Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.736
Filter
1.
Lipids Health Dis ; 23(1): 138, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734619

ABSTRACT

BACKGROUND: Skin barrier alterations play a crucial function in melasma development. Past researches have demonstrated variations in lipid content between the epidermis of melasma lesions and normal tissues, along with the varied expression of lipid-related genes in melasma. This study aimed to analyze the lipidome profiles of skin surface lipids (SSL) in patients with melasma before and after treatment to understand associated abnormalities. METHODS: Melasma was treated with tranexamic acid orally and hydroquinone cream topically. Disease was assessed using the Melasma Area and Severity Index (MASI), and the impact to life was evaluated with Melasma Quality of Life (MELASQoL) score. Epidermal melanin particles were observed using reflection confocal microscopy (RCM), whereas epidermal pigment and blood vessel morphology were observed using dermoscopy, and SSL samples were collected. Specific information regarding alterations in lipid composition was obtained through multivariate analysis of the liquid chromatography-mass spectrometry data. RESULTS: After treatment, patients with melasma exhibited decreased MASI and MELASQoL scores (P < 0.001); RCM revealed reduced melanin content in the lesions, and dermoscopy revealed fewer blood vessels. Fifteen lipid subclasses and 382 lipid molecules were identified using lipidomic assays. The expression levels of total lipids, phosphatidylcholine, and phosphatidylethanolamine in the melasma lesions decreased after treatment (P < 0.05). CONCLUSION: This study revealed alterations in the SSL composition after effective melasma treatment, suggesting a compensatory role for lipids in melasma barrier function. The mechanism involving SSL and the lipid barrier, which influences melasma's occurrence, needs further elucidation.


Subject(s)
Hydroquinones , Lipidomics , Melanosis , Quality of Life , Humans , Melanosis/drug therapy , Female , Adult , Hydroquinones/therapeutic use , Hydroquinones/administration & dosage , Tranexamic Acid/therapeutic use , Middle Aged , Melanins/metabolism , Male , Lipids/blood , Lipids/analysis , Epidermis/metabolism , Epidermis/drug effects , Epidermis/pathology , Phosphatidylethanolamines/metabolism , Phosphatidylcholines/metabolism , Skin/pathology , Skin/drug effects , Skin/metabolism , Lipid Metabolism/drug effects
2.
Nat Commun ; 15(1): 3711, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38697966

ABSTRACT

The LAT1-4F2hc complex (SLC7A5-SLC3A2) facilitates uptake of essential amino acids, hormones and drugs. Its dysfunction is associated with many cancers and immune/neurological disorders. Here, we apply native mass spectrometry (MS)-based approaches to provide evidence of super-dimer formation (LAT1-4F2hc)2. When combined with lipidomics, and site-directed mutagenesis, we discover four endogenous phosphatidylethanolamine (PE) molecules at the interface and C-terminus of both LAT1 subunits. We find that interfacial PE binding is regulated by 4F2hc-R183 and is critical for regulation of palmitoylation on neighbouring LAT1-C187. Combining native MS with mass photometry (MP), we reveal that super-dimerization is sensitive to pH, and modulated by complex N-glycans on the 4F2hc subunit. We further validate the dynamic assemblies of LAT1-4F2hc on plasma membrane and in the lysosome. Together our results link PTM and lipid binding with regulation and localisation of the LAT1-4F2hc super-dimer.


Subject(s)
Adaptor Proteins, Signal Transducing , Fusion Regulatory Protein 1, Heavy Chain , Large Neutral Amino Acid-Transporter 1 , Lipoylation , Membrane Proteins , Phosphatidylethanolamines , Humans , Large Neutral Amino Acid-Transporter 1/metabolism , Large Neutral Amino Acid-Transporter 1/genetics , Phosphatidylethanolamines/metabolism , Lysosomes/metabolism , Cell Membrane/metabolism , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , HEK293 Cells , Protein Multimerization , Protein Binding , Mass Spectrometry , Mutagenesis, Site-Directed , Hydrogen-Ion Concentration
3.
J Proteome Res ; 23(6): 2054-2066, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38775738

ABSTRACT

The metabolites and microbiota in tongue coating display distinct characteristics in certain digestive disorders, yet their relationship with colorectal cancer (CRC) remains unexplored. Here, we employed liquid chromatography coupled with tandem mass spectrometry to analyze the lipid composition of tongue coating using a nontargeted approach in 30 individuals with colorectal adenomas (CRA), 32 with CRC, and 30 healthy controls (HC). We identified 21 tongue coating lipids that effectively distinguished CRC from HC (AUC = 0.89), and 9 lipids that differentiated CRC from CRA (AUC = 0.9). Furthermore, we observed significant alterations in the tongue coating lipid composition in the CRC group compared to HC/CRA groups. As the adenoma-cancer sequence progressed, there was an increase in long-chain unsaturated triglycerides (TG) levels and a decrease in phosphatidylethanolamine plasmalogen (PE-P) levels. Furthermore, we noted a positive correlation between N-acyl ornithine (NAOrn), sphingomyelin (SM), and ceramide phosphoethanolamine (PE-Cer), potentially produced by members of the Bacteroidetes phylum. The levels of inflammatory lipid metabolite 12-HETE showed a decreasing trend with colorectal tumor progression, indicating the potential involvement of tongue coating microbiota and tumor immune regulation in early CRC development. Our findings highlight the potential utility of tongue coating lipid analysis as a noninvasive tool for CRC diagnosis.


