Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.150
Filter
1.
BMC Biol ; 22(1): 108, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714997

ABSTRACT

BACKGROUND: Populations of the plant pathogenic fungus Verticillium dahliae display a complex and rich genetic diversity, yet the existence of sexual reproduction in the fungus remains contested. As pivotal genes, MAT genes play a crucial role in regulating cell differentiation, morphological development, and mating of compatible cells. However, the functions of the two mating type genes in V. dahliae, VdMAT1-1-1, and VdMAT1-2-1, remain poorly understood. RESULTS: In this study, we confirmed that the MAT loci in V. dahliae are highly conserved, including both VdMAT1-1-1 and VdMAT1-2-1 which share high collinearity. The conserved core transcription factor encoded by the two MAT loci may facilitate the regulation of pheromone precursor and pheromone receptor genes by directly binding to their promoter regions. Additionally, peptide activity assays demonstrated that the signal peptide of the pheromone VdPpg1 possessed secretory activity, while VdPpg2, lacked a predicted signal peptide. Chemotactic growth assays revealed that V. dahliae senses and grows towards the pheromones FO-a and FO-α of Fusarium oxysporum, as well as towards VdPpg2 of V. dahliae, but not in response to VdPpg1. The findings herein also revealed that VdMAT1-1-1 and VdMAT1-2-1 regulate vegetative growth, carbon source utilization, and resistance to stressors in V. dahliae, while negatively regulating virulence. CONCLUSIONS: These findings underscore the potential roles of VdMAT1-1-1 and VdMAT1-2-1 in sexual reproduction and confirm their involvement in various asexual processes of V. dahliae, offering novel insights into the functions of mating type genes in this species.


Subject(s)
Genes, Mating Type, Fungal , Genes, Mating Type, Fungal/genetics , Ascomycota/genetics , Ascomycota/physiology , Pheromones/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Verticillium
2.
Front Neural Circuits ; 18: 1409994, 2024.
Article in English | MEDLINE | ID: mdl-38742089

ABSTRACT

Pheromones are specialized chemical messengers used for inter-individual communication within the same species, playing crucial roles in modulating behaviors and physiological states. The detection mechanisms of these signals at the peripheral organ and their transduction to the brain have been unclear. However, recent identification of pheromone molecules, their corresponding receptors, and advancements in neuroscientific technology have started to elucidate these processes. In mammals, the detection and interpretation of pheromone signals are primarily attributed to the vomeronasal system, which is a specialized olfactory apparatus predominantly dedicated to decoding socio-chemical cues. In this mini-review, we aim to delineate the vomeronasal signal transduction pathway initiated by specific vomeronasal receptor-ligand interactions in mice. First, we catalog the previously identified pheromone ligands and their corresponding receptor pairs, providing a foundational understanding of the specificity inherent in pheromonal communication. Subsequently, we examine the neural circuits involved in processing each pheromone signal. We focus on the anatomical pathways, the sexually dimorphic and physiological state-dependent aspects of signal transduction, and the neural coding strategies underlying behavioral responses to pheromonal cues. These insights provide further critical questions regarding the development of innate circuit formation and plasticity within these circuits.


Subject(s)
Pheromones , Signal Transduction , Vomeronasal Organ , Animals , Pheromones/physiology , Mice , Signal Transduction/physiology , Vomeronasal Organ/physiology
3.
Elife ; 122024 May 15.
Article in English | MEDLINE | ID: mdl-38747258

