Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.631
Filter
1.
Biochim Biophys Acta Gen Subj ; 1868(8): 130649, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38823731

ABSTRACT

The phosphoinositide 3-kinase (PI3K) is involved in regulation of multiple intracellular processes. Although the inhibitory analysis is generally employed for validating a physiological role of PI3K, increasing body of evidence suggests that PI3K inhibitors can exhibit PI3K-unrelated activity as well. Here we studied Ca2+ signaling initiated by aminergic agonists in a variety of different cells and analyzed effects of the PI3K inhibitor PI828 on cell responsiveness. It turned out that PI828 inhibited Ca2+ transients elicited by acetylcholine (ACh), histamine, and serotonin, but did not affect Ca2+ responses to norepinephrine and ATP. Another PI3K inhibitor wortmannin negligibly affected Ca2+ signaling initiated by any one of the tested agonists. Using the genetically encoded PIP3 sensor PH(Akt)-Venus, we confirmed that both PI828 and wortmannin effectively inhibited PI3K and ascertained that this kinase negligibly contributed to ACh transduction. These findings suggested that PI828 inhibited Ca2+ responses to aminergic agonists tested, involving an unknown cellular mechanism unrelated to the PI3K inhibition. Complementary physiological experiments provided evidence that PI828 could inhibit Ca2+ signals induced by certain agonists, by acting extracellularly, presumably, through their surface receptors. For the muscarinic M3 receptor, this possibility was verified with molecular docking and molecular dynamics. As demonstrated with these tools, wortmannin could be bound in the extracellular vestibule at the muscarinic M3 receptor but this did not preclude binding of ACh to the M3 receptor followed by its activation. In contrast, PI828 could sterically block the passage of ACh into the allosteric site, preventing activation of the muscarinic M3 receptor.


Subject(s)
Calcium Signaling , Calcium , Phosphoinositide-3 Kinase Inhibitors , Humans , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Calcium/metabolism , Calcium Signaling/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Animals , Wortmannin/pharmacology , Receptors, G-Protein-Coupled/metabolism , Acetylcholine/metabolism , Acetylcholine/pharmacology , HEK293 Cells
2.
Mol Biol Rep ; 51(1): 698, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811424

ABSTRACT

BACKGROUND: Existing investigations suggest that the blockade of phosphoinositide 3-kinase (PI3K) activity contributes to inflammatory solution in allergic asthma, but whether this inhibition directly attenuates neutrophilic airway inflammation in vivo is still unclear. We explored the pharmacological effects of LY294002, a specific inhibitor of PI3K on the progression of neutrophilic airway inflammation and investigated the underlying mechanism. METHODS AND RESULTS: Female C57BL/6 mice were intranasally sensitized with ovalbumin (OVA) together with lipopolysaccharide (LPS) on days 0 and 6, and challenged with OVA on days 14-17 to establish a neutrophilic airway disease model. In the challenge phase, a subset of mice was treated intratracheally with LY294002. We found that treatment of LY294002 attenuates clinic symptoms of inflammatory mice. Histological studies showed that LY294002 significantly inhibited inflammatory cell infiltration and mucus production. The treatment also significantly inhibited OVA-LPS induced increases in inflammatory cell counts, especially neutrophil counts, and IL-17 levels in bronchoalveolar lavage fluid (BALF). LY294002 treated mice exhibited significantly increased IL-10 levels in BALF compared to the untreated mice. In addition, LY294002 reduced the plasma concentrations of IL-6 and IL-17. The anti-inflammatory effects of LY29402 were correlated with the downregulation of NLRP3 inflammasome. CONCLUSIONS: Our findings suggested that LY294002 as a potential pharmacological target for neutrophilic airway inflammation.


