Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Int ; 126: 644-658, 2019 05.
Article in English | MEDLINE | ID: mdl-30856452

ABSTRACT

An association between pollution (e.g., from traffic emissions) and the increased prevalence of respiratory allergies has been observed. Field-realistic exposure studies provide the most relevant assessment of the effects of the intensity and diversity of urban and industrial contamination on pollen structure and allergenicity. The significance of in-depth post-translational modification (PTM) studies of pollen proteomes, when compared with studies on other aspects of pollution and altered pollen allergenicity, has not yet been determined; hence, little progress has been made within this field. We undertook a comprehensive comparative analysis of multiple polluted and environmentally preserved Phleum pratense (Timothy grass) pollen samples using scanning electron microscopy, in-depth PTM profiling, determination of organic and inorganic pollutants, analysis of the release of sub-pollen particles and phenols/proteins, and analysis of proteome expression using high resolution tandem mass spectrometry. In addition, we used quantitative enzyme-linked immunosorbent assays (ELISA) and immunoglobulin E (IgE) immunoblotting. An increased phenolic content and release of sub-pollen particles was found in pollen samples from the polluted area, including a significantly higher content of mercury, cadmium, and manganese, with irregular long spines on pollen grain surface structures. Antioxidative defense-related enzymes were significantly upregulated and seven oxidative PTMs were significantly increased (methionine, histidine, lysine, and proline oxidation; tyrosine glycosylation, lysine 4-hydroxy-2-nonenal adduct, and lysine carbamylation) in pollen exposed to the chemical plant and road traffic pollution sources. Oxidative modifications affected several Timothy pollen allergens; Phl p 6, in particular, exhibited several different oxidative modifications. The expression of Phl p 6, 12, and 13 allergens were downregulated in polluted pollen, and IgE binding to pollen extract was substantially lower in the 18 patients studied, as measured by quantitative ELISA. Quantitative, unrestricted, and detailed PTM searches using an enrichment-free approach pointed to modification of Timothy pollen allergens and suggested that heavy metals are primarily responsible for oxidative stress effects observed in pollen proteins.


Subject(s)
Allergens/analysis , Environmental Pollutants/analysis , Phleum/physiology , Plant Proteins/metabolism , Pollen/chemistry , Protein Processing, Post-Translational , Proteome/metabolism , Adult , Female , Humans , Male , Middle Aged , Oxidative Stress , Serbia , Traffic-Related Pollution/analysis
2.
Sci Rep ; 8(1): 11898, 2018 08 09.
Article in English | MEDLINE | ID: mdl-30093622

ABSTRACT

Plant-soil feedback (PSF) effects are studied as plant growth responses to soil previously conditioned by another plant. These studies usually exclude effects of soil fauna, such as nematodes, soil arthropods, and earthworms, although these organisms are known to influence plant performance. Here, we aimed to explore effects of a model microarthropod community on PSFs. We performed a PSF experiment in microcosms with two plant species, Phleum pratense and Poa pratensis. We added a model microarthropod community consisting of three fungivorous springtail species (Proisotoma minuta, Folsomia candida, and Sinella curviseta) and a predatory mite (Hypoaspis aculeifer) to half of the microcosms. We measured seedling establishment and plant biomass, nematode and microbial community composition, microbial biomass, and mycorrhizal colonization of roots. Microarthropods caused changes in the composition of nematode and microbial communities. Their effect was particularly strong in Phleum plants where they altered the composition of bacterial communities. Microarthropods also generally influenced plant performance, and their effects depended on previous soil conditioning and the identity of plant species. Microarthropods did not affect soil microbial biomass and mycorrhizal colonization of roots. We conclude that the role of soil microarthropods should be considered in future PSF experiments, especially as their effects are plant species-specific.


Subject(s)
Arthropods/physiology , Feedback, Psychological/physiology , Phleum/physiology , Poa/physiology , Soil Microbiology , Soil/parasitology , Animals , Arthropods/classification , Biomass , Ecosystem , Mites/physiology , Mycorrhizae/physiology , Nematoda/physiology , Oligochaeta/physiology , Phleum/microbiology , Phleum/parasitology , Plant Roots/microbiology , Plant Roots/parasitology , Plant Roots/physiology , Poa/microbiology , Poa/parasitology , Species Specificity
3.
Am Nat ; 192(1): 81-93, 2018 07.
Article in English | MEDLINE | ID: mdl-29897806