ABSTRACT

In most mammals, conspecific chemosensory communication relies on semiochemical release within complex bodily secretions and subsequent stimulus detection by the vomeronasal organ (VNO). Urine, a rich source of ethologically relevant chemosignals, conveys detailed information about sex, social hierarchy, health, and reproductive state, which becomes accessible to a conspecific via vomeronasal sampling. So far, however, numerous aspects of social chemosignaling along the vomeronasal pathway remain unclear. Moreover, since virtually all research on vomeronasal physiology is based on secretions derived from inbred laboratory mice, it remains uncertain whether such stimuli provide a true representation of potentially more relevant cues found in the wild. Here, we combine a robust low-noise VNO activity assay with comparative molecular profiling of sex- and strain-specific mouse urine samples from two inbred laboratory strains as well as from wild mice. With comprehensive molecular portraits of these secretions, VNO activity analysis now enables us to (i) assess whether and, if so, how much sex/strain-selective 'raw' chemical information in urine is accessible via vomeronasal sampling; (ii) identify which chemicals exhibit sufficient discriminatory power to signal an animal's sex, strain, or both; (iii) determine the extent to which wild mouse secretions are unique; and (iv) analyze whether vomeronasal response profiles differ between strains. We report both sex- and, in particular, strain-selective VNO representations of chemical information. Within the urinary 'secretome', both volatile compounds and proteins exhibit sufficient discriminative power to provide sex- and strain-specific molecular fingerprints. While total protein amount is substantially enriched in male urine, females secrete a larger variety at overall comparatively low concentrations. Surprisingly, the molecular spectrum of wild mouse urine does not dramatically exceed that of inbred strains. Finally, vomeronasal response profiles differ between C57BL/6 and BALB/c animals, with particularly disparate representations of female semiochemicals.


Subject(s)
Vomeronasal Organ , Animals , Vomeronasal Organ/physiology , Mice , Male , Female , Odorants/analysis , Pheromones/urine , Pheromones/metabolism , Mice, Inbred C57BL , Mice, Inbred Strains
4.
Sci Rep ; 14(1): 12259, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806558

ABSTRACT

Tribolium castaneum and Rhyzopertha dominica are cosmopolitan, destructive postharvest pests. Although research has investigated how high densities of T. castaneum affect attraction to the aggregation pheromone by conspecifics, research into the behavioral response of both species to food cues after high density exposure has been lacking despite its importance to foraging ecology. Our goal was to manipulate and observe the effects of crowding on the behavioral response of both species to common food and pheromonal stimuli and to determine how the headspace emission patterns from grain differed under increasing densities. Densities of colonies for both species was altered (10-500 adults) on a fixed quantity of food (10 g of flour or whole wheat), then the behavioral response to common food and pheromonal cues was evaluated in a wind tunnel and release-recapture experiment, while volatiles were examined through gas chromatography coupled with mass spectrometry. Importantly, at least for T. castaneum, crowded conditions attenuate attraction to food-based stimuli, but not pheromonal stimuli. Crowding seemed to have no effect on R. dominica attraction to food and pheromonal stimuli in the wind tunnel, but exposure to high density cues did elicit 2.1-3.8-fold higher captures in traps. The relative composition and abundance of headspace volatiles emitted varied significantly with different densities of beetles and was also species-specific. Overall, our results have implications for expanding our understanding of the foraging ecology of two economically important pests.


Subject(s)
Coleoptera , Feeding Behavior , Pheromones , Tribolium , Animals , Tribolium/physiology , Coleoptera/physiology , Feeding Behavior/physiology , Pheromones/metabolism , Population Density , Behavior, Animal/physiology
5.
Genesis ; 62(3): e23603, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38738564

ABSTRACT

The vomeronasal organ (VNO) is a specialized chemoreceptive structure in many vertebrates that detects chemical stimuli, mostly pheromones, which often elicit innate behaviors such as mating and aggression. Previous studies in rodents have demonstrated that chemical stimuli are actively transported to the VNO via a blood vessel-based pumping mechanism, and this pumping mechanism is necessary for vomeronasal stimulation in behaving animals. However, the molecular mechanisms that regulate the vomeronasal pump remain mostly unknown. In this study, we observed a high level of expression of phosphodiesterase 5A (PDE5A) in the vomeronasal blood vessel of mice. We provided evidence to support the potential role of PDE5A in vomeronasal pump regulation. Local application of PDE5A inhibitors-sildenafil or tadalafil-to the vomeronasal organ (VNO) reduced stimulus delivery into the VNO, decreased the pheromone-induced activity of vomeronasal sensory neurons, and attenuated male-male aggressive behaviors. PDE5A is well known to play a role in regulating blood vessel tone in several organs. Our study advances our understanding of the molecular regulation of the vomeronasal pump.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 5 , Vomeronasal Organ , Animals , Vomeronasal Organ/metabolism , Mice , Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 5/genetics , Male , Phosphodiesterase 5 Inhibitors/pharmacology , Tadalafil/pharmacology , Sildenafil Citrate/pharmacology , Pheromones/metabolism , Aggression/physiology , Female , Mice, Inbred C57BL
6.
Parasitol Res ; 123(5): 218, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38777889

