Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 335
Filter
1.
BMC Vet Res ; 20(1): 190, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734647

ABSTRACT

Severe fever with thrombocytopenia syndrome (SFTS) is a fatal zoonosis caused by ticks in East Asia. As SFTS virus (SFTSV) is maintained between wildlife and ticks, seroepidemiological studies in wildlife are important to understand the behavior of SFTSV in the environment. Miyazaki Prefecture, Japan, is an SFTS-endemic area, and approximately 100 feral horses, called Misaki horses (Equus caballus), inhabit Cape Toi in Miyazaki Prefecture. While these animals are managed in a wild-like manner, their ages are ascertainable due to individual identification. In the present study, we conducted a seroepidemiological survey of SFTSV in Misaki horses between 2015 and 2023. This study aimed to understand SFTSV infection in horses and its transmission to wildlife. A total of 707 samples from 180 feral horses were used to determine the seroprevalence of SFTSV using enzyme-linked immunosorbent assay (ELISA). Neutralization testing was performed on 118 samples. In addition, SFTS viral RNA was detected in ticks from Cape Toi and feral horses. The overall seroprevalence between 2015 and 2023 was 78.5% (555/707). The lowest seroprevalence was 55% (44/80) in 2016 and the highest was 92% (76/83) in 2018. Seroprevalence was significantly affected by age, with 11% (8/71) in those less than one year of age and 96.7% (435/450) in those four years of age and older (p < 0.0001). The concordance between ELISA and neutralization test results was 88.9% (105/118). SFTS viral RNA was not detected in ticks (n = 516) or feral horses. This study demonstrated that horses can be infected with SFTSV and that age is a significant factor in seroprevalence in wildlife. This study provides insights into SFTSV infection not only in horses but also in wildlife in SFTS-endemic areas.


Subject(s)
Horse Diseases , Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Animals , Horses , Seroepidemiologic Studies , Japan/epidemiology , Horse Diseases/epidemiology , Horse Diseases/virology , Horse Diseases/blood , Phlebovirus/isolation & purification , Severe Fever with Thrombocytopenia Syndrome/epidemiology , Severe Fever with Thrombocytopenia Syndrome/veterinary , Severe Fever with Thrombocytopenia Syndrome/virology , Female , Male , Antibodies, Viral/blood , Ticks/virology , Enzyme-Linked Immunosorbent Assay/veterinary , Animals, Wild/virology
2.
Virol J ; 21(1): 113, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760812

ABSTRACT

BACKGROUND: Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease. SFTS virus (SFTSV) is transmitted by tick bites and contact with the blood or body fluids of SFTS patients. Animal-to-human transmission of SFTS has been reported in Japan, but not in China. In this study, the possible transmission route of two patients who fed and cared for farm-raised fur animals in a mink farm was explored. METHOD: An epidemiological investigation and a genetic analysis of patients, animals and working environment were carried out. RESULTS: It was found that two patients had not been bitten by ticks and had no contact with patients infected with SFTS virus, but both of them had skinned the dying animals. 54.55% (12/22) of the farm workers were positive for SFTS virus antibody. By analyzing the large, medium and small segments sequences, the viral sequences from the two patients, animals and environments showed 99.9% homology. CONCLUSION: It is suspected that the two patients may be directly infected by farm-raised animals, and that the virus may have been transmitted by aerosols when skinning dying animals. Transmission by direct blood contacts or animal bites cannot be ignored.


Subject(s)
Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Animals , Phlebovirus/genetics , Phlebovirus/isolation & purification , Phlebovirus/classification , China/epidemiology , Severe Fever with Thrombocytopenia Syndrome/transmission , Severe Fever with Thrombocytopenia Syndrome/virology , Severe Fever with Thrombocytopenia Syndrome/epidemiology , Humans , Male , Antibodies, Viral/blood , Phylogeny , Female , Middle Aged , Mink/virology , Farms , Adult , Farmers , RNA, Viral/genetics
3.
Sci Rep ; 14(1): 12336, 2024 05 29.
Article in English | MEDLINE | ID: mdl-38811622