Subject(s)
Asthma , Bronchoalveolar Lavage Fluid , Chromones , Disease Models, Animal , Inflammasomes , Lipopolysaccharides , Mice, Inbred C57BL , Morpholines , NLR Family, Pyrin Domain-Containing 3 Protein , Neutrophils , Ovalbumin , Phosphatidylinositol 3-Kinases , Phosphoinositide-3 Kinase Inhibitors , Animals , Asthma/drug therapy , Asthma/chemically induced , Asthma/metabolism , Asthma/immunology , Lipopolysaccharides/pharmacology , Mice , Inflammasomes/metabolism , Inflammasomes/drug effects , Female , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Chromones/pharmacology , Morpholines/pharmacology , Neutrophils/drug effects , Neutrophils/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Lung/pathology , Lung/drug effects , Lung/metabolism , Interleukin-17/metabolism
3.
Cell Death Dis ; 15(5): 373, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811535

ABSTRACT

The targeted elimination of radio- or chemotherapy-induced senescent cells by so-called senolytic substances represents a promising approach to reduce tumor relapse as well as therapeutic side effects such as fibrosis. We screened an in-house library of 178 substances derived from marine sponges, endophytic fungi, and higher plants, and determined their senolytic activities towards DNA damage-induced senescent HCT116 colon carcinoma cells. The Pan-PI3K-inhibitor wortmannin and its clinical derivative, PX-866, were identified to act as senolytics. PX-866 potently induced apoptotic cell death in senescent HCT116, MCF-7 mammary carcinoma, and A549 lung carcinoma cells, independently of whether senescence was induced by ionizing radiation or by chemotherapeutics, but not in proliferating cells. Other Pan-PI3K inhibitors, such as the FDA-approved drug BAY80-6946 (Copanlisib, Aliqopa®), also efficiently and specifically eliminated senescent cells. Interestingly, only the simultaneous inhibition of both PI3K class I alpha (with BYL-719 (Alpelisib, Piqray®)) and delta (with CAL-101 (Idelalisib, Zydelig®)) isoforms was sufficient to induce senolysis, whereas single application of these inhibitors had no effect. On the molecular level, inhibition of PI3Ks resulted in an increased proteasomal degradation of the CDK inhibitor p21WAF1/CIP1 in all tumor cell lines analyzed. This led to a timely induction of apoptosis in senescent tumor cells. Taken together, the senolytic properties of PI3K-inhibitors reveal a novel dimension of these promising compounds, which holds particular potential when employed alongside DNA damaging agents in combination tumor therapies.


Subject(s)
Cellular Senescence , Cyclin-Dependent Kinase Inhibitor p21 , Humans , Cellular Senescence/drug effects , Cyclin-Dependent Kinase Inhibitor p21/metabolism , HCT116 Cells , Proteasome Endopeptidase Complex/metabolism , Apoptosis/drug effects , Phosphoinositide-3 Kinase Inhibitors/pharmacology , MCF-7 Cells , Proteolysis/drug effects , A549 Cells , Wortmannin/pharmacology , Senotherapeutics/pharmacology , Class I Phosphatidylinositol 3-Kinases/metabolism , Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Class I Phosphatidylinositol 3-Kinases/genetics , DNA Damage/drug effects , Pyrimidines , Quinazolines
4.
BMC Cardiovasc Disord ; 24(1): 280, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811893

ABSTRACT

BACKGROUND: Myocardial ischemia-reperfusion injury (I/RI) is a major cause of perioperative cardiac-related adverse events and death. Studies have shown that sevoflurane postconditioning (SpostC), which attenuates I/R injury and exerts cardioprotective effects, regulates mitochondrial dynamic balance via HIF-1α, but the exact mechanism is unknown. This study investigates whether the PI3K/AKT pathway in SpostC regulates mitochondrial dynamic balance by mediating HIF-1α, thereby exerting myocardial protective effects. METHODS: The H9C2 cardiomyocytes were cultured to establish the hypoxia-reoxygenation (H/R) model and randomly divided into 4 groups: Control group, H/R group, sevoflurane postconditioning (H/R + SpostC) group and PI3K/AKT blocker (H/R + SpostC + LY) group. Cell survival rate was determined by CCK-8; Apoptosis rate was determined by flow cytometry; mitochondrial membrane potential was evaluated by Mito Tracker™ Red; mRNA expression levels of AKT, HIF-1α, Opa1and Drp1 were detected by quantitative real-time polymerase chain reaction (qRT-PCR); Western Blot assay was used to detect the protein expression levels of AKT, phosphorylated AKT (p-AKT), HIF-1α, Opa1 and Drp1. RESULTS: Compared with the H/R group, the survival rate of cardiomyocytes in the H/R + SpostC group increased, the apoptosis rate decreased and the mitochondrial membrane potential increased. qRT-PCR showed that the mRNA expression of HIF-1α and Opa1 were higher in the H/R + SpostC group compared with the H/R group, whereas the transcription level of Drp1 was lower in the H/R + SpostC group. In the H/R + SpostC + LY group, the mRNA expression of HIF-1α was lower than the H/R + SpostC group. There was no difference in the expression of Opa1 mRNA between the H/R group and the H/R + SpostC + LY group. WB assay results showed that compared with the H/R group, the protein expression levels of HIF-1α, Opa1, P-AKT were increased and Drp1 protein expression levels were decreased in the H/R + SpostC group. HIF-1α, P-AKT protein expression levels were decreased in the H/R + SpostC + LY group compared to the H/R + SpostC group. CONCLUSION: SpostC mediates HIF-1α-regulated mitochondrial fission and fusion-related protein expression to maintain mitochondrial dynamic balance by activating the PI3K/AKT pathway and increasing AKT phosphorylation, thereby attenuating myocardial I/R injury.