ABSTRACT

The most widely used attractant to capture adult female mosquitoes is CO2. However, there are also baits available on the market that emit a scent resembling human skin. These baits were specifically designed to attract highly anthropophilic species such as Aedes albopictus and Aedes aegypti. In this study, we compare the effectiveness of CDC traps baited either with CO2 or with a commercial blend simulating skin odor, BG-Sweetscent, for trapping female mosquitoes during daylight hours in an urban reserve in the City of Buenos Aires. We employed a hurdle generalized linear mixed model to analyze trap capture probability and the number of mosquitoes captured per hour, considering the effects of attractant, mosquito species, and their interaction. Traps baited with CO2 captured ten mosquito species, while those baited with BG-Sweetscent captured six in overall significantly lower abundance. The odds of capturing mosquitoes were 292% higher for the CO2-baited traps than for those baited with BG-Sweetscent. No evidence of a combined effect of attractant type and species on female mosquito captures per hour was found. Results indicated that CDC traps baited with CO2 were more effective than those baited with BG-Sweetscent in capturing more mosquito species and a higher number of mosquitoes within each species, even if the species captured with CO2 exhibited a certain level of anthropophilia. This result has practical implications for mosquito surveillance and control in urban natural reserves.


Subject(s)
Culicidae , Mosquito Control , Animals , Female , Mosquito Control/methods , Culicidae/physiology , Culicidae/classification , Culicidae/drug effects , Pheromones/pharmacology , Carbon Dioxide , Cities , Odorants/analysis , Argentina , Humans
7.
Environ Pollut ; 352: 124144, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38735459

ABSTRACT

Infochemicals refer to chemicals responsible for information exchange between organisms. We evaluated the effects of Daphnia magna and Daphnia galeata infochemicals on Microcystis aeruginosa for 15d. The Daphnia infochemicals were obtained from spent medium after culturing Daphnia in Elendt M4 medium for 48 h. Both Daphnia infochemicals significantly increased (p < 0.05) the intracellular reactive oxygen species level and microcystin-LR concentration in M. aeruginosa. This cellular effect increased colony formation of M. aeruginosa, thereby inhibiting the growth of M. aeruginosa. D. galeata infochemicals provoked significantly greater (p < 0.05) adverse effects on M. aeruginosa than those of D. magna infochemicals, which were further exaggerated by pre-exposure of Daphnia to M. aeruginosa. This result seems to be related to the different compositions and concentrations of Daphnia infochemicals. Several Daphnia infochemicals, such as methyl ferulate, cyclohexanone, 3, 5-dimethyl, hexanedioic acid, and bis(2-ethylhexyl) ester, showed a high correlation with M. aeruginosa cell concentration (|r | >0.6), suggesting that they may play a key role in controlling harmful cyanobacteria. Additionally, pre-exposure of D. magna and D. galeata to M. aeruginosa produced oleic acid, methyl ester, and n-hexadecanoic acid, with a highly correlation with M. aeruginosa cell concentration (|r | >0.6). p-tolyl acetate and linoleic acid were detected only in the pre-exposed D. galeata infochemicals. These findings suggest that some of Daphnia infochemicals identified in this study can be a promising tool to control M. aeruginosa growth. However, further studies are required to verify the specific actions of these infochemicals against cyanobacteria.


