oxidation-dependent GFP-like BFPs and redox-free NADPH-dependent BFPs • GFPs of weak photostability and intensity with a high fluorescent background • Real-time imaging using mBFP under two-photon fluorescence microscopy.


Subject(s)
Anthozoa , Phenylpropionates , Animals , NADP , Green Fluorescent Proteins/genetics , Coloring Agents
18.
Eur Rev Med Pharmacol Sci ; 28(3): 1183-1193, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38375723

ABSTRACT

OBJECTIVE: The aim is to showcase the effectiveness and safety of bosentan or ambrisentan in individuals diagnosed with idiopathic pulmonary fibrosis (IPF) and offer fresh evidence for the management of this condition. MATERIALS AND METHODS: For this research, we conducted a meta-analysis of randomized controlled trials by searching various databases, including the Cochrane Library, Excerpta Medica Database, PubMed, and Web of Science. The retrieval was conducted until November 2021. We analyzed the variances in 6-minute walk distance (6MWD), death, diffusion capacity for carbon monoxide (DLCO), forced vital capacity (FVC), hospitalization, IPF worsening, mean pulmonary arterial pressure, serious adverse events (SAEs), Short Form-36 improved, and St. George's Respiratory Questionnaire between the treatment and control groups. RESULTS: A sum of six studies involving 1,928 participants were found to meet the inclusion criteria. The quality of evidence was high. The control group had significantly higher values for 6MWD, DLCO, and FVC compared to the ambrisentan treatment group. The rates of hospitalization and IPF worsening were considerably greater in comparison with the control group. The bosentan group exhibited significantly reduced rates of hospitalization and IPF worsening in comparison with the control group. Both drugs did not cause any raising in death or SAEs when in comparison with the control group. CONCLUSIONS: The findings of this research validate the effectiveness and safety of bosentan for treating IPF patients. This medication can enhance the quality of life for individuals with IPF without causing any significant increase in SAEs. However, it does not have a notable influence on the long-term prognosis. The findings of this research do not endorse the utilization of ambrisentan in individuals diagnosed with IPF.


Subject(s)
Idiopathic Pulmonary Fibrosis , Phenylpropionates , Pyridazines , Humans , Bosentan/therapeutic use , Quality of Life , Idiopathic Pulmonary Fibrosis/drug therapy , Phenylpropionates/adverse effects
19.
Asian Pac J Cancer Prev ; 25(2): 563-573, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38415543

ABSTRACT

OBJECTIVE: The study's aim was to evaluate Brazilian Brown Propolis (BBP) and Artepillin C (ARC) chemopreventive action in Wistar rats' colons. METHODS: Fifty male Wistar rats were divided into ten experimental groups, including control groups, groups with and without 1,2-dimethylhydrazine (DMH) induction, and BBP, ARC, and ARC enriched fraction (EFR) treatments, for sixteen weeks. Aberrant crypt foci (ACF) were classified as hyperplastic or dysplastic, and proliferating cell nuclear antigen (PCNA) expression was quantified. RESULT: ACF amounts in experimental groups (induced or not) decreased in both colon portions, while the isolated Aberrant Crypt (AC) number increased. Experimental groups of animals showed higher hyperplasia and dysplasia amounts compared with control groups. The ACF dysplastic amount present in groups induced and treated, in both colon portions, had similar values to IDMH (DMH induction group without treatment). In addition, DMH was effective in ACF inducing and there was positive staining for PCNA in basal and upper dysplastic foci portions in all experimental groups, in the mitotic index (MI) evaluation. To conclude, considering all the experimental groups, the one treated with EFR (fraction enriched with ARC) had the lowest rates of cell proliferation. CONCLUSION: BBP and its derivatives prevented crypt cell clonal expansion.


Subject(s)
Aberrant Crypt Foci , Antineoplastic Agents , Colonic Neoplasms , Phenylpropionates , Propolis , Rats , Animals , Male , Rats, Wistar , Colonic Neoplasms/drug therapy , Proliferating Cell Nuclear Antigen/metabolism , Propolis/pharmacology , Propolis/therapeutic use , 1,2-Dimethylhydrazine/toxicity , Brazil , Aberrant Crypt Foci/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Carcinogens
20.
Int J Biol Macromol ; 260(Pt 1): 129530, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38296666

ABSTRACT

This study developed new biphasic gel systems containing a walnut oil-based oleogel and a chitosan hydrogel and evaluated the application on food spread. The effects of different oleogelators [γ-oryzanol/ß-sitosterol (γ-ORY/ß-SIT), candelilla wax/span 65 (CW/SA), and mono- and diglycerides of fatty acids] were explored. Rheological analysis showed that γ-ORY/ß-SIT-based bigel had the strongest gel strength, but XRD confirmed that ß' crystal form (d = 3.72 Å, 4.12 Å) was predominantly in the CW/SA-based bigel, which was more appropriate for application as spread. The characteristics of CW/SA-based bigel with different oleogel fractions (40-80 wt%) were investigated. The microscopic images indicated that the hydrogels were dispersed as small droplets in the oleogels after oleogel fraction reaching 60 %. The highest crystallinity was achieved when the oleogel fraction was 60 %, and its oil binding capacity was 96.49 %. Textural analysis showed that the CW/SA-based bigel (OG-60 %) had similar properties with commercial spread B, and can be used as a partial replacement for spread B. Replacing 75 % of the commercial spread B with the bigel was found to be optimal and displayed acceptable sensory features. This study developed a healthy bigel based on walnut oil and provided the in-depth information for bigels as an alternative to plastic fats.


Subject(s)
Chitosan , Juglans , Phenylpropionates , Hydrogels/chemistry , Organic Chemicals/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...