Subject(s)
Apoptosis , Hypoxia-Inducible Factor 1, alpha Subunit , Membrane Potential, Mitochondrial , Mitochondria, Heart , Mitochondrial Dynamics , Myocardial Reperfusion Injury , Myocytes, Cardiac , Phosphatidylinositol 3-Kinase , Proto-Oncogene Proteins c-akt , Sevoflurane , Signal Transduction , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Proto-Oncogene Proteins c-akt/metabolism , Animals , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/enzymology , Sevoflurane/pharmacology , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/enzymology , Mitochondrial Dynamics/drug effects , Cell Line , Rats , Apoptosis/drug effects , Phosphatidylinositol 3-Kinase/metabolism , Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Mitochondria, Heart/enzymology , Membrane Potential, Mitochondrial/drug effects , Cell Hypoxia , Dynamins/metabolism , Dynamins/genetics , GTP Phosphohydrolases/metabolism , GTP Phosphohydrolases/genetics , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Cytoprotection , Ischemic Postconditioning , Phosphorylation
5.
Cancer Res Commun ; 4(6): 1430-1440, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38717161

ABSTRACT

The PI3K pathway regulates essential cellular functions and promotes chemotherapy resistance. Activation of PI3K pathway signaling is commonly observed in triple-negative breast cancer (TNBC). However previous studies that combined PI3K pathway inhibitors with taxane regimens have yielded inconsistent results. We therefore set out to examine whether the combination of copanlisib, a clinical grade pan-PI3K inhibitor, and eribulin, an antimitotic chemotherapy approved for taxane-resistant metastatic breast cancer, improves the antitumor effect in TNBC. A panel of eight TNBC patient-derived xenograft (PDX) models was tested for tumor growth response to copanlisib and eribulin, alone or in combination. Treatment-induced signaling changes were examined by reverse phase protein array, immunohistochemistry (IHC) and 18F-fluorodeoxyglucose PET (18F-FDG PET). Compared with each drug alone, the combination of eribulin and copanlisib led to enhanced tumor growth inhibition, which was observed in both eribulin-sensitive and -resistant TNBC PDX models, regardless of PI3K pathway alterations or PTEN status. Copanlisib reduced PI3K signaling and enhanced eribulin-induced mitotic arrest. The combination enhanced induction of apoptosis compared with each drug alone. Interestingly, eribulin upregulated PI3K pathway signaling in PDX tumors, as demonstrated by increased tracer uptake by 18F-FDG PET scan and AKT phosphorylation by IHC. These changes were inhibited by the addition of copanlisib. These data support further clinical development for the combination of copanlisib and eribulin and led to a phase I/II trial of copanlisib and eribulin in patients with metastatic TNBC. SIGNIFICANCE: In this research, we demonstrated that the pan-PI3K inhibitor copanlisib enhanced the cytotoxicity of eribulin in a panel of TNBC PDX models. The improved tumor growth inhibition was irrespective of PI3K pathway alteration and was corroborated by the enhanced mitotic arrest and apoptotic induction observed in PDX tumors after combination therapy compared with each drug alone. These data provide the preclinical rationale for the clinical testing in TNBC.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Furans , Ketones , Pyrimidines , Triple Negative Breast Neoplasms , Xenograft Model Antitumor Assays , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Ketones/pharmacology , Ketones/administration & dosage , Ketones/therapeutic use , Animals , Furans/pharmacology , Furans/administration & dosage , Furans/therapeutic use , Humans , Female , Mice , Pyrimidines/pharmacology , Pyrimidines/administration & dosage , Pyrimidines/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cell Line, Tumor , Apoptosis/drug effects , Quinazolines/pharmacology , Quinazolines/administration & dosage , Quinazolines/therapeutic use , Signal Transduction/drug effects , Cell Proliferation/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Polyether Polyketides
6.
Semin Hematol ; 61(2): 100-108, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38749798