Subject(s)
Daphnia , Microcystis , Microcystis/drug effects , Daphnia/drug effects , Animals , Microcystins/metabolism , Reactive Oxygen Species/metabolism , Pheromones/pharmacology , Marine Toxins
8.
J Insect Sci ; 24(2)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38597910

ABSTRACT

Larval habitats of blood-feeding stable flies, Stomoxys calcitrans (L.) (Diptera: Muscidae), overlap with foraging sites of black blow flies, Phormia regina (Meigen) (Diptera: Calliphoridae). We tested the hypothesis that bacteria in blow fly excreta inform oviposition decisions by female stable flies. In laboratory 2-choice bioassays, we offered gravid female stable flies fabric-covered agar plates as oviposition sites that were kept sterile or inoculated with either a blend of 7 bacterial strains isolated from blow fly excreta (7-isolate-blend) or individual bacterial isolates from that blend. The 7-isolate-blend deterred oviposition by female stable flies, as did either of 2 strains of Morganella morganii subsp. sibonii. Conversely, Exiguobacterium sp. and Serratia marcescens each prompted oviposition by flies. The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria could not be physically accessed. Oviposition deterrence caused by semiochemicals of the 7-isolate-blend may help stable flies avoid competition with blow flies. The semiochemicals of bioactive bacterial strains could be developed as trap lures to attract and capture flies and deter their oviposition in select larval habitats.


Subject(s)
Morganella , Muscidae , Female , Animals , Calliphoridae , Oviposition , Larva , Bacteria , Pheromones
9.
Nat Commun ; 15(1): 2872, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605003

ABSTRACT

Animals employ different strategies to establish mating boundaries between closely related species, with sex pheromones often playing a crucial role in identifying conspecific mates. Many of these pheromones have carbon-carbon double bonds, making them vulnerable to oxidation by certain atmospheric oxidant pollutants, including ozone. Here, we investigate whether increased ozone compromises species boundaries in drosophilid flies. We show that short-term exposure to increased levels of ozone degrades pheromones of Drosophila melanogaster, D. simulans, D. mauritiana, as well as D. sechellia, and induces hybridization between some of these species. As many of the resulting hybrids are sterile, this could result in local population declines. However, hybridization between D. simulans and D. mauritiana as well as D. simulans and D. sechellia results in fertile hybrids, of which some female hybrids are even more attractive to the males of the parental species. Our experimental findings indicate that ozone pollution could potentially induce breakdown of species boundaries in insects.


Subject(s)
Drosophila melanogaster , Drosophila , Animals , Male , Female , Drosophila melanogaster/genetics , Reproduction , Drosophila simulans , Carbon , Pheromones
10.
Sci Rep ; 14(1): 7883, 2024 04 03.
Article in English | MEDLINE | ID: mdl-38570567

ABSTRACT

In this work, we identified the trail pheromone of the ant Crematogaster scutellaris. We combined gas chromatography-mass spectrometry analysis of extracts from the hind tibia, the location of the respective glands, with automated trail following assays. The study found tridecan-2-ol to be the strongest discriminator between hind tibia and other body part extracts. Tridecan-2-ol elicited trail-following behaviour at concentrations of 1 ng/µL. A separation of the enantiomers showed responses to (R)-tridecan-2-ol already at 0.001 ng/µL and only at a 1000-fold higher concentration for (S)-tridecan-2-ol, suggesting that only the R enantiomer is used by C. scutellaris in its natural environment. We also found strong behavioural responses to 2-dodecanol, a substance that was not detectable in the hind tibia extract of C. scutellaris, but which has been reported to be the trail pheromone of the related species C. castanea. We discuss the contribution of these results to the 'dissection and reconstruction' of strategies and mechanisms underlying the social organization of ants.