Subject(s)
Colorectal Neoplasms , Lipidomics , Phosphatidylethanolamines , Tandem Mass Spectrometry , Tongue , Humans , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/microbiology , Lipidomics/methods , Male , Female , Tongue/microbiology , Tongue/metabolism , Tongue/pathology , Tongue/chemistry , Middle Aged , Tandem Mass Spectrometry/methods , Phosphatidylethanolamines/metabolism , Phosphatidylethanolamines/analysis , Aged , Chromatography, Liquid , Lipids/analysis , Lipids/chemistry , Triglycerides/metabolism , Triglycerides/analysis , Adenoma/metabolism , Adenoma/microbiology , Sphingomyelins/analysis , Sphingomyelins/metabolism , 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/metabolism , 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/chemistry , Plasmalogens/analysis , Plasmalogens/metabolism , Plasmalogens/chemistry , Case-Control Studies , Ethanolamines/metabolism , Ethanolamines/analysis , Ethanolamines/chemistry , Ceramides/metabolism , Ceramides/analysis , Adult
4.
Nature ; 629(8012): 710-716, 2024 May.
Article in English | MEDLINE | ID: mdl-38693265

ABSTRACT

Phosphatidylcholine and phosphatidylethanolamine, the two most abundant phospholipids in mammalian cells, are synthesized de novo by the Kennedy pathway from choline and ethanolamine, respectively1-6. Despite the essential roles of these lipids, the mechanisms that enable the cellular uptake of choline and ethanolamine remain unknown. Here we show that the protein encoded by FLVCR1, whose mutation leads to the neurodegenerative syndrome posterior column ataxia and retinitis pigmentosa7-9, transports extracellular choline and ethanolamine into cells for phosphorylation by downstream kinases to initiate the Kennedy pathway. Structures of FLVCR1 in the presence of choline and ethanolamine reveal that both metabolites bind to a common binding site comprising aromatic and polar residues. Despite binding to a common site, FLVCR1 interacts in different ways with the larger quaternary amine of choline in and with the primary amine of ethanolamine. Structure-guided mutagenesis identified residues that are crucial for the transport of ethanolamine, but dispensable for choline transport, enabling functional separation of the entry points into the two branches of the Kennedy pathway. Altogether, these studies reveal how FLVCR1 is a high-affinity metabolite transporter that serves as the common origin for phospholipid biosynthesis by two branches of the Kennedy pathway.


Subject(s)
Choline , Ethanolamine , Membrane Transport Proteins , Humans , Binding Sites , Biological Transport/genetics , Choline/chemistry , Choline/metabolism , Ethanolamine/chemistry , Ethanolamine/metabolism , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , Models, Molecular , Phosphatidylcholines/metabolism , Phosphatidylcholines/chemistry , Phosphatidylethanolamines/chemistry , Phosphatidylethanolamines/metabolism , Phosphorylation , Mutagenesis
5.
J Clin Invest ; 134(11)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652544

ABSTRACT

Carbohydrates and lipids provide the majority of substrates to fuel mitochondrial oxidative phosphorylation. Metabolic inflexibility, defined as an impaired ability to switch between these fuels, is implicated in a number of metabolic diseases. Here, we explore the mechanism by which physical inactivity promotes metabolic inflexibility in skeletal muscle. We developed a mouse model of sedentariness, small mouse cage (SMC), that, unlike other classic models of disuse in mice, faithfully recapitulated metabolic responses that occur in humans. Bioenergetic phenotyping of skeletal muscle mitochondria displayed metabolic inflexibility induced by physical inactivity, demonstrated by a reduction in pyruvate-stimulated respiration (JO2) in the absence of a change in palmitate-stimulated JO2. Pyruvate resistance in these mitochondria was likely driven by a decrease in phosphatidylethanolamine (PE) abundance in the mitochondrial membrane. Reduction in mitochondrial PE by heterozygous deletion of phosphatidylserine decarboxylase (PSD) was sufficient to induce metabolic inflexibility measured at the whole-body level, as well as at the level of skeletal muscle mitochondria. Low mitochondrial PE in C2C12 myotubes was sufficient to increase glucose flux toward lactate. We further implicate that resistance to pyruvate metabolism is due to attenuated mitochondrial entry via mitochondrial pyruvate carrier (MPC). These findings suggest a mechanism by which mitochondrial PE directly regulates MPC activity to modulate metabolic flexibility in mice.