ABSTRACT

Particle capture is important for ecological processes in aquatic and terrestrial ecosystems. The current model is based on a stationary collector for which predictions about capture efficiency (η; flux of captured particles ∶ flux of particles) are based on the collector flow environment (i.e., collector Reynolds number, Rec; inertial force ∶ viscous force). This model does not account for the movement of collectors in nature. We examined the effect of collector motion (transverse and longitudinal to the flow) on η using a cylindrical model in the lab and the grass species Phleum pratense in the field. Collector motion increased η (up to 400% and 20% in the lab and field, respectively) and also affected the spatial distribution of particles on collectors, especially at low Rec. The effect was greatest for collectors moving transversely at large magnitude, which encountered more particles with higher relative momentum. These results, which differ from the stationary model, can be predicted by considering both Rec and the particle dynamics given by the Stokes number (Stk; particle stopping distance ∶ collector radius) and helped to resolve an existing controversy about pollination mechanisms. Collector motion should be considered in wind pollination and other ecological processes involving particle capture.


Subject(s)
Models, Theoretical , Phleum/physiology , Pollination , Wind
4.
Physiol Plant ; 160(3): 266-281, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28144950

ABSTRACT

The effect of variable autumn temperatures in combination with decreasing irradiance and daylength on photosynthesis, growth cessation and freezing tolerance was investigated in northern- and southern-adapted populations of perennial ryegrass (Lolium perenne) and timothy (Phleum pratense) intended for use in regions at northern high latitudes. Plants were subjected to three different acclimation temperatures; 12, 6 and 9/3°C (day/night) for 4 weeks, followed by 1 week of cold acclimation at 2°C under natural light conditions. This experimental setup was repeated at three different periods during autumn with decreasing sums of irradiance and daylengths. Photoacclimation, leaf elongation and freezing tolerance were studied. The results showed that plants cold acclimated during the period with lowest irradiance and shortest day had lowest freezing tolerance, lowest photosynthetic activity, longest leaves and least biomass production. Higher acclimation temperature (12°C) resulted in lower freezing tolerance, lower photosynthetic activity, faster leaf elongation rate and higher biomass compared with the other temperatures. Photochemical mechanisms were predominant in photoacclimation. The northern-adapted populations had a better freezing tolerance than the southern-adapted except when grown during the late autumn period and at the highest temperature; then there were no differences between the populations. Our results indicate that the projected climate change in the north may reduce freezing tolerance in grasses as acclimation will take place at higher temperatures and shorter daylengths with lower irradiance.


Subject(s)
Acclimatization/physiology , Cold Temperature , Freezing , Lolium/metabolism , Phleum/metabolism , Gene Expression Regulation, Plant , Lolium/genetics , Lolium/physiology , Phleum/genetics , Phleum/physiology , Plant Proteins/genetics , Plant Proteins/metabolism
5.
J Plant Physiol ; 171(11): 951-8, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24913052

ABSTRACT

Metabolism of fructans in temperate grasses dynamically fluctuates before and during winter and is involved in the overwintering activity of plants. We monitored three candidate factors that may be involved in seasonal fructan metabolism in timothy (Phleum pratense): transcription levels of two fructosyltransferase (PpFT1 and PpFT2) genes and one fructan exohydrolase (Pp6-FEH1) gene during fall and winter and under artificially cold conditions. Functional analysis using a recombinant enzyme for PpFT2, a novel fructosyltransferase cDNA, revealed that it encoded sucrose:fructan 6-fructosyltransferase, with enzymatic properties different from previously characterized PpFT1. PpFT1 transcripts decreased from September to December as the amount of fructans increased, whereas PpFT2 transcripts increased in timothy crowns. PpFT2 was transcriptionally more induced than PpFT1 in response to cold and sucrose in timothy seedlings. A rapid increase in Pp6-FEH1 transcripts and increased monosaccharide content were observed in timothy crowns when air temperature was continuously below 0°C and plants were not covered by snow. Transcriptional induction of Pp6-FEH1 by exposure to -3°C was also observed in seedlings. These findings suggest Pp6-FEH1 involvement in the second phase of hardening. PpFT1 and PpFT2 transcription levels decreased under snow cover, whereas Pp6-FEH1 transcription levels were constant, which corresponded with the fluctuation of fructosyltransferase and fructan exohydrolase activities. Inoculation with snow mold fungi (Typhula ishikariensis) increased Pp6-FEH1 transcription levels and accelerated hydrolysis of fructans. These results suggest that transcriptional regulation of genes coding fructan metabolizing enzymes is partially involved in the fluctuation of fructan metabolism during cold acclimation and overwintering.