Subject(s)
Ants , Pheromones , Animals , Pheromones/analysis , Ants/physiology , Behavior, Animal , Feeding Behavior
11.
Pestic Biochem Physiol ; 201: 105874, 2024 May.
Article in English | MEDLINE | ID: mdl-38685243

ABSTRACT

In insects, chemosensory proteins (CSPs) play an important role in the perception of the external environment and have been widely used for protein-binding characterization. Riptortus pedestris has received increased attention as a potential cause of soybean staygreen syndrome in recent years. In this study, we found that RpedCSP4 expression in the antennae of adult R. pedestris increased with age, with no significant difference in expression level observed between males and females, as determined through quantitative real-time polymerase chain reaction (qRT-PCR). Subsequently, we investigated the ability of RpedCSP4 to bind various ligands (five aggregated pheromone components and 13 soybean volatiles) using a prokaryotic expression system and fluorescence competitive binding assays. We found that RpedCSP4 binds to three aggregated pheromone components of R. pedestris, namely, ((E)-2-hexenyl (Z)-3-hexenoate (E2Z3), (E)-2-hexenyl (E)-2-hexenoate (E2E2), and (E)-2-hexenyl hexenoate (E2HH)), and that its binding capacities are most stable under acidic condition. Finally, the structure and protein-ligand interactions of RpedCSP4 were further analyzed via homology modeling, molecular docking, and targeted mutagenesis experiments. The L29A mutant exhibited a loss of binding ability to these three aggregated pheromone components. Our results show that the olfactory function of RpedCSP4 provides new insights into the binding mechanism of RpedCSPs to aggregation pheromones and contributes to discover new target candidates that will provide a theoretical basis for future population control of R. pedestris.


Subject(s)
Insect Proteins , Pheromones , Animals , Pheromones/metabolism , Insect Proteins/metabolism , Insect Proteins/genetics , Insect Proteins/chemistry , Male , Female , Protein Binding , Heteroptera/metabolism , Heteroptera/genetics
12.
Plant Signal Behav ; 19(1): 2335025, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38678583

ABSTRACT

Allelopathy is the main chemical means in the invasion process of exotic plants and one of the key factors in grassland degradation. In this experiment, we investigated the effects of ethyl acetate phase extract (EAE), n-butanol phase extract (BE) and aqueous phase extract (AE) from the aboveground (stems and leaves) and roots of Ligularia sagitta on seed germination and seedling growth of four Gramineae forages (Poa pratensis L. Festuca ovina L. Elymus nutans Griseb. Agropyron cristatum (L.) Gaertn.) in their sympatric domains and one Legosuminae forage (Medicago sativa L.). The chemical components in each phase extract of L. sagitta were determined with UHPLC-MS/MS non-targeted metabolomics, and the differential compounds were screened using Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA). Within a set concentration range, EAE significantly inhibited seed germination and seedling growth of four Gramineae forages. BE and AE acted mainly in the seedling growth stage and did not significantly inhibit forage seed germination. P. pratensis was most sensitive to L. sagitta extracts; at 2.0 mg/mL of EAE from roots, germination energy and germination rate of P. pratensis seeds were 0. L. sagitta extracts inhibited the growth of M. sativa seedlings and did not inhibit its seed germination. A total of 904 compounds were identified with UHPLC-MS/MS, among which 31, 64, 81 and 66 metabolites displayed different accumulation patterns in the four comparison groups (R.EAE vs. R.BE, R.EAE vs. R.AE, SL.EAE vs. SL.BE, SL.EAE vs. SL.AE), respectively. In particular, 9 compounds were found to be common up-regulated differential metabolites in the four comparison groups and were enriched in EAE. Additionally, N,N-dimethylaniline, Caffeic acid, 4-Hydroxybenzoic acid, 4-Hydroxybenzaldehyde and cis-9-Octadecenoic acid as potential allelochemicals in L. sagitta. The results of this study support efforts at finding alternative control plants for the restoration of poisonous grass-type degraded grasslands.