Subject(s)
Mitochondria, Muscle , Muscle, Skeletal , Phosphatidylethanolamines , Pyruvic Acid , Animals , Mice , Muscle, Skeletal/metabolism , Pyruvic Acid/metabolism , Mitochondria, Muscle/metabolism , Phosphatidylethanolamines/metabolism , Sedentary Behavior , Male , Carboxy-Lyases/metabolism , Carboxy-Lyases/genetics , Mice, Knockout , Stearoyl-CoA Desaturase
6.
J Biol Chem ; 300(5): 107259, 2024 May.
Article in English | MEDLINE | ID: mdl-38582453

ABSTRACT

Selenoprotein I (SELENOI) catalyzes the final reaction of the CDP-ethanolamine branch of the Kennedy pathway, generating the phospholipids phosphatidylethanolamine (PE) and plasmenyl-PE. Plasmenyl-PE is a key component of myelin and is characterized by a vinyl ether bond that preferentially reacts with oxidants, thus serves as a sacrificial antioxidant. In humans, multiple loss-of-function mutations in genes affecting plasmenyl-PE metabolism have been implicated in hereditary spastic paraplegia, including SELENOI. Herein, we developed a mouse model of nervous system-restricted SELENOI deficiency that circumvents embryonic lethality caused by constitutive deletion and recapitulates phenotypic features of hereditary spastic paraplegia. Resulting mice exhibited pronounced alterations in brain lipid composition, which coincided with motor deficits and neuropathology including hypomyelination, elevated reactive gliosis, and microcephaly. Further studies revealed increased lipid peroxidation in oligodendrocyte lineage cells and disrupted oligodendrocyte maturation both in vivo and in vitro. Altogether, these findings detail a critical role for SELENOI-derived plasmenyl-PE in myelination that is of paramount importance for neurodevelopment.


Subject(s)
Homeostasis , Myelin Sheath , Oligodendroglia , Selenoproteins , Animals , Myelin Sheath/metabolism , Mice , Selenoproteins/metabolism , Selenoproteins/genetics , Oligodendroglia/metabolism , Oligodendroglia/pathology , Phosphatidylethanolamines/metabolism , Lipid Peroxidation , Mice, Knockout , Spastic Paraplegia, Hereditary/metabolism , Spastic Paraplegia, Hereditary/genetics , Spastic Paraplegia, Hereditary/pathology , Lipid Metabolism , Humans , Brain/metabolism , Brain/pathology , Phospholipid Ethers/metabolism , Plasmalogens/metabolism
7.
Microbiol Spectr ; 12(6): e0310323, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38647275

ABSTRACT

Tail fat deposition of Altay sheep not only increased the cost of feeding but also reduced the economic value of meat. Currently, because artificial tail removal and gene modification methods cannot solve this problem, it is maybe to consider reducing tail fat deposition from the path of intestinal microbiota and metabolite. We measured body weight and tail fat weight, collected the serum for hormone detection by enzyme-linked immunosorbent assay, and collected colon contents to 16S rRNA sequence and liquid chromotography with mass spectrometry detection to obtain colon microbiota and metabolite information, from 12 3-month-old and 6-month-old Altay sheep. Subsequently, we analyzed the correlation between colon microbiota and tail fat weight, hormones, and metabolites, respectively. We identified that the tail fat deposition of Altay sheep increased significantly with the increase of age and body weight, and the main microbiota that changed were Verrucomicrobia, Cyanobacteria, Akkermansia, Bacteroides, Phocaeicola, Escherichia-Shigella, and Clostridium_sensu_stricto_1. The results indicated that the diversities of metabolites in the colon contents of 3-months old and 6-months old were mainly reflected in phosphocholine (PC) and phosphatidylethanolamine (PE) in the lipid metabolism pathway. The correlations analyzed showed that Verrucomicrobia, Chlamydiae, Akkermansia, Ruminococcaceae_UCG-005, Bacteroides, and Phocaeicola were negatively correlated with tail fat deposition. Verrucomicrobia, Akkermansia, and Bacteroides were negatively correlated with growth hormone (GH). Verrucomicrobia was positively correlated with L-a-lysophosphatidylserine and PE(18:1(9Z)/0:0). Our results showed that tail fat deposition of Altay sheep was probably correlated with the abundance of Verrucomicrobia, Akkermansia, Bacteroides of colon microbiota, PC, PE of metabolites, and GH of serum. IMPORTANCE: Excessive tail fat deposition of Altay sheep caused great economic losses, and the current research results could not solve this problem well. Now, our research speculates that the tail fat deposition of Aletay sheep may be related to the abundance of Verrucomicrobia, Akkermansia, Bacteroides, metabolites phosphocholine, phosphatidylethanolamine, and growth hormone of serum. Further investigation of the interaction mechanism between these microbiota or metabolites and tail fat deposition is helpful in reducing tail fat deposition of Altay sheep and increasing the economic benefits of breeding farms.