ABSTRACT

Aberrant signal transduction through the B cell receptor (BCR) plays a critical role in the pathogenesis of chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL). BCR-dependent signaling is necessary for the growth and survival of neoplastic cells, making inhibition of down-stream pathways a logical therapeutic strategy. Indeed, selective inhibitors against Bruton's tyrosine kinase (BTK) and phosphoinositide 3-kinase (PI3K) have been shown to induce high rates of response in CLL and other B cell lymphomas. In particular, the development of BTK inhibitors revolutionized the treatment approach to CLL, demonstrating long-term efficacy. While BTK inhibitors are widely used for multiple lines of treatment, PI3K inhibitors are much less commonly utilized, mainly due to toxicities. CLL remains an incurable disease and effective treatment options after relapse or development of TKI resistance are greatly needed. This review provides an overview of BCR signaling, a summary of the current therapeutic landscape, and a discussion of the ongoing trials targeting BCR-associated kinases.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase , Leukemia, Lymphocytic, Chronic, B-Cell , Protein Kinase Inhibitors , Receptors, Antigen, B-Cell , Signal Transduction , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Signal Transduction/drug effects , Receptors, Antigen, B-Cell/metabolism , Receptors, Antigen, B-Cell/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase/metabolism , Molecular Targeted Therapy , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Phosphoinositide-3 Kinase Inhibitors/pharmacology
7.
Antiviral Res ; 227: 105904, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38729306

ABSTRACT

Despite considerable progress in developing vaccines and antivirals to combat COVID-19, the rapid mutations of the SARS-CoV-2 genome have limited the durability and efficacy of the current vaccines and therapeutic interventions. Hence, it necessitates the development of novel therapeutic approaches or repurposing existing drugs that target either viral life cycle, host factors, or both. Here, we report that SRX3177, a potent triple-activity CDK4/6-PI3K-BET inhibitor, blocks replication of the SARS-CoV-2 Omicron variant with IC50 values at sub-micromolar concentrations without any impact on the cell proliferation of Calu-3 cells at and below its IC50 concentration. When SRX3177 is combined with EIDD-1931 (active moiety of a small-molecule prodrug Molnupiravir) or MU-UNMC-2 (a SARS-CoV-2 entry inhibitor) at a fixed doses matrix, a synergistic effect was observed, leading to the significant reduction in the dose of the individual compounds to achieve similar inhibition of SARS-CoV-2 replication. Herein, we report that the combination of SRX3177/MPV or SRX3177/UM-UNMC-2 has the potential for further development as a combinational therapy against SARS-CoV-2 and in any future outbreak of beta coronavirus.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , SARS-CoV-2 , Virus Replication , SARS-CoV-2/drug effects , Humans , Antiviral Agents/pharmacology , Virus Replication/drug effects , Cytidine/analogs & derivatives , Cytidine/pharmacology , Hydroxylamines/pharmacology , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Virus Internalization/drug effects , Chlorocebus aethiops , Animals , Leucine/analogs & derivatives , Leucine/pharmacology , Vero Cells , Drug Synergism , Cell Line , Cyclin-Dependent Kinase 4/antagonists & inhibitors , COVID-19/virology
8.
Toxicol Appl Pharmacol ; 488: 116979, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797265