ABSTRACT

Hard ticks are known vectors of various pathogens, including the severe fever with thrombocytopenia syndrome virus, Rickettsia spp., Coxiella burnetii, Borrelia spp., Anaplasma phagocytophilum, and Ehrlichia spp. This study aims to investigate the distribution and prevalence of tick-borne pathogens in southwestern Korea from 2019 to 2022. A total of 13,280 ticks were collected during the study period, with H. longicornis accounting for 86.1% of the collected ticks. H. flava, I. nipponensis and A. testudinarium comprised 9.4%, 3.6%, and 0.8% of the ticks, respectively. Among 983 pools tested, Rickettsia spp. (216 pools, 1.6% MIR) were the most prevalent pathogens across all tick species, with R. japonica and R. monacensis frequently detected in I. nipponensis and Haemaphysalis spp., respectively. Borrelia spp. (28 pools, 0.2% MIR) were predominantly detected in I. nipponensis (27 pools, 13.8% MIR, P < 0.001). Co-infections, mainly involving Rickettsia monacensis and Borrelia afzelii, were detected in I. nipponensis. Notably, this study identified R. monacensis for the first time in A. testudinarium in South Korea. These findings offer valuable insights into the tick population and associated pathogens in the region, underscoring the importance of tick-borne disease surveillance and prevention measures.


Subject(s)
Rickettsia , Animals , Republic of Korea/epidemiology , Rickettsia/isolation & purification , Rickettsia/genetics , Ticks/microbiology , Ticks/virology , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/virology , Prevalence , Borrelia/isolation & purification , Borrelia/genetics , Anaplasma phagocytophilum/isolation & purification , Ehrlichia/isolation & purification , Ehrlichia/genetics , Coxiella burnetii/isolation & purification , Coxiella burnetii/genetics , Phlebovirus/isolation & purification , Phlebovirus/genetics
4.
BMC Neurol ; 24(1): 158, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730325

ABSTRACT

BACKGROUND: Severe fever with thrombocytopenia syndrome (SFTS) is a natural focal disease transmitted mainly by tick bites, and the causative agent is SFTS virus (SFTSV). SFTS can rapidly progress to severe disease, with multiple-organ failure (MOF) manifestations such as shock, respiratory failure, disseminated intravascular coagulation (DIC) and death, but cases of SFTS patients with central nervous system (CNS) symptoms onset and marked persistent involuntary shaking of the perioral area and limbs have rarely been reported. CASE PRESENTATION: A 69-year-old woman with fever and persistent involuntary shaking of the perioral area and limbs was diagnosed with SFTS with CNS symptom onset after metagenomic next-generation sequencing (mNGS) of cerebrospinal fluid (CSF) and peripheral blood identified SFTSV. The patient developed a cytokine storm and MOF during the course of the disease, and after aggressive antiviral, glucocorticoid, and gamma globulin treatments, her clinical symptoms improved, her laboratory indices returned to normal, and she had a good prognosis. CONCLUSION: This case gives us great insight that when patients with CNS symptoms similar to those of viral encephalitis combined with thrombocytopenia and leukopenia are encountered in the clinic, it is necessary to consider the possibility of SFTS involving the CNS. Testing for SFTSV nucleic acid in CSF and blood (mNGS or polymerase chain reaction (PCR)) should be carried out, especially in critically ill patients, and treatment should be given accordingly.


Subject(s)
Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Humans , Female , Aged , Severe Fever with Thrombocytopenia Syndrome/diagnosis , Phlebovirus/genetics , Phlebovirus/isolation & purification , Multiple Organ Failure/virology , Multiple Organ Failure/diagnosis , Multiple Organ Failure/etiology
5.
Emerg Infect Dis ; 30(6): 1299-1301, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38781980

ABSTRACT

We isolated severe fever with thrombocytopenia syndrome virus (SFTSV) from farmed minks in China, providing evidence of natural SFTSV infection in farmed minks. Our findings support the potential role of farmed minks in maintaining SFTSV and are helpful for the development of public health interventions to reduce human infection.