Subject(s)
Cold Temperature , Fructans/metabolism , Phleum/metabolism , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Phleum/enzymology , Phleum/physiology , Plant Proteins/genetics
6.
Physiol Plant ; 152(1): 152-63, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24329752

ABSTRACT

Timothy (Phleum pratense) is a widely grown perennial forage grass in the Nordic region. The canopy consists of three tiller types, of which the stem forming vegetative elongating (ELONG) tiller and generative (GEN) tillers contribute the most to dry matter yield. In this study, the regulation of tiller formation by vernalization, day length (DL) [12 h, short day length (SD); 16 h, long day length (LD)] and gibberellic acid (GA) was investigated in two timothy cultivars. Vernalization resulted in a shift of ELONG to GEN tillers. No vernalization was required for the development of ELONG tillers but SD strictly arrested stem elongation. Vernalization is an important regulator of tiller development but it seemed to be upstream regulated by DL. LD was essential for floral transition and could not be substituted by GA and/or vernalization treatments. Genotypic variation was found in the development of GEN tillers. The ability to produce GEN tillers was associated with significant upregulation of PpVRN3. PpVRN1 expression peaked at the time of vegetative/generative transition, and PpVRN3 after the transfer to LD, suggesting them to have similar functions with cereal vernalization genes. PpVRN1 alone was not sufficient to activate flowering, and upregulation of PpVRN3 possibly together with PpPpd1 was required. Although vernalization downregulated PpMADS10, this gene did not act as a clear flowering repressor. Our results show that flowering signals alter the tiller composition, so they have important effects on yield formation of timothy.


Subject(s)
Gene Expression Regulation, Plant , Gibberellins/metabolism , Phleum/physiology , Plant Growth Regulators/metabolism , Signal Transduction , Biomass , Cold Temperature , Flowers/genetics , Flowers/growth & development , Flowers/physiology , Flowers/radiation effects , Gene Library , Genotype , Molecular Sequence Annotation , Phleum/genetics , Phleum/growth & development , Phleum/radiation effects , Photoperiod , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/physiology , Plant Leaves/radiation effects , Plant Shoots/genetics , Plant Shoots/growth & development , Plant Shoots/physiology , Plant Shoots/radiation effects , Plant Stems/genetics , Plant Stems/growth & development , Plant Stems/physiology , Plant Stems/radiation effects , Seasons , Sequence Analysis, DNA
7.
Animal ; 7(4): 580-90, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23088800

ABSTRACT

A 2 × 2 factorial feeding experiment was conducted to examine the effects of varying the maturity level of the grass used to prepare silage and the nature of concentrate starch source and their interactions on dry matter intake (DMI), diet digestibility, energy corrected milk (ECM) production and milk composition in dairy cows. Twenty-eight multiparous Swedish Red dairy cows, 133 ± 45 days in milk (DIM), with an average milk yield of 30 ± 4 kg/day and a live weight of 624 ± 69 kg were blocked by DIM and randomly assigned to seven replicated balanced 4 × 4 Latin squares with four 21-day experimental periods. The experimental diets consisted of four total mixed rations (TMR) consisting of early-cut grass silage (EGS) supplemented with either barley- or maize-based concentrate and late-cut grass silage (LGS) supplemented with either barley- or maize-based concentrate. All TMR contained identical proportions of forage (51%) and concentrate (49%). Total tract digestibility was estimated by determining indigestible NDF (iNDF) concentrations in feeds and faeces and using iNDF as an internal marker. The feeds' ruminal degradation parameters were determined using both in situ (nylon bag) and in vitro (gas production (GP)) techniques. Cows offered diets containing EGS had greater (P < 0.001) daily dry matter (DM) intakes, ECM yields and total tract digestibilities for DM and organic matter (OM), but these were not affected by the nature of the concentrate starch source. No interaction between the maturity of the silage and the nature of the concentrate starch source was observed for DMI, diet digestibility or ECM yield. Both grass silages and concentrates had similar rates of ruminal degradation of NDF when measured in situ. The in situ DM (P < 0.001) and starch (P = 0.001) degradation rates of barley-based concentrate were greater than those for maize-based concentrate. In vitro OM GP rates and extents were similar for both concentrate feeds. The results showed that diets containing EGS offered better animal performance and diet digestibility than diets containing LGS. The concentrate starch source did not affect animal performance, but total NDF digestibility was better with diet containing barley- than maize-based concentrate.


Subject(s)
Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Cattle/physiology , Hordeum/chemistry , Phleum/physiology , Starch/administration & dosage , Zea mays/chemistry , Animals , Cattle/growth & development , Digestion , Female , Random Allocation , Rumen/metabolism , Silage/analysis , Sweden , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...