ABSTRACT

Hepatotoxicity is the main off-target effect of methotrexate (MTX) limiting its effective clinical use. Besides, MDA-MB231 breast cancer cells show chemoresistance, partly via PI3K/AKT pathway. Therefore, we investigated the ameliorative potentials of the PI3K inhibitor, alpelisib (ALP) on MTX-induced hepatotoxicity (in vivo) and the restraining potentials of ALP on MDA-MB231 chemoresistance to MTX (in vitro). Twenty-eight male BALB/c mice were divided into 4 groups. In treatment groups, mice were administered ALP (2.5 and 5 mg/kg) for 5 days and MTX (20 mg/kg) from day 2 till day 5. The results showed that ALP restored hepatic architecture, reduced immune cell infiltration (F4/80, Ly6G and MPO) and repressed the rise in liver enzymes (AST and ALT) induced by MTX. Additionally, ALP rectified the MTX-induced disruption of cellular oxidant status by boosting antioxidant defense systems (HO-1 and GSH) and repressing lipid peroxidation (MDA and 4-HNE). Finally, ALP curbed MTX-induced hepatocyte apoptosis (NF-κB and BAX) and shifted the cytokine milieu away from inflammation (IL-17, IL-22, IL-6 and IL- 10). The results of the in vitro experiments revealed that ALP alone and in combination with MTX, synergistically, reduced cancer cell viability (MTT assay), migration (wound healing assay) and their capacity to establish colonies (colony formation assay) as compared to MTX alone. RT-PCR revealed the antiproliferative (Bcl-2) and proapoptotic (BAX) potentials of ALP and ALP/MTX combination especially after 24 h. In conclusion, targeting PI3K/AKT pathway is a promising strategy in triple negative breast cancer patients by ameliorating hepatotoxicity and restraining chemoresistance to chemotherapy.


Subject(s)
Chemical and Drug Induced Liver Injury , Methotrexate , Mice, Inbred BALB C , Phosphoinositide-3 Kinase Inhibitors , Triple Negative Breast Neoplasms , Animals , Methotrexate/toxicity , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/prevention & control , Male , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Mice , Humans , Cell Line, Tumor , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Apoptosis/drug effects , Drug Synergism , Signal Transduction/drug effects , Female , Antimetabolites, Antineoplastic/toxicity , Liver/drug effects , Liver/pathology , Liver/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Oxidative Stress/drug effects , Proto-Oncogene Proteins c-akt/metabolism
9.
J Med Chem ; 67(11): 9628-9644, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38754045

ABSTRACT

Multiple sclerosis (MS) is a chronic autoimmune disorder of the central nervous system and the unmet need for MS treatment demands new therapeutic development. Particularly, PI3Kδ is a high-value target for autoimmune disease, while the investigation of PI3Kδ inhibitors for MS therapy is relatively scarce. Herein, we report a novel class of azaindoles as PI3Kδ inhibitors for MS treatment. Compound 31, designed via nitrogen bioisosterism, displayed excellent PI3Kδ inhibitory activity and selectivity. In vitro assay showed that 31 exhibited superior activity on T lymphocytes to inhibit the proliferation of CD4+, CD8+, and CD3+ T cells. In the experimental autoimmune encephalomyelitis (EAE) model, 31 showed a comparable therapeutical efficacy with Dexamethasone to significantly ameliorate EAE symptoms. Mechanistic studies showed that compound 31 could significantly inhibit the PI3K/AKT/mTOR signaling pathway and inhibited T-cell proliferation and differentiation. Overall, this work provides a new structural PI3Kδ inhibitor and a new vision for MS therapy.


Subject(s)
Class I Phosphatidylinositol 3-Kinases , Encephalomyelitis, Autoimmune, Experimental , Indoles , Multiple Sclerosis , Phosphoinositide-3 Kinase Inhibitors , Animals , Multiple Sclerosis/drug therapy , Humans , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors/chemical synthesis , Phosphoinositide-3 Kinase Inhibitors/chemistry , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Class I Phosphatidylinositol 3-Kinases/metabolism , Indoles/pharmacology , Indoles/chemistry , Indoles/chemical synthesis , Indoles/therapeutic use , Mice , Cell Proliferation/drug effects , Aza Compounds/chemistry , Aza Compounds/pharmacology , Aza Compounds/chemical synthesis , Structure-Activity Relationship , T-Lymphocytes/drug effects , Drug Discovery , Mice, Inbred C57BL , Female , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/therapeutic use
10.
Clin Transl Med ; 14(5): e1655, 2024 May.
Article in English | MEDLINE | ID: mdl-38711203