Subject(s)
Disease Outbreaks , Mink , Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Phlebovirus/genetics , Phlebovirus/isolation & purification , Phlebovirus/classification , China/epidemiology , Severe Fever with Thrombocytopenia Syndrome/epidemiology , Severe Fever with Thrombocytopenia Syndrome/virology , Animals , Mink/virology , Phylogeny , Humans , Farms
6.
Viruses ; 16(5)2024 04 29.
Article in English | MEDLINE | ID: mdl-38793582

ABSTRACT

BACKGROUND: This study aimed to analyze the correlation between the cycle threshold (Ct) values of severe fever with thrombocytopenia syndrome (SFTS) virus small (S) and middle (M) segments and the SFTS viral load, aiming to estimate the initial viral load and predict prognosis in the early clinical course. METHOD: A retrospective study was conducted with confirmed SFTS patients at Jeju National University Hospital (2016-2022). Patients were categorized into non-fatal and fatal groups. RESULTS: This study included 49 patients with confirmed SFTS (non-fatal group, n = 42; fatal group, n = 7). A significant negative correlation (-0.783) was observed between the log SFTS viral load and Ct values (p < 0.001). This negative correlation was notably stronger in the fatal group (correlation coefficient -0.940) than in the non-fatal group (correlation coefficient -0.345). CONCLUSION: In this study, we established a correlation between SFTS viral load and Ct values for estimating the initial viral load and early predicting prognosis. These results are expected to offer valuable insights for SFTS patient treatment and prognosis prediction.


Subject(s)
Phlebovirus , Real-Time Polymerase Chain Reaction , Severe Fever with Thrombocytopenia Syndrome , Viral Load , Humans , Phlebovirus/genetics , Phlebovirus/isolation & purification , Severe Fever with Thrombocytopenia Syndrome/diagnosis , Severe Fever with Thrombocytopenia Syndrome/virology , Male , Female , Prognosis , Retrospective Studies , Aged , Middle Aged , Real-Time Polymerase Chain Reaction/methods , Aged, 80 and over , Adult , RNA, Viral/genetics
8.
Viruses ; 14(2)2022 01 24.
Article in English | MEDLINE | ID: mdl-35215817

ABSTRACT

A 67-year-old male veterinarian presented with fatigue, anorexia, and diarrhea. Although there were no tick bite marks, we suspected severe fever with thrombocytopenia syndrome (SFTS) due to bicytopenia, mild disturbance of consciousness, and a history of outdoor activities. Thus, we started immunoglobulin therapy immediately. A serum reverse transcription-polymerase chain reaction (RT-PCR) test for SFTS virus (SFTSV) was positive. The patient had treated a cat with thrombocytopenia 10 days prior to admission. The cat's serum SFTSV RT-PCR test result was positive, and the whole genome sequences of the patient's and cat's SFTSV were identical, suggesting the possibility of transmission from the cat to the patient. Other cases of direct cat-to-human SFTV transmission have been reported recently. Mucous membranes should be protected, including eye protection, in addition to standard precautions, when in contact with any cat with suspected SFTS.


Subject(s)
Cat Diseases/virology , Severe Fever with Thrombocytopenia Syndrome/transmission , Severe Fever with Thrombocytopenia Syndrome/virology , Aged , Animals , Cat Diseases/blood , Cats , DNA, Viral/blood , DNA, Viral/genetics , Humans , Male , Phlebovirus/classification , Phlebovirus/genetics , Phlebovirus/isolation & purification , Severe Fever with Thrombocytopenia Syndrome/blood , Severe Fever with Thrombocytopenia Syndrome/diagnosis , Veterinarians
9.
PLoS One ; 17(2): e0262302, 2022.
Article in English | MEDLINE | ID: mdl-35171943

ABSTRACT

Severe fever with thrombocytopenia syndrome (SFTS) and scrub typhus are endemic zoonotic diseases that pose significant public health threats in East Asia. As these two diseases share common clinical features, as well as overlapping disease regions, it is difficult to differentiate between SFTS and scrub typhus. A multiplex reverse-transcription loop­mediated isothermal amplification (RT-LAMP) assay was developed to detect large segments and GroES genes for SFTS virus (SFTSV) and Orientia tsutsugamushi (OT). The performance of the RT-LAMP assay was compared and evaluated with those of commercial PowerChek™ SFTSV real-time PCR and LiliF™ TSUTSU nested PCR for 23 SFTS and 12 scrub typhus clinical samples, respectively. The multiplex SFTSV/OT/Internal control (IC) RT-LAMP assay showed comparable sensitivity (91.3%) with that of commercial PowerChek™ SFTSV Real-time PCR (95.6%) and higher sensitivity (91.6%) than that of LiliF™ TSUTSU nested PCR (75%). In addition, the multiplex SFTSV/OT RT-LAMP assay showed 100% specificity and no cross-reactivity for blood from uninfected healthy patients and samples from patients infected with other fever viruses. Thus, the multiplex SFTSV/OT/IC RT-LAMP assay could serve as a useful point-of-care molecular diagnostic test for SFTS and scrub typhus.