Subject(s)
Bacteria , Colon , Gastrointestinal Microbiome , RNA, Ribosomal, 16S , Tail , Animals , Sheep/microbiology , Gastrointestinal Microbiome/physiology , Colon/microbiology , Colon/metabolism , Tail/microbiology , RNA, Ribosomal, 16S/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Bacteria/genetics , Phosphatidylethanolamines/metabolism , Adipose Tissue/metabolism , Lipid Metabolism , Phosphatidylcholines/metabolism
8.
J Cell Biol ; 223(5)2024 May 06.
Article in English | MEDLINE | ID: mdl-38497895

ABSTRACT

Cells utilize multiple mechanisms to maintain mitochondrial homeostasis. We recently characterized a pathway that remodels mitochondria in response to metabolic alterations and protein overload stress. This remodeling occurs via the formation of large membranous structures from the mitochondrial outer membrane called mitochondrial-derived compartments (MDCs), which are eventually released from mitochondria and degraded. Here, we conducted a microscopy-based screen in budding yeast to identify factors that regulate MDC formation. We found that two phospholipids, cardiolipin (CL) and phosphatidylethanolamine (PE), differentially regulate MDC biogenesis. CL depletion impairs MDC biogenesis, whereas blocking mitochondrial PE production leads to constitutive MDC formation. Additionally, in response to metabolic MDC activators, cellular and mitochondrial PE declines, and overexpressing mitochondrial PE synthesis enzymes suppress MDC biogenesis. Altogether, our data indicate a requirement for CL in MDC biogenesis and suggest that PE depletion may stimulate MDC formation downstream of MDC-inducing metabolic stress.


Subject(s)
Cardiolipins , Mitochondria , Phosphatidylethanolamines , Saccharomycetales , Cardiolipins/metabolism , Homeostasis , Mitochondria/metabolism , Phosphatidylethanolamines/metabolism , Phospholipids/metabolism , Saccharomycetales/cytology , Saccharomycetales/metabolism
9.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(5): 159483, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38527666

ABSTRACT

Polycistronic transcription and translation of ymdB-clsC have been thought to be required for full activity of ClsC. The authentic initiation codon of the clsC gene is present within the open reading frame of the upstream located ymdB gene. ClsC translated from authentic initiation codon drives cardiolipin (CL) synthesis without transcriptionally paired YmdB. YmdB is not necessary for the substrate specificity of ClsC utilizing phosphatidylethanolamine (PE) as a co-substrate.


Subject(s)
Cardiolipins , Escherichia coli Proteins , Escherichia coli , Transferases (Other Substituted Phosphate Groups) , Substrate Specificity , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Transferases (Other Substituted Phosphate Groups)/genetics , Transferases (Other Substituted Phosphate Groups)/metabolism , Cardiolipins/metabolism , Cardiolipins/genetics , Transcription, Genetic , Phosphatidylethanolamines/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism
10.
Cell Metab ; 36(3): 617-629.e7, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38340721

ABSTRACT

Diacylglycerol acyltransferase 2 (DGAT2) catalyzes the final step of triglyceride (TG) synthesis. DGAT2 deletion in mice lowers liver TGs, and DGAT2 inhibitors are under investigation for the treatment of fatty liver disease. Here, we show that DGAT2 inhibition also suppressed SREBP-1 cleavage, reduced fatty acid synthesis, and lowered TG accumulation and secretion from liver. DGAT2 inhibition increased phosphatidylethanolamine (PE) levels in the endoplasmic reticulum (ER) and inhibited SREBP-1 cleavage, while DGAT2 overexpression lowered ER PE concentrations and increased SREBP-1 cleavage in vivo. ER enrichment with PE blocked SREBP-1 cleavage independent of Insigs, which are ER proteins that normally retain SREBPs in the ER. Thus, inhibition of DGAT2 shunted diacylglycerol into phospholipid synthesis, increasing the PE content of the ER, resulting in reduced SREBP-1 cleavage and less hepatic steatosis. This study reveals a new mechanism that regulates SREBP-1 activation and lipogenesis that is independent of sterols and SREBP-2 in liver.


Subject(s)
Diacylglycerol O-Acyltransferase , Non-alcoholic Fatty Liver Disease , Animals , Mice , Diacylglycerol O-Acyltransferase/metabolism , Endoplasmic Reticulum/metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Phosphatidylethanolamines/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism , Triglycerides/metabolism
11.
Nutrition ; 120: 112356, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38354460