ABSTRACT

BACKGROUND: Uterine leiomyosarcomas (uLMS) are aggressive tumours with poor prognosis and limited treatment options. Although immune checkpoint blockade (ICB) has proven effective in some 'challenging-to-treat' cancers, clinical trials showed that uLMS do not respond to ICB. Emerging evidence suggests that aberrant PI3K/mTOR signalling can drive resistance to ICB. We therefore explored the relevance of the PI3K/mTOR pathway for ICB treatment in uLMS and explored pharmacological inhibition of this pathway to sensitise these tumours to ICB. METHODS: We performed an integrated multiomics analysis based on TCGA data to explore the correlation between PI3K/mTOR dysregulation and immune infiltration in 101 LMS. We assessed response to PI3K/mTOR inhibitors in immunodeficient and humanized uLMS patient-derived xenografts (PDXs) by evaluating tumour microenvironment modulation using multiplex immunofluorescence. We explored response to single-agent and a combination of PI3K/mTOR inhibitors with PD-1 blockade in humanized uLMS PDXs. We mapped intratumoural dynamics using single-cell RNA/TCR sequencing of serially collected biopsies. RESULTS: PI3K/mTOR over-activation (pS6high) associated with lymphocyte depletion and wound healing immune landscapes in (u)LMS, suggesting it contributes to immune evasion. In contrast, PI3K/mTOR inhibition induced profound tumour microenvironment remodelling in an ICB-resistant humanized uLMS PDX model, fostering adaptive anti-tumour immune responses. Indeed, PI3K/mTOR inhibition induced macrophage repolarisation towards an anti-tumourigenic phenotype and increased antigen presentation on dendritic and tumour cells, but also promoted infiltration of PD-1+ T cells displaying an exhausted phenotype. When combined with anti-PD-1, PI3K/mTOR inhibition led to partial or complete tumour responses, whereas no response to single-agent anti-PD-1 was observed. Combination therapy reinvigorated exhausted T cells and induced clonal hyper-expansion of a cytotoxic CD8+ T-cell population supported by a CD4+ Th1 niche. CONCLUSIONS: Our findings indicate that aberrant PI3K/mTOR pathway activation contributes to immune escape in uLMS and provides a rationale for combining PI3K/mTOR inhibition with ICB for the treatment of this patient population.


Subject(s)
Leiomyosarcoma , Tumor Microenvironment , Uterine Neoplasms , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Leiomyosarcoma/drug therapy , Humans , Female , Uterine Neoplasms/drug therapy , TOR Serine-Threonine Kinases/antagonists & inhibitors , Phosphatidylinositol 3-Kinases/metabolism , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , MTOR Inhibitors/pharmacology , MTOR Inhibitors/therapeutic use , Animals , Mice , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors/therapeutic use
11.
BMC Vet Res ; 20(1): 233, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38807154

ABSTRACT

Canine mammary gland tumors (MGT) have a poor prognosis in intact female canines, posing a clinical challenge. This study aimed to establish novel canine mammary cancer cell lines from primary tumors and characterize their cellular and molecular features to find potential therapeutic drugs. The MGT cell lines demonstrated rapid cell proliferation and colony formation in an anchorage-independent manner. Vimentin and α-SMA levels were significantly elevated in MGT cell lines compared to normal canine kidney (MDCK) cells, while CDH1 expression was either significantly lower or not detected at all, based on quantitative real-time PCR (qRT-PCR) analysis. Functional annotation and enrichment analysis revealed that epithelial-mesenchymal transition (EMT) phenotypes and tumor-associated pathways, particularly the PI3K/Akt signaling pathway, were upregulated in MGT cells. BYL719 (Alpelisib), a PI3K inhibitor, was also examined for cytotoxicity on the MGT cell lines. The results show that BYL719 can significantly inhibit the proliferation of MGT cell lines in vitro. Overall, our findings suggest that the MGT cell lines may be valuable for future studies on the development, progression, metastasis, and management of tumors.


Subject(s)
Dog Diseases , Mammary Neoplasms, Animal , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Animals , Dogs , Female , Cell Line, Tumor , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Dog Diseases/drug therapy , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Cell Proliferation/drug effects , Epithelial-Mesenchymal Transition/drug effects , Signal Transduction , Phosphoinositide-3 Kinase Inhibitors/pharmacology
12.
Int J Mol Sci ; 25(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38791602