Subject(s)
Allelopathy , Asteraceae , Germination , Introduced Species , Pheromones , Asteraceae/metabolism , Asteraceae/drug effects , Pheromones/pharmacology , Pheromones/metabolism , Germination/drug effects , Seedlings/drug effects , Seedlings/metabolism , Seedlings/growth & development , Plant Extracts/pharmacology
13.
Chemosphere ; 357: 141953, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38614395

ABSTRACT

The effects of culture filtrate of Alexandrium tamarense on Prorocentrum donghaiense and Heterosigma akashiwo were investigated, including determination of algal density, photosynthesis, intracellular enzyme content and activity. The filtrate of A. tamarense had a stronger inhibitory effect on P. donghaiense than H. akashiwo, and the inhibitory effect decreased with higher temperature treatment of the filtrate. Instantaneous fluorescence (Ft) and maximum quantum yield of photosystem II (Fv/Fm) values of both kinds of target algae were reduced as exposed to the filtrate of A. tamarense, which proved that allelopathy could inhibit the normal operation of photosynthetic system. The increase of Malondialdehyde (MDA) content of the two kinds of target algae indicated that the cell membrane was seriously damaged by allelochemicals released by A. tamarense. The different responses of Superoxide Dismutase (SOD) and Catalase (CAT) activity in two kinds of target algae demonstrated the complexity and diversity of allelopathic mechanism. The filtrate of A. tamarense also influenced the metabolic function (ATPases) of P. donghaiense and H. akashiwo, and the influence on P. donghaiense was greater. Liquid-liquid extraction was used to extract and isolate allelochemicals from the filtrate of A. tamarense. It was found that only component I with molecular weight of 424.2573 and 434.2857 could inhibit the growth of P. donghaiense by HPLC-MS.


Subject(s)
Allelopathy , Catalase , Dinoflagellida , Malondialdehyde , Pheromones , Photosynthesis , Dinoflagellida/physiology , Pheromones/pharmacology , Malondialdehyde/metabolism , Photosynthesis/drug effects , Catalase/metabolism , Superoxide Dismutase/metabolism , Photosystem II Protein Complex/metabolism
14.
Behav Processes ; 217: 105027, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38615896

ABSTRACT

The primary goal of the binary model in this study was to understand the convergence pattern of the Pheidole latinoda ants. Forager and scout ants on the hunt for food use path integration. When they find a food source, they leave a trail pheromone to alert other nest mates. Every ant starts following that trail and reinforces it on their way back home. To investigate the ant convergence pattern, binary and ternary bridges of varying lengths are used. Each bridge is built in such a way that one end is connected to a food source whilst the other end is connected to the nest. The food source is surrounded by water-filled islands. The Pheidole latinoda ant's convergence pattern has been observed following the successful installation of a bridge near the ants' nest. This species took between 1 and 3 and 3-4 min to find the shortest possible path. Numerous studies looking for optimal solutions, such as those addressing the challenges of travelling salesmen, routing in communication networks, etc., may use this convergence or path optimization as their new starting point.


Subject(s)
Ants , Feeding Behavior , Animals , Ants/physiology , Heuristics , Pheromones
15.
Acta Trop ; 255: 107228, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38670443

ABSTRACT

Aggregation is a spatial distribution pattern where individuals can be grouped through interaction with particular signals or cues [e.g., chemical substances]. Numerous triatomine species exhibit attraction and aggregation around both conspecific and heterospecific feces. It remains unclear whether compounds released by feces function as signals (pheromones or synomones) or cues. Employing a bioassay that mimics field conditions, we investigated the response of Triatoma pallidipennis bugs to volatiles present in its feces and blends of these compounds. Our findings indicate that short-chain aldehydes, namely nonanal, octanal, heptanal, and hexanal, attract fifth-instar nymphs. Furthermore, insects responded to individual compounds as well as secondary, ternary, and quaternary blends. The most attractive blend consisted of all four aldehydes. Additionally, quaternary blends at various compound ratios attracted fifth-instar nymphs of T. phyllosoma and T. longipennis. We discuss the potential roles of these compounds as signals or cues and explore their application as bait in control programs.