Subject(s)
DNA, Bacterial/analysis , Nucleic Acid Amplification Techniques/methods , RNA, Viral/analysis , Scrub Typhus/diagnosis , Severe Fever with Thrombocytopenia Syndrome/diagnosis , DNA, Bacterial/metabolism , Humans , Orientia tsutsugamushi/genetics , Orientia tsutsugamushi/isolation & purification , Phlebovirus/genetics , Phlebovirus/isolation & purification , Point-of-Care Systems , RNA, Viral/metabolism , Reagent Kits, Diagnostic , Scrub Typhus/microbiology , Sensitivity and Specificity , Severe Fever with Thrombocytopenia Syndrome/virology
10.
Sci Rep ; 12(1): 2573, 2022 02 16.
Article in English | MEDLINE | ID: mdl-35173184

ABSTRACT

Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging phlebovirus that causes a hemorrhagic fever known as the severe fever with thrombocytopenia syndrome (SFTS). Inflammasomes are a molecular platform that are assembled to process pro-caspase 1 and subsequently promote secretion of interleukin (IL)-1ß/IL-18 for proinflammatory responses induced upon infection. We hypothesize that inflammasome activation and pyroptosis induced in SFTS results in elevated levels of IL-1ß/IL-18 responsible for high fever and hemorrhage in the host, characteristic of SFTS. Here we report that IL-1ß secretion was elevated in SFTS patients and infected mice and IL-1ß levels appeared to be reversibly associated to disease severity and viral load in patients' blood. Increased caspase-1 activation, IL-1ß/IL-18 secretion, cell death, and processing of gasdermin D were detected, indicating that pyroptosis was induced in SFTSV-infected human peripheral blood monocytes (PBMCs). To characterize the mechanism of pyroptosis induction, we knocked down several NOD-like receptors (NLRs) with respective shRNAs in PBMCs and showed that the NLR family pyrin domain containing 3 (NLRP3) inflammasome was critical for processing pro-caspase-1 and pro-IL-1ß. Our data with specific inhibitors for NLRP3 and caspase-1 further showed that activation of the NLRP3 inflammasome was key to caspase-1 activation and IL-1ß secretion which may be inhibitory to viral replication in PBMCs infected with SFTSV. The findings in this study suggest that the activation of the NLPR3 inflammasome and pyroptosis, leading to IL-1ß/IL-18 secretion during the SFTSV infection, could play important roles in viral pathogenesis and host protection. Pyroptosis as part of innate immunity might be essential in proinflammatory responses and pathogenicty in humans infected with this novel phlebovirus.


Subject(s)
Bunyaviridae Infections/complications , Inflammasomes/immunology , Interleukin-1beta/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Phlebovirus/isolation & purification , Severe Fever with Thrombocytopenia Syndrome/pathology , Virus Replication , Animals , Bunyaviridae Infections/virology , Case-Control Studies , Humans , Male , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Severe Fever with Thrombocytopenia Syndrome/etiology , Severe Fever with Thrombocytopenia Syndrome/metabolism
11.
J Infect Dis ; 225(2): 269-281, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34223910

ABSTRACT

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging, life-threatening tick-borne viral hemorrhagic fever caused by SFTS virus (SFTSV). Transient appearance of plasmablastic lymphocytes in the peripheral blood of SFTS cases has been reported; however, the pathological significance of this transient burst in peripheral blood plasmablastic lymphocytes is unclear. Here, we show that SFTSV infection of human peripheral blood mononuclear cells in vitro induced propagation of atypical lymphocytes. These atypical lymphocytes were activated B cells, which were induced by secretory factors other than viral particles; these factors were secreted by SFTSV-infected B cells. Activated B cells shared morphological and immunophenotypic characteristics with B cells of plasmablast lineage observed in peripheral blood and autopsy tissues of SFTS cases. This suggests that SFTSV-infected B cells secrete factors that induce B-cell differentiation to plasmablasts, which may play an important role in pathogenesis of SFTS through the SFTSV-B cell axis.