ABSTRACT

The prognosis for metastatic gastric adenocarcinoma (mGAC) remains poor. Gene alterations in receptor tyrosine kinases (RTKs) such as epidermal growth factor receptor (EGFR) and their downstream effectors including catalytic subunit alpha of the phosphatidylinositol 3-kinase (PIK3CA) are common in mGAC. Targeted RTK and phosphatidylinositol-3-kinase (PI3K) treatments have demonstrated clinical benefits in other solid tumours and are key potential targets for clinical development against mGAC given the presence of recurrent alterations in these pathways. Furthermore, combination RTK/PI3K treatments may overcome compensatory mechanisms that arise using monotherapies, leading to improved patient outcomes. Herein, we investigated RTK/PI3K single and combination drug responses against our unique human mGAC-derived PIK3CA gain-of-function mutant, human epidermal growth factor receptor 2 (HER2)-negative, EGFR-expressing circulating tumour cell line, UWG02CTC, under two- and three-dimensional culture conditions to model different stages of metastasis. UWG02CTCs were highly responsive to the PI3K p110α-subunit targeted drugs PIK-75 (IC50 = 37.0 ± 11.1 nM) or alpelisib (7.05 ± 3.7 µM). Drug sensitivities were significantly increased in 3D conditions. Compensatory MAPK/ERK pathway upregulation by PI3K/Akt suppression was overcome by combination treatment with the EGFR inhibitor gefitinib, which was strongly synergistic. PIK-75 plus gefitinib significantly impaired UWG02CTC invasion in an organotypic assay. In conclusion, UWG02CTCs are a powerful ex vivo mGAC drug responsiveness model revealing EGFR/PI3K-targeted drugs as a promising combination treatment option for HER2-negative, RAS wild-type mGAC patients.


Subject(s)
Adenocarcinoma , Class I Phosphatidylinositol 3-Kinases , ErbB Receptors , Neoplastic Cells, Circulating , Signal Transduction , Stomach Neoplasms , Humans , Stomach Neoplasms/pathology , Stomach Neoplasms/drug therapy , Stomach Neoplasms/metabolism , Stomach Neoplasms/genetics , ErbB Receptors/metabolism , Signal Transduction/drug effects , Adenocarcinoma/drug therapy , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Adenocarcinoma/genetics , Cell Line, Tumor , Class I Phosphatidylinositol 3-Kinases/metabolism , Class I Phosphatidylinositol 3-Kinases/genetics , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/drug effects , Neoplastic Cells, Circulating/pathology , Phosphatidylinositol 3-Kinases/metabolism , Neoplasm Metastasis , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Thiazoles
13.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791198

ABSTRACT

MTX-211 is a first-in-class dual inhibitor of epidermal growth factor receptor (EGFR) and phosphoinositide-3 kinase (PI3K) signaling pathways with a compelling pharmaceutical profile and could enhance the effectiveness of mitogen-activated protein kinase kinase (MEK) inhibitor therapy in colorectal tumors with KRAS mutations. However, the specific mechanisms contributing to the acquired resistance to MTX-211 in human cancers remain elusive. Here, we discovered that the overexpression of the ATP-binding cassette (ABC) drug transporter ABCG2, a prevalent mechanism associated with multidrug resistance (MDR), could diminish the effectiveness of MTX-211 in human cancer cells. We showed that the drug efflux activity of ABCG2 substantially decreased the intracellular accumulation of MTX-211 in cancer cells. As a result, the cytotoxicity and effectiveness of MTX-211 in suppressing the activation of the EGFR and PI3K pathways were significantly attenuated in cancer cells overexpressing ABCG2. Moreover, the enhancement of the MTX-211-stimulated ATPase activity of ABCG2 and the computational molecular docking analysis illustrating the binding of MTX-211 to the substrate-binding sites of ABCG2 offered a further indication for the interaction between MTX-211 and ABCG2. In summary, our findings indicate that MTX-211 acts as a substrate for ABCG2, underscoring the involvement of ABCG2 in the emergence of resistance to MTX-211. This finding carries clinical implications and merits further exploration.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2 , Drug Resistance, Neoplasm , ErbB Receptors , Neoplasm Proteins , Humans , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , ErbB Receptors/metabolism , ErbB Receptors/antagonists & inhibitors , Drug Resistance, Neoplasm/drug effects , Neoplasm Proteins/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/antagonists & inhibitors , Cell Line, Tumor , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Molecular Docking Simulation , Signal Transduction/drug effects , Protein Kinase Inhibitors/pharmacology , Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/genetics , Neoplasms/pathology
15.
Clin Trials ; 21(3): 322-330, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38591582