Subject(s)
Nymph , Triatoma , Animals , Triatoma/drug effects , Triatoma/growth & development , Triatoma/physiology , Nymph/drug effects , Feces/chemistry , Pheromones/pharmacology , Insect Control/methods , Aldehydes/pharmacology , Volatile Organic Compounds/pharmacology , Volatile Organic Compounds/chemistry
16.
Mol Biol Cell ; 35(6): ar85, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38656798

ABSTRACT

In response to pheromone Saccharomyces cerevisiae extend a mating projection. This process depends on the formation of polarized actin cables which direct secretion to the mating tip and translocate the nucleus for karyogamy. Here, we demonstrate that proper mating projection formation requires the formin Bni1, as well as the actin nucleation promoting activities of Bud6, but not the formin Bnr1. Further, Bni1 is required for pheromone gradient tracking. Our work also reveals unexpected new functions for Bil2 in the pheromone response. Previously we identified Bil2 as a direct inhibitor of Bnr1 during vegetative cell growth. Here, we show that Bil2 has Bnr1-independent functions in spatially focusing Bni1-GFP at mating projection tips, and in vitro Bil2 and its binding partner Bud6 organize Bni1 into clusters that nucleate actin assembly. bil2∆ cells also display entangled Bni1-generated actin cable arrays and defects in secretory vesicle transport and nuclear positioning. At low pheromone concentrations, bil2∆ cells are delayed in establishing a polarity axis, and at high concentrations they prematurely form a second and a third mating projection. Together, these results suggest that Bil2 promotes the proper formation and timing of mating projections by organizing Bni1 and maintaining a persistent axis of polarized growth.


Subject(s)
Actins , Pheromones , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Pheromones/metabolism , Actins/metabolism , Microfilament Proteins/metabolism , Microfilament Proteins/genetics , Cell Polarity/physiology , Cytoskeletal Proteins/metabolism
17.
Sci Rep ; 14(1): 8555, 2024 04 12.
Article in English | MEDLINE | ID: mdl-38609415

ABSTRACT

Many gregarious insect species use aggregation and alarm pheromones. The bed bug, Cimex lectularius L., emits an alarm pheromone (AP), a 70/30 blend of (E)-2-hexenal and (E)-2-octenal, when threatened. Bed bugs avoid temperatures above 43 °C, which are lethal to bugs and used commercially as spatial heat treatments to manage infestations. However, the interaction of bed bug AP in heat avoidance has not been investigated. The goal of this research was to: 1) determine if bed bugs emit AP as an alarm response to heat exposure, and 2) quantify the behavioral responses of conspecifics to AP emitted by heat-exposed bed bugs. Using a selected ion flow tube mass spectrometer, we found that bed bugs responded to lethal and sublethal heat exposure by emitting AP. The Harlan laboratory population emitted more pheromone than a laboratory adapted field population from Florida (McCall). Harlan females emitted the most AP, followed by Harlan males, McCall females and males. In separate behavioral experiments, we showed that conspecifics (i.e., recipients) reacted to AP released by heat exposed bed bugs (i.e., emitters) by frantically moving within 50 mm and 100 mm test arenas. The Harlan recipients reacted to AP in 100 mm areas, whereas the McCall strain did not, indicating a short area of effectiveness of the AP. Synthetic AP components tested in behavioral experiments caused identical effects as the natural AP blend released by heat-exposed bed bugs.


Subject(s)
Aldehydes , Bedbugs , Ectoparasitic Infestations , Female , Male , Animals , Hot Temperature , Causality , Pheromones
18.
Sci Rep ; 14(1): 7118, 2024 03 26.
Article in English | MEDLINE | ID: mdl-38532112

ABSTRACT

Invasive alien species (IAS) pose a severe threat to global agriculture, with their impact projected to escalate due to climate change and expanding international trade. The fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith), a native of the Americas, has rapidly spread across various continents, causing significant damage to several food crops, especially maize. Integrated pest management (IPM) programs are vital for sustainable FAW control, combining multiple strategies for sustainable results. Over three consecutive years, 2019-20, 2020-21 and 2021-22, the field demonstrations were conducted in semiarid regions of India, testing a four-component IPM approach viz., pheromone traps, microbial, botanicals and ETL based applications of insecticides against farmers' practices (sole insecticide application). IPM implementation led to substantial reductions in FAW infestation. Furthermore, egg mass and larvae infestations were significantly lower in IPM-adopted villages compared to conventional practices. Pheromone-based monitoring demonstrated a consistent reduction in adult moth populations. The lowest technology gap (10.42), extension gap (8.33) and technology index (12.25) was recorded during 2020-21. The adoption of IPM led to increased maize yields (17.49, 12.62 and 24.87% over control), higher net returns (919, 906.20 and 992.93 USD), and favourable benefit-cost ratios (2.74, 2.39 and 2.33) compared to conventional practices respectively during 2019-20, 2020-21 and 2021-22. The economic viability of IPM strategies was evident across three consecutive years, confirming their potential for sustainable FAW management in the semiarid region of India. These strategies hold promise for adoption in other parts of the world sharing similar climatic conditions.