Subject(s)
Leukocytes, Mononuclear , Phlebovirus/isolation & purification , Severe Fever with Thrombocytopenia Syndrome , B-Lymphocytes , Bunyaviridae Infections , Humans
12.
J Gen Virol ; 102(11)2021 11.
Article in English | MEDLINE | ID: mdl-34797756

ABSTRACT

Sandfly-borne phleboviruses are distributed widely throughout the Mediterranean Basin, presenting a threat to public health in areas where they circulate. However, the true diversity and distribution of pathogenic and apathogenic sandfly-borne phleboviruses remains a key issue to be studied. In the Balkans, most published data rely on serology-based studies although virus isolation has occasionally been reported. Here, we report the discovery of two novel sandfly-borne phleboviruses, provisionally named Zaba virus (ZABAV) and Bregalaka virus (BREV), which were isolated in Croatia and North Macedonia, respectively. This constitutes the first isolation of phleboviruses in both countries. Genetic analysis based on complete coding sequences indicated that ZABAV and BREV are distinct from each other and belong to the genus Phlebovirus, family Phenuiviridae. Phylogenetic and amino acid modelling of viral polymerase shows that ZABAV and BREV are new members of the Salehabad phlebovirus species and the Adana phlebovirus species, respectively. Moreover, sequence-based vector identification suggests that ZABAV is mainly transmitted by Phlebotomus neglectus and BREV is mainly transmitted by Phlebotomus perfiliewi. BREV neutralizing antibodies were detected in 3.3% of human sera with rates up to 16.7% in certain districts, demonstrating that BREV frequently infects humans in North Macedonia. In vitro viral growth kinetics experiments demonstrated viral replication of both viruses in mammalian and mosquito cells. In vivo experimental studies in mice suggest that ZABAV and BREV exhibit characteristics making them possible human pathogens.


Subject(s)
Insect Vectors/virology , Phlebovirus/isolation & purification , Psychodidae/virology , Animals , Croatia , Mosquito Vectors , Phlebovirus/classification , Phlebovirus/genetics , Phylogeny , Republic of North Macedonia
13.
J Gen Virol ; 102(11)2021 11.
Article in English | MEDLINE | ID: mdl-34726591

ABSTRACT

Phleboviruses (order Bunyavirales, family Phenuiviridae) are globally emerging arboviruses with a wide spectrum of virulence. Sandfly fever Sicilian virus (SFSV) is one of the most ubiquitous members of the genus Phlebovirus and associated with a self-limited, incapacitating febrile disease in travellers and military troops. The phleboviral NSs protein is an established virulence factor, acting as antagonist of the antiviral interferon (IFN) system. Consistently, we previously reported that SFSV NSs targets the induction of IFN mRNA synthesis by specifically binding to the DNA-binding domain of the IFN transcription factor IRF3. Here, we further characterized the effect of SFSV and its NSs towards IFN induction, and evaluated its potential to affect the downstream IFN-stimulated signalling and the subsequent transactivation of antiviral interferon-stimulated genes (ISGs). We found that SFSV dampened, but did not entirely abolish type I and type III IFN induction. Furthermore, SFSV NSs did not affect IFN signalling, resulting in substantial ISG expression in infected cells. Hence, although SFSV targets IRF3 to reduce IFN induction, it is not capable of entirely disarming the IFN system in the presence of high basal IRF3 and/or IRF7 levels, and we speculate that this significantly contributes to its low level of virulence.