ABSTRACT

Given that novel anticancer therapies have different toxicity profiles and mechanisms of action, it is important to reconsider the current approaches for dose selection. In an effort to move away from considering the maximum tolerated dose as the optimal dose, the Food and Drug Administration Project Optimus points to the need of incorporating long-term toxicity evaluation, given that many of these novel agents lead to late-onset or cumulative toxicities and there are no guidelines on how to handle them. Numerous methods have been proposed to handle late-onset toxicities in dose-finding clinical trials. A summary and comparison of these methods are provided. Moreover, using PI3K inhibitors as a case study, we show how late-onset toxicity can be integrated into the dose-optimization strategy using current available approaches. We illustrate a re-design of this trial to compare the approach to those that only consider early toxicity outcomes and disregard late-onset toxicities. We also provide proposals going forward for dose optimization in early development of novel anticancer agents with considerations for late-onset toxicities.


Subject(s)
Antineoplastic Agents , Dose-Response Relationship, Drug , Maximum Tolerated Dose , Neoplasms , Humans , Antineoplastic Agents/adverse effects , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Research Design , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Phosphoinositide-3 Kinase Inhibitors/administration & dosage
16.
Bioorg Chem ; 147: 107323, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583254

ABSTRACT

Phosphatidylinositide-3-kinase (PI3K) and the mammalian target of rapamycin (mTOR) have recently been identified as potential cancer targets. In our work, a new family of quinoline analogues was designed, developed, and evaluated as dual inhibitors of PI3Kδ/mTOR. The preliminary biological activity analysis led to the discovery of the lead compounds 5h and 5e. Compounds 5h and 5e exhibited excellent anti-tumor potency with IC50 of 0.26 µM and 0.34 µM against Ramos cells, respectively. Importantly, based on the enzymatic activity assay results, compounds 5h and 5e were identified as dual inhibitors of PI3Kδ and mTOR, with IC50 values of 0.042 µM and 0.056 µM for PI3Kδ and 0.059 µM and 0.073 µM for mTOR, respectively. Furthermore, these compounds showed superior selectivity for blocking PI3Kδ compared to other PI3K isoforms (α, ß, and γ), supporting the concept of developing inhibitors that specifically target PI3Kδ/mTOR. The most effective compound 5h was chosen for additional biological testing. At a low dose of 0.5 µM, a western blot investigation confirmed the anticancer effects by inhibiting the PAM cascade, which in turn reduced downstream biomarkers pAkt (Ser473), pAkt (Thr308), and pRPS6 (Ser235/236). Furthermore, it increased apoptosis at the early (10.03 times) and late (17.95 times) stages in the Annexin-V assay as compared to the standard. In addition, the expression of p53, caspase-3, caspase-9, and the Bax/BCl-2 ratio were all significantly increased by compound 5h in the ELISA assay. Based on these results, it appears that 5h may activate the intrinsic apoptosis pathway, which in turn triggers cell death. Furthermore, the anticancer effects could be attributed to the inhibition of PI3Kδ/mTOR, as shown by docking interactions. Lastly, it demonstrated improved in vitro metabolic stability and passed the in silico ADMET/drug-likeness test. This profile recommends 5h for future in vivo PK-PD and efficacy investigations in animal cancer models.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor , Phosphoinositide-3 Kinase Inhibitors , Quinolines , TOR Serine-Threonine Kinases , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , Structure-Activity Relationship , Molecular Structure , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors/chemical synthesis , Phosphoinositide-3 Kinase Inhibitors/chemistry , Cell Proliferation/drug effects , Quinolines/pharmacology , Quinolines/chemistry , Quinolines/chemical synthesis , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , MTOR Inhibitors/pharmacology , MTOR Inhibitors/chemical synthesis , MTOR Inhibitors/chemistry , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases/metabolism
18.
Blood Adv ; 8(12): 3092-3108, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38593221

ABSTRACT

ABSTRACT: Activated phosphoinositide 3-kinase delta (PI3Kδ) syndrome (APDS) is an inborn error of immunity that manifests as immune deficiency and dysregulation; symptoms include frequent infections and lymphoproliferation. In our dose-finding and phase 3 placebo-controlled trials, treatment with the selective PI3Kδ inhibitor leniolisib reduced lymphoproliferation and normalized lymphocyte subsets. Here, we present 6 years of follow-up from the 6 adult patients in the original dose-finding trial receiving leniolisib. We used data from the