Subject(s)
Farmers , Insecticides , Animals , Humans , Spodoptera , Zea mays , Commerce , Internationality , Pest Control , India , Pheromones
19.
Arthropod Struct Dev ; 79: 101346, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38520874

ABSTRACT

The large abundance of termites is partially achieved by their defensive abilities. Stylotermitidae represented by a single extant genus, Stylotermes, is a member of a termite group Neoisoptera that encompasses 83% of termite species and 94% of termite genera and is characterized by the presence of the frontal gland. Within Neoisoptera, Stylotermitidae represents a species-poor sister lineage of all other groups. We studied the structure of the frontal, labral and labial glands in soldiers and workers of Stylotermes faveolus, and the composition of the frontal gland secretion in S. faveolus and Stylotermes halumicus. We show that the frontal gland is a small active secretory organ in soldiers and workers. It produces a cocktail of monoterpenes in soldiers, and some of these monoterpenes and unidentified proteins in workers. The labral and labial glands are developed similarly to other termite species and contribute to defensive activities (labral in both castes, labial in soldiers) or to the production of digestive enzymes (labial in workers). Our results support the importance of the frontal gland in the evolution of Neoisoptera. Toxic, irritating and detectable monoterpenes play defensive and pheromonal functions and are likely critical novelties contributing to the ecological success of these termites.


Subject(s)
Cockroaches , Isoptera , Animals , Pheromones/metabolism , Monoterpenes/metabolism
20.
PLoS Genet ; 20(3): e1011186, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38483976

ABSTRACT

Egg activation, representing the critical oocyte-to-embryo transition, provokes meiosis completion, modification of the vitelline membrane to prevent polyspermy, and translation of maternally provided mRNAs. This transition is triggered by a calcium signal induced by spermatozoon fertilization in most animal species, but not in insects. In Drosophila melanogaster, mature oocytes remain arrested at metaphase-I of meiosis and the calcium-dependent activation occurs while the oocyte moves through the genital tract. Here, we discovered that the oenocytes of fruitfly females are required for egg activation. Oenocytes, cells specialized in lipid-metabolism, are located beneath the abdominal cuticle. In adult flies, they synthesize the fatty acids (FAs) that are the precursors of cuticular hydrocarbons (CHCs), including pheromones. The oenocyte-targeted knockdown of a set of FA-anabolic enzymes, involved in very-long-chain fatty acid (VLCFA) synthesis, leads to a defect in egg activation. Given that some but not all of the identified enzymes are required for CHC/pheromone biogenesis, this putative VLCFA-dependent remote control may rely on an as-yet unidentified CHC or may function in parallel to CHC biogenesis. Additionally, we discovered that the most posterior ventral oenocyte cluster is in close proximity to the uterus. Since oocytes dissected from females deficient in this FA-anabolic pathway can be activated in vitro, this regulatory loop likely operates upstream of the calcium trigger. To our knowledge, our findings provide the first evidence that a physiological extra-genital signal remotely controls egg activation. Moreover, our study highlights a potential metabolic link between pheromone-mediated partner recognition and egg activation.


Subject(s)
Drosophila melanogaster , Drosophila , Animals , Female , Drosophila/metabolism , Drosophila melanogaster/metabolism , Fatty Acids/genetics , Fatty Acids/metabolism , Calcium/metabolism , Fertilization , Oocytes/metabolism , Pheromones/genetics , Pheromones/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...