Subject(s)
Interferons/immunology , Phlebotomus Fever/genetics , Phlebotomus Fever/virology , Phlebovirus/immunology , Host-Pathogen Interactions , Humans , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/immunology , Interferons/genetics , Phlebotomus Fever/immunology , Phlebovirus/genetics , Phlebovirus/isolation & purification , Phlebovirus/pathogenicity , Up-Regulation , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/immunology , Virulence
14.
Ticks Tick Borne Dis ; 12(6): 101821, 2021 11.
Article in English | MEDLINE | ID: mdl-34525434

ABSTRACT

In Okinawa prefecture, Japan, the first case of severe fever with thrombocytopenia syndrome (SFTS) was confirmed in August 2016, and this case remains to be the only reported case of SFTS in Okinawa. The epidemiological investigation indicated that the patient had been infected on the main island of Okinawa, but source and route of infection were unknown. Therefore, to understand the possible source and route of SFTS virus (SFTSV) infection in Okinawa, we performed a seroepidemiological study of SFTSV among animals and dwellers in Okinawa and conducted a questionnaire survey to investigate risk factors for tick bites in Okinawa. Among the 1,035 serum samples from four different animal species, anti-SFTSV antibodies were detected in only 4.2% wild mongoose (Herpestes auropunctatus) serum samples. To our knowledge, this is the first study to report the detection of anti-SFTSV antibodies in wild mongooses. Meanwhile, all 1,104 human inhabitants tested negative for anti-SFTSV antibodies, suggesting that the frequency of SFTSV exposure is low in Okinawa. Logistic regression analysis of the questionnaire results showed that outdoor activity was associated with an increased risk of tick bite among Okinawa residents. Despite the current low frequency of SFTSV infection in animals and humans, endemic circulation of the virus in Okinawa should be carefully monitored in the area for preventing future infections.


Subject(s)
Cats , Goats , Herpestidae , Phlebovirus/isolation & purification , Severe Fever with Thrombocytopenia Syndrome/epidemiology , Severe Fever with Thrombocytopenia Syndrome/veterinary , Sus scrofa , Adult , Aged , Aged, 80 and over , Animals , Cat Diseases/epidemiology , Cat Diseases/virology , Female , Goat Diseases/epidemiology , Goat Diseases/virology , Humans , Japan/epidemiology , Male , Middle Aged , Prevalence , Seroepidemiologic Studies , Severe Fever with Thrombocytopenia Syndrome/virology , Swine , Swine Diseases/epidemiology , Swine Diseases/virology , Young Adult
15.
Ticks Tick Borne Dis ; 12(6): 101813, 2021 11.
Article in English | MEDLINE | ID: mdl-34411795

ABSTRACT

Severe fever with thrombocytopenia syndrome (SFTS) is caused by Dabie bandavirus that belongs to the genus Bandavirus in the family Phenuiviridae and order Bunyavirales and is transmitted by hard ticks. It has been detected in several tick species, various animals, and humans. The purpose of this study was to detect SFTS virus (SFTSV) antigen and antibody in wild boar in the Republic of Korea (ROK). A total of 768 sera samples were collected from wild boar in the ROK between January and December 2019. Viral RNA was extracted from sera using viral RNA extraction kit, and one-step RT-nested polymerase chain reaction (PCR) was performed to amplify the S segment of the SFTSV. The sequencing data were analyzed using Chromas and aligned using Clustal X. The phylogenetic tree was constructed using the maximum-likelihood method using MEGA7. In addition, wild boar sera were tested for IgG antibodies against SFTSV by enzyme-linked immunosorbent assay (ELISA) and immunofluorescence assay (IFA). Of a total of 768 sera samples, 40 (5.2%) were positive for SFTSV by RT-PCR targeting the S segment. Two hundred twenty-one (28.8%) and 159 (20.7%) of 768 sera samples were seropositive by ELISA and IFA, respectively. Based on both ELISA and IFA tests of the same samples, 110 (14.3%) wild boar sera samples were positive for SFTSV antibodies. Of a total of 40 positive serum samples by RT-PCR, 33 (82.5%) and 7 (17.5%) sera were classified as the genotype B-3 and D, respectively, by sequence analysis,. These results provide useful information that demonstrates the detection of antigen and antibody in wild boar sera samples for every month of a certain year throughout the ROK.


Subject(s)
Phlebovirus/isolation & purification , Severe Fever with Thrombocytopenia Syndrome/veterinary , Sus scrofa , Swine Diseases/epidemiology , Animals , Phlebovirus/classification , Phylogeny , Prevalence , Republic of Korea/epidemiology , Seroepidemiologic Studies , Severe Fever with Thrombocytopenia Syndrome/epidemiology , Severe Fever with Thrombocytopenia Syndrome/virology , Swine , Swine Diseases/virology
16.
Viruses ; 13(8)2021 08 10.
Article in English | MEDLINE | ID: mdl-34452442

ABSTRACT

Phleboviruses are arboviruses transmitted by sand flies, mosquitoes and ticks. Some sand fly-borne phleboviruses cause illnesses in humans, such as the summer fevers caused by the Sicilian and Naples viruses or meningitis caused by the Toscana virus. Indeed, traces of several phleboviral infections have been serologically detected in domestic animals, but their potential pathogenic role in vertebrates other than humans is still unclear, as is the role of vertebrates as potential reservoirs of these viruses. In this study, we report the results of a serological survey performed on domestic animals sampled in Northern Italy, against four phleboviruses isolated from sand flies in the same area. The sera of 23 dogs, 165 sheep and 23 goats were tested with a virus neutralization assay for Toscana virus, Fermo virus, Ponticelli I virus and Ponticelli III virus. Neutralizing antibodies against one or more phleboviruses were detected in four out of 23 dogs, 31 out of 165 sheep and 12 out of 23 goats. This study shows preliminary evidence for the distribution pattern of phleboviral infections in different animal species, highlighting the potential infection of the Toscana virus in dogs and the Fermo virus in goats.


Subject(s)
Animals, Domestic/virology , Antibodies, Viral/blood , Bunyaviridae Infections/blood , Bunyaviridae Infections/veterinary , Phlebovirus/genetics , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Bunyaviridae Infections/epidemiology , Bunyaviridae Infections/immunology , Dogs/virology , Goats/virology , Italy/epidemiology , Neutralization Tests , Phlebovirus/classification , Phlebovirus/isolation & purification , Phylogeny , Psychodidae/virology , Sheep/virology
17.
Viruses ; 13(8)2021 08 21.
Article in English | MEDLINE | ID: mdl-34452524

ABSTRACT

Sand flies transmit Leishmania infantum, which is responsible for causing leishmaniasis, as well as many phleboviruses, including the human pathogenic Toscana virus. We screened sand flies collected from a single site between 2017 and 2020 for the presence of both phleboviruses and Leishmania. The sand flies were sampled with attractive carbon dioxide traps and CDC light traps between May and October. We collected more than 50,000 sand flies; 2826 were identified at the species level as Phlebotomus perfiliewi (98%) or Phlebotomus perniciosus (2%). A total of 16,789 sand flies were tested in 355 pools, and phleboviruses were found in 61 pools (6 Toscana virus positive pools, 2 Corfou virus positive pools, 42 Fermo virus positive pools, and 7 Ponticelli virus positive pools, and 4 unidentified phlebovirus positive pools). Leishmania was found in 75 pools and both microorganisms were detected in 16 pools. We isolated nine phleboviruses from another 2960 sand flies (five Ponticelli viruses and for Fermo viruses), not tested for Leishmania; the complete genome of a Fermo virus isolate was sequenced. The simultaneous detection in space and time of the Fermo virus and L. infantum is evidence that supports the co-circulation of both microorganisms in the same location and partial overlap of their cycles. A detailed characterization of the epidemiology of these microorganisms will support measures to limit their transmission.


Subject(s)
Insect Vectors/parasitology , Insect Vectors/virology , Leishmania infantum/isolation & purification , Phlebotomus/parasitology , Phlebotomus/virology , Phlebovirus/isolation & purification , Animals , Humans , Insect Vectors/classification , Insect Vectors/genetics , Italy/epidemiology , Leishmania infantum/genetics , Leishmania infantum/physiology , Leishmaniasis, Visceral/epidemiology , Leishmaniasis, Visceral/parasitology , Leishmaniasis, Visceral/transmission , Phlebotomus/classification , Phlebotomus/genetics , Phlebotomus Fever/epidemiology , Phlebotomus Fever/transmission , Phlebotomus Fever/virology , Phlebovirus/genetics , Phlebovirus/physiology , Phylogeny
18.
Ticks Tick Borne Dis ; 12(5): 101771, 2021 09.
Article in English | MEDLINE | ID: mdl-34218054

