Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(17)2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36080390

ABSTRACT

Current antineoplastic agents present multiple disadvantages, driving an ongoing search for new and better compounds. Four lupane-type triterpenes, 3α,24-dihydroxylup-20(29)-en-28-oic acid (1), 3α,23-dihydroxy-30-oxo-lup-20(29)-en-28-oic acid (2), 3α,23-O-isopropylidenyl-3α,23-dihydroxylup-20(29)-en-28-oic acid (3), and 3α,23-dihydroxylup-20(29)-en-28-oic acid (4), previously isolated from Phoradendron wattii, were evaluated on two cell lines of chronic (K562) and acute (HL60) myeloid leukemia. Compounds 1, 2, and 4 decreased cell viability and inhibit proliferation, mainly in K562, and exhibited an apoptotic effect from 24 h of treatment. Of particular interest is compound 2, which caused arrest in active phases (G2/M) of the cell cycle, as shown by in silico study of the CDK1/Cyclin B/Csk2 complex by molecular docking. This compound [3α,23-dihydroxy-30-oxo-lup-20(29)-en-28-oic acid] s a promising candidate for incorporation into cancer treatments and deserves further study.


Subject(s)
Leukemia , Phoradendron , Triterpenes , Cell Cycle , Cell Line , Humans , Leukemia/drug therapy , Molecular Docking Simulation , Molecular Structure , Phoradendron/metabolism , Plant Leaves/metabolism
2.
Plant Physiol Biochem ; 136: 222-229, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30703634

ABSTRACT

The present study aimed to investigate the reciprocal effects of Phoradendron perrottetii (mistletoe) and T. guianensis (host plant) regarding their polyphenol composition. Taking into account that tannins are important molecules in plant defense and their biosynthesis tends to be enhanced when a species is exposed to stress, we address the following questions: (1) Are the tannins found in our model species important in the interaction between host and mistletoe? (2) Does the presence of mistletoe induce changes in the content of tannins and other polyphenols in the host plant? (3) Do we find differences between the tannin sub-groups in the responses of the host plant to mistletoe? (4) Could the observed differences reflect the relative importance of one tannin group over another as chemical defense against the mistletoe? Using a polyphenol and tannin group-specific MRM methods we quantified four different tannin sub-groups together with flavonoid and quinic acid derivatives by ultra-performance liquid chromatography tandem mass spectrometry together with the oxidative and protein precipitation activities of leaves and branches of Tapirira guianensis and Phoradendron perrottetii. We selected leaves and branches of six non-parasitized trees of T. guianensis. Leaves and branches of nine individuals of T. guianensis parasitized by P. perrottetii were also sampled. For each parasitized tree, we sampled an infested branch and its leaves, as well as a non-infested branch and its leaves. Infested branches were divided into three groups: gall (the host-parasite interface), proximal, and distal region. Both proanthocyanidins and ellagitanins seem to be important for plant-plant parasitism interaction: host infested tissues (gall and surrounding regions) have clearly less tannin contents than healthy tissues. Mistletoe showed high levels of quinic acid derivatives and flavonoids that could be important during hastorium formation and intrusion on host tissues, suggesting a defense mechanism that could promote oxidative stress together with an inhibition of mistletoe seed germination, consequently avoiding secondary infestations. Polyphenol detected in T. guianensis-P. perrottetii interaction could play different role as plant-mistletoe strategies of survival.


Subject(s)
Anacardiaceae/parasitology , Host-Parasite Interactions , Phoradendron/metabolism , Polyphenols/metabolism , Anacardiaceae/metabolism , Flavonoids/metabolism , Host-Parasite Interactions/physiology , Hydrolyzable Tannins/metabolism , Proanthocyanidins/metabolism , Quinic Acid/metabolism , Reactive Oxygen Species/metabolism , Tannins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...