ABSTRACT

BACKGROUND: Cancer associated cachexia is characterized by the significant loss of adipose tissue, leading to devastating weight loss and muscle wasting in the majority of cancer patients. The effects and underlying mechanisms of degradation metabolites on adipocytes in cachectic patients remain poorly understood. To address this knowledge gap, we conducted a comprehensive study combining lipidomic analysis of subcutaneous and visceral adipose tissue with transcriptomics data from the database to investigate the mechanisms of lipid regulation in adipocytes. METHODS: We collected subcutaneous and visceral adipose tissue samples from cachectic and noncachectic cancer patients. Lipidomic analysis was performed to identify differentially expressed lipids in both types of adipose tissue. Additionally, transcriptomics data from the GEO database were analyzed to explore gene expression patterns in adipocytes. Bioinformatics analysis was employed to determine the enrichment of differentially expressed genes in specific pathways. Furthermore, molecular docking studies were conducted to predict potential protein targets of specific lipids, with a focus on the PI3K-Akt signaling pathway. Western blot analysis was used to validate protein levels of the identified target gene, lysophosphatidic acid receptor 6 (LPAR6), in subcutaneous and visceral adipose tissue from cachectic and noncachectic patients. RESULTS: Significant lipid differences in subcutaneous and visceral adipose tissue between cachectic and noncachectic patients were identified by multivariate statistical analysis. Cachectic patients exhibited elevated Ceramides levels and reduced CerG2GNAc1 levels (P < 0.05). A total of 10 shared lipids correlated with weight loss and IL-6 levels, enriched in Sphingolipid metabolism, GPI-anchor biosynthesis, and Glyceropholipid metabolism pathways. LPAR6 expression was significantly elevated in both adipose tissues of cachectic patients (P < 0.05). Molecular docking analysis indicated strong binding of Phosphatidylethanolamine (PE) (18:2e/18:2) to LPAR6. CONCLUSIONS: Our findings suggest that specific lipids, including PE(18:2e/18:2), may mitigate adipose tissue wasting in cachexia by modulating the expression of LPAR6 through the PI3K-Akt signaling pathway. The identification of these potential targets and mechanisms provides a foundation for future investigations and therapeutic strategies to combat cachexia. By understanding the underlying lipid regulation in adipocytes, we aim to develop targeted interventions to ameliorate the devastating impact of cachexia on patient outcomes and quality of life. Nevertheless, further studies and validation are warranted to fully elucidate the intricate mechanisms involved and translate these findings into effective clinical interventions.


Subject(s)
Cachexia , Neoplasms , Humans , Cachexia/etiology , Cachexia/metabolism , Receptors, Lysophosphatidic Acid/genetics , Receptors, Lysophosphatidic Acid/metabolism , Phosphatidylethanolamines/metabolism , Quality of Life , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Lipolysis , Adipose Tissue/metabolism , Neoplasms/complications , Neoplasms/metabolism , Weight Loss
12.
Angew Chem Int Ed Engl ; 63(9): e202314710, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38230815

ABSTRACT

The vast majority of membrane phospholipids (PLs) include two asymmetrically positioned fatty acyls: oxidizable polyunsaturated fatty acids (PUFA) attached predominantly at the sn2 position, and non-oxidizable saturated/monounsaturated acids (SFA/MUFA) localized at the sn1 position. The peroxidation of PUFA-PLs, particularly sn2-arachidonoyl(AA)- and sn2-adrenoyl(AdA)-containing phosphatidylethanolamines (PE), has been associated with the execution of ferroptosis, a program of regulated cell death. There is a minor subpopulation (≈1-2 mol %) of doubly PUFA-acylated phospholipids (di-PUFA-PLs) whose role in ferroptosis remains enigmatic. Here we report that 15-lipoxygenase (15LOX) exhibits unexpectedly high pro-ferroptotic peroxidation activity towards di-PUFA-PEs. We revealed that peroxidation of several molecular species of di-PUFA-PEs occurred early in ferroptosis. Ferrostatin-1, a typical ferroptosis inhibitor, effectively prevented peroxidation of di-PUFA-PEs. Furthermore, co-incubation of cells with di-AA-PE and 15LOX produced PUFA-PE peroxidation and induced ferroptotic death. The decreased contents of di-PUFA-PEs in ACSL4 KO A375 cells was associated with lower levels of di-PUFA-PE peroxidation and enhanced resistance to ferroptosis. Thus, di-PUFA-PE species are newly identified phospholipid peroxidation substrates and regulators of ferroptosis, representing a promising therapeutic target for many diseases related to ferroptotic death.


Subject(s)
Arachidonate 15-Lipoxygenase , Phosphatidylethanolamines , Phosphatidylethanolamines/metabolism , Arachidonate 15-Lipoxygenase/metabolism , Cell Death , Phospholipids/metabolism , Fatty Acids, Unsaturated/metabolism , Lipid Peroxidation
13.
Plant Mol Biol ; 113(4-5): 237-247, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38085407

ABSTRACT

Modulation of the plant defense response by bioactive molecules is of increasing interest. However, despite plant cell lipids being one of the major cellular components, their role in plant immunity remains elusive. We found that the exogenous application of the cell-membrane localized phospholipid lyso-phosphatidylethanolamine (LPE) reprograms the plant transcript profile in favor of defense-associated genes thereby priming the plant immune system. Exogenous LPE application to different Arabidopsis accessions increases resistance against the necrotrophic pathogens, Botrytis cinerea and Cochliobolus heterostrophus. We found that the immunity-promoting effect of LPE is repealed in the jasmonic acid (JA) receptor mutant coi1, but multiplied in the JA-hypersensitive mutant feronia (fer-4). The JA-signaling repressor JAZ1 is degraded following LPE administration, suggesting that JA-signaling is promoted by LPE. Following LPE-treatment, reactive oxygen species (ROS) accumulation is affected in coi1 and fer-4. Moreover, FER signaling inhibitors of the RALF family are strongly expressed after LPE application, and RALF23 is internalized in stress granules, suggesting the LPE-mediated repression of FER-signaling by promoting RALF function. The in-situ increase of LPE-abundance in the LPE-catabolic mutants lpeat1 and lpeat2 elevates plant resistance to B. cinerea, in contrast to the endogenous LPE-deficient mutant pla2-alpha. We show that LPE increases plant resistance against necrotrophs by promoting JA-signaling and ROS-homeostasis, thereby paving the way for the LPE-targeted genomic engineering of crops to raise their ability to resist biotic threats.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Reactive Oxygen Species/metabolism , Phosphatidylethanolamines/metabolism , Phosphatidylethanolamines/pharmacology , Arabidopsis/metabolism , Oxylipins/metabolism , Cyclopentanes/metabolism , Homeostasis , Plant Diseases/genetics , Botrytis/metabolism , Gene Expression Regulation, Plant
14.
BMC Plant Biol ; 23(1): 602, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38031030

ABSTRACT

BACKGROUND: Leymus chinensis (L. chinensis) is a perennial native forage grass widely distributed in the steppe of Inner Mongolia as the dominant species. Calcium (Ca) is an essential mineral element important for plant adaptation to the growth environment. Ca limitation was previously shown to strongly inhibit Arabidopsis (Arabidopsis thaliana) seedling growth and disrupt plasma membrane stability and selectivity, increasing fluid-phase-based endocytosis and contents of all major membrane lipids. RESULTS: In this study, we investigated the significance of Ca for L. chinensis growth and membrane stability relative to Arabidopsis. Our results showed that Ca limitation did not affect L. chinensis seedling growth and endocytosis in roots. Moreover, the plasma membrane maintained high selectivity. The lipid phosphatidylcholine (PC): phosphatidylethanolamine (PE) ratio, an indicator of the membrane stability, was five times higher in L. chinensis than in Arabidopsis. Furthermore, in L. chinensis, Ca limitation did not affect the content of any major lipid types, decreased malondialdehyde (MDA) content, and increased superoxide dismutase (SOD) activity, showing an opposite pattern to that in Arabidopsis. L. chinensis roots accumulated higher contents of PC, phosphatidylinositol (PI), monogalactosyldiacylglycerol (MGDG), phosphatidylglycerol (PG), cardiolipin (CL), digalactosyldiacylglycerol (DGDG), and lysophosphatidylcholine (LPC) but less phosphatidylethanolamine (PE), diacylglycerol (DAG), triacylglycerolv (TAG), phosphatidylserine (PS), lysobisphosphatidic acids (LPAs), lysophosphatidylethanolamine (LPE), and lysophosphatidylserine (LPS) than Arabidopsis roots. Moreover, we detected 31 and 66 unique lipids in L. chinensis and Arabidopsis, respectively. CONCLUSIONS: This study revealed that L. chinensis roots have unique membrane lipid composition that was not sensitive to Ca limitation, which might contribute to the wider natural distribution of this species.


Subject(s)
Arabidopsis , Arabidopsis/metabolism , Calcium/metabolism , Phosphatidylethanolamines/metabolism , Membrane Lipids/metabolism , Poaceae/metabolism
15.
Chem Phys Lipids ; 257: 105349, 2023 11.
Article in English | MEDLINE | ID: mdl-37838345

ABSTRACT

BACKGROUND /OBJECTIVE: The phospholipid 1,2-dipalmitoyl-rac-glycero-3-phosphatidylethanolamine (PE) comprises two fatty acid chains: glycerol, phosphate, and ethanolamine. PE participates in critical cellular processes such as apoptosis and autophagy, which places it as a target for designing new therapeutic alternatives in diseases such as pulmonary fibrosis. Therefore, this study aimed obtain PE through a six-step organic synthesis pathway and determine its biological effect on apoptosis induction in normal human lung fibroblasts (NHLF). METHODOLOGY: The first step of the organic synthesis route began with protected glycerol that was benzylated at sn-3; later, it was deprotected to react with palmitic acid at sn-1, sn-2. To remove the benzyl group, hydrogenation was performed with palladium on carbon (Pd/C); subsequently, the molecule was phosphorylated in sn-3 with phosphorus oxychloride and triethylamine, and the intermediate was hydrolyzed in an acid medium to obtain the final compound. After PE synthesis, apoptosis assessment was performed: apoptosis was induced using exposure to annexin V-FITC/propidium iodide-ECD (PI) and quantified using flow cytometry. The experiments were performed in three NHLF cell lines with different concentrations of PE 10, 100 and 1000 µg/mL for 24 and 48 h. RESULTS: The PE obtained by organic synthesis presented a melting point of 190-192 °C, a purity of 95%, and a global yield of 8%. The evaluation of apoptosis with flow cytometry showed that at 24 h, exposure to PE 10, 100, and 1000 µg/mL induces early apoptosis in 19.42%- 25.54%, while late apoptosis was only significant P < 0.05 in cells challenged with 100 µg/mL PE. At 48 h, NHLF exposed to PE 10, 100, and 1000 µg/mL showed decreasing early apoptosis: 28.69-32.16%, 12.59-18.84%, and 10.91-12.61%, respectively. The rest of the NHLF exposed to PE showed late apoptosis: 12.03-16-42%, 11.04-15.94%, and 49.23-51.28%. Statistical analysis showed a significance P < 0.05 compared to the control. CONCLUSION: The organic synthesis route of PE allows obtaining rac-1,2-O-Dipalmitoyl-glycero-3-phosphoethanolamine (1), which showed an apoptotic effect on NHLF.


Subject(s)
Glycerol , Phosphatidylethanolamines , Humans , Phosphatidylethanolamines/metabolism , Apoptosis , Fibroblasts/metabolism , Lung/metabolism
16.
Free Radic Biol Med ; 208: 458-467, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37678654

ABSTRACT

Ferroptosis is a regulated form of cell death, the mechanism of which is still to be understood. 15-lipoxygenase (15LOX) complex with phosphatidylethanolamine (PE)-binding protein 1 (PEBP1) catalyzes the generation of pro-ferroptotic cell death signals, hydroperoxy-polyunsaturated PE. We focused on gaining new insights into the molecular basis of these pro-ferroptotic interactions using computational modeling and liquid chromatography-mass spectrometry experiments. Simulations of 15LOX-1/PEBP1 complex dynamics and interactions with lipids revealed that association with the membrane triggers a conformational change in the complex. This conformational change facilitates the access of stearoyl/arachidonoyl-PE (SAPE) substrates to the catalytic site. Furthermore, the binding of SAPE promotes tight interactions within the complex and induces further conformational changes that facilitate the oxidation reaction. The reaction yields two hydroperoxides as products, 15-HpETE-PE and 12-HpETE-PE, at a ratio of 5:1. A significant effect of PEBP1 is observed only on the predominant product. Moreover, combined experiments and simulations consistently demonstrate the significance of PEBP1 P112E mutation in generating ferroptotic cell death signals.


Subject(s)
Arachidonate 15-Lipoxygenase , Ferroptosis , Phosphatidylethanolamine Binding Protein , Cell Death , Ferroptosis/physiology , Oxidation-Reduction , Arachidonate 15-Lipoxygenase/metabolism , Arachidonate 15-Lipoxygenase/physiology , Phosphatidylethanolamine Binding Protein/metabolism , Phosphatidylethanolamine Binding Protein/physiology , Phosphatidylethanolamines/chemistry , Phosphatidylethanolamines/metabolism , Humans , Animals , Swine
18.
Biol Sex Differ ; 14(1): 66, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37770949

ABSTRACT

BACKGROUND: We have previously reported that maternal obesity reduces placental transport capacity for lysophosphatidylcholine-docosahexaenoic acid (LPC-DHA), a preferred form for transfer of DHA (omega 3) to the fetal brain, but only in male fetuses. Phosphatidylethanolamine (PE) and phosphatidylcholine (PC), have either sn-1 ester, ether or vinyl ether (plasmalogen) linkages to primarily unsaturated and monounsaturated fatty acids and DHA or arachidonic acid (ARA, omega 6) in the sn-2 position. Whether ether and plasmalogen PC and PE metabolism in placenta impacts transfer to the fetus is unexplored. We hypothesized that ether and plasmalogen PC and PE containing DHA and ARA are reduced in maternal-fetal unit in pregnancies complicated by obesity and these differences are dependent on fetal sex. METHODS: In maternal, umbilical cord plasma and placentas from obese women (11 female/5 male infants) and normal weight women (9 female/7 male infants), all PC and PE species containing DHA and ARA were analyzed by LC-MS/MS. Placental protein expression of enzymes involved in phospholipid synthesis, were determined by immunoblotting. All variables were compared between control vs obese groups and separated by fetal sex, in each sample using the Benjamini-Hochberg false discovery rate adjustment to account for multiple testing. RESULTS: Levels of ester PC containing DHA and ARA were profoundly reduced by 60-92% in male placentas of obese mothers, while levels of ether and plasmalogen PE containing DHA and ARA were decreased by 51-84% in female placentas. PLA2G4C abundance was lower in male placentas and LPCAT4 abundance was lower solely in females in obesity. In umbilical cord, levels of ester, ether and plasmalogen PC and PE with DHA were reduced by 43-61% in male, but not female, fetuses of obese mothers. CONCLUSIONS: We found a fetal sex effect in placental PE and PC ester, ether and plasmalogen PE and PC containing DHA in response to maternal obesity which appears to reflect an ability of female placentas to adapt to maintain optimal fetal DHA transfer in maternal obesity.


Docosahexaenoic acid (DHA) is a critical omega 3 long chain polyunsaturated fatty acid (LCPUFA) for fetal brain development. We have recently reported that maternal obesity reduces placental transport capacity for LysophosPhatidylCholine-DHA (LPC-DHA), a preferred form for transfer of DHA to the fetal brain, but only in male fetuses. Other important lipids, the plasmalogen phosphatidylcholine (PC) and phosphatidylethanolamine (PE) are considered DHA reservoirs, but its roles in the maternal­fetal unit are largely unexplored. We examined these lipid species in maternal and fetal circulation and in placental tissue to uncover potential novel roles for ether and plasmalogen lipids in the regulation of placenta delivery of these vital nutrients in pregnancies complicated by obesity depending of fetal sex. We demonstrated for the first time, that female fetuses of obese mothers decrease placental ether and plasmalogen PE containing DHA and arachidonic acid (ARA, omega 6), and show a high fetal­placental adaptability and placental reserve capacity that can maintain the PC-LCPUFA synthesis and the transfer of these crucial species to the fetus to preserve brain development. Our study also demonstrated that male fetuses, in response to maternal obesity, reduce the placental ester PC species containing DHA and ARA and reduce the ether and plasmalogen PE reservoir of DHA and ARA in fetal circulation. Our findings support a fetal sex effect in placental ester, ether and plasmalogen PE and PC containing DHA in response to maternal obesity which appears to reflect an ability of female placentas to adapt to maintain optimal fetal DHA transfer in maternal obesity.


Subject(s)
Obesity, Maternal , Placenta , Infant , Female , Humans , Male , Pregnancy , Placenta/metabolism , Phosphatidylcholines/metabolism , Phosphatidylethanolamines/metabolism , Plasmalogens/metabolism , Ether , Obesity, Maternal/complications , Obesity, Maternal/metabolism , Sex Characteristics , Chromatography, Liquid , Tandem Mass Spectrometry , Obesity/metabolism , Ethyl Ethers/metabolism , Ethers/metabolism
19.
ACS Chem Biol ; 18(8): 1891-1904, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37531659

ABSTRACT

N-Acyl-phosphatidylethanolamine hydrolyzing phospholipase D (NAPE-PLD) is a zinc metallohydrolase that hydrolyzes N-acyl-phosphatidylethanolamines (NAPEs) to form N-acyl-ethanolamines (NAEs) and phosphatidic acid. Several lines of evidence suggest that reduced NAPE-PLD activity could contribute to cardiometabolic diseases. For instance, NAPEPLD expression is reduced in human coronary arteries with unstable atherosclerotic lesions, defective efferocytosis is implicated in the enlargement of necrotic cores of these lesions, and NAPE-PLD products such as palmitoylethanolamide and oleoylethanolamide have been shown to enhance efferocytosis. Thus, enzyme activation mediated by a small molecule may serve as a therapeutic treatment for cardiometabolic diseases. As a proof-of-concept study, we sought to identify small molecule activators of NAPE-PLD. High-throughput screening followed by hit validation and primary lead optimization studies identified a series of benzothiazole phenylsulfonyl-piperidine carboxamides that variably increased activity of both mouse and human NAPE-PLD. From this set of small molecules, two NAPE-PLD activators (VU534 and VU533) were shown to increase efferocytosis by bone-marrow derived macrophages isolated from wild-type mice, while efferocytosis was significantly reduced in Napepld-/- BMDM or after Nape-pld inhibition. Together, these studies demonstrate an essential role for NAPE-PLD in the regulation of efferocytosis and the potential value of NAPE-PLD activators as a strategy to treat cardiometabolic diseases.


Subject(s)
Cardiovascular Diseases , Phospholipase D , Mice , Humans , Animals , Phosphatidylethanolamines/metabolism , Brain/metabolism , Macrophages/metabolism , Cardiovascular Diseases/metabolism
20.
Histochem Cell Biol ; 160(4): 279-291, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37477836

ABSTRACT

Toxoplasma gondii is a highly prevalent obligate apicomplexan parasite that is important in clinical and veterinary medicine. It is known that glycerophospholipids phosphatidylserine (PtdSer) and phosphatidylethanolamine (PtdEtn), especially their expression levels and flip-flops between cytoplasmic and exoplasmic leaflets, in the membrane of T. gondii play important roles in efficient growth in host mammalian cells, but their distributions have still not been determined because of technical difficulties in studying intracellular lipid distribution at the nanometer level. In this study, we developed an electron microscopy method that enabled us to determine the distributions of PtdSer and PtdEtn in individual leaflets of cellular membranes by using quick-freeze freeze-fracture replica labeling. Our findings show that PtdSer and PtdEtn are asymmetrically distributed, with substantial amounts localized at the luminal leaflet of the inner membrane complex (IMC), which comprises flattened vesicles located just underneath the plasma membrane (see Figs. 2B and 7). We also found that PtdSer was absent in the cytoplasmic leaflet of the inner IMC membrane, but was present in considerable amounts in the cytoplasmic leaflet of the middle IMC membrane, suggesting a barrier-like mechanism preventing the diffusion of PtdSer in the cytoplasmic leaflets of the two membranes. In addition, the expression levels of both PtdSer and PtdEtn in the luminal leaflet of the IMC membrane in the highly virulent RH strain were higher than those in the less virulent PLK strain. We also found that the amount of glycolipid GM3, a lipid raft component, was higher in the RH strain than in the PLK strain. These results suggest a correlation between lipid raft maintenance, virulence, and the expression levels of PtdSer and PtdEtn in T. gondii.


Subject(s)
Phosphatidylserines , Toxoplasma , Animals , Phosphatidylserines/metabolism , Phosphatidylethanolamines/metabolism , Toxoplasma/metabolism , Cell Membrane/metabolism , Microscopy, Electron , Mammals/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...