ABSTRACT

We conducted a seroprevalence investigation of the healthy population of animals in Kagoshima Prefecture, an area in which severe fever with thrombocytopenia syndrome (SFTS) is endemic. Of 104 domestic cat and 114 dog samples, 2 (1.9%) and 11 (9.6%) were positive for anti-SFTS virus (SFTSV) IgG by indirect ELISA, respectively. Viral RNA was detected in one dog (0.9%) by RT-PCR. Of the 102 wild boar (Sus scrofa) and 107 deer (Cervus nippon) samples tested, 55 (53.9%) and 37 (34.7%) were positive for anti-SFTSV IgG, respectively. Only one wild boar (1.0%) was positive for viral RNA. Although symptomatic SFTSV infections in domestic cats have increased in this area, the seroprevalence of the healthy population of domestic cats tends to be lower than those of other animals. We developed a Gaussia luciferase immunoprecipitation system (GLIPS) using mammalian cells expressing a recombinant SFTSV nucleoprotein (SFTSV-rNP) for the detection of SFTSV-specific antibodies in samples from various animal species. The sensitivity of the assay was highly consistent with that of indirect ELISA, indicating that it could serve as a useful tool for a large-scale surveillance of SFTSV across multiple species of animals.


Subject(s)
Cat Diseases/epidemiology , Deer , Dog Diseases/epidemiology , Immunoprecipitation/veterinary , Severe Fever with Thrombocytopenia Syndrome/veterinary , Sus scrofa , Animals , Antibodies, Viral/analysis , Arecaceae/chemistry , Arecaceae/enzymology , Cat Diseases/virology , Cats , Dog Diseases/virology , Dogs , Immunoglobulin G/analysis , Immunoprecipitation/methods , Japan/epidemiology , Luciferases/therapeutic use , Phlebovirus/isolation & purification , Prevalence , RNA, Viral/analysis , Seroepidemiologic Studies , Severe Fever with Thrombocytopenia Syndrome/epidemiology , Severe Fever with Thrombocytopenia Syndrome/virology
19.
Acta Trop ; 221: 106012, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34126090

ABSTRACT

The seasonal distribution of hard ticks was investigated in 2018 in Gyeongbuk Province, Republic of Korea. Ticks were assayed for severe fever with thrombocytopenia syndrome virus (SFTSV). Ticks were collected monthly using CO2-baited traps from April to November in four habitats (grasslands, grave sites, hiking trails, and mixed forests). Based on morphological and molecular identification, Haemaphysalis longicornis was the most commonly collected species, followed by H. flava and Ixodes nipponensis. Ticks were more commonly collected in grassland habitats, followed by the grave sites, hiking trails, and mixed forests. Peak numbers of nymphs and adults of H. longicornis occurred in May and June, respectively, and Haemaphysalis larvae were collected from August to October. A total of 9/187 (4.8%) pools were positive for SFTSV between June and October in 2018. Phylogenetic analysis of partial fragments of the SFTSV obtained in this study showed that all positive virus samples clustered into genotype B.


Subject(s)
Ixodidae/virology , Phlebovirus/isolation & purification , Seasons , Animals , Ecosystem , Ixodes/virology , Phylogeny , Republic of Korea
20.
Viruses ; 13(5)2021 04 27.
Article in English | MEDLINE | ID: mdl-33925561

ABSTRACT

We report the isolation of a newly recognized phlebovirus, Hedi virus (HEDV), from Phlebotomus chinensis sandflies collected in Shanxi Province, China. The virus' RNA is comprised of three segments. The greatest amino acid sequence similarity of the three gene segments between this virus and previously recognized phleboviruses is 40.85-63.52%, and the RNA-dependent RNA polymerase (RdRp) amino acid sequence has the greatest similarity (63.52%) to the Rift Valley fever virus (RVFV) ZH-548 strain. Phylogenetic analysis of the amino acid sequence of the virus RdRp indicated that HEDV is close to RVFV and distinct from other phleboviruses, forming its own evolutionary branch. We conclude that it is necessary to increase the monitoring of phleboviruses carried by sandflies in China.


Subject(s)
Phlebovirus/classification , Phlebovirus/genetics , Psychodidae/virology , Animals , China , Genome, Viral , Genomics/methods , Phlebotomus Fever/transmission , Phlebotomus Fever/virology , Phlebovirus/isolation & purification , Phlebovirus/ultrastructure , Phylogeny , RNA, Viral/chemistry , RNA, Viral/genetics , Virus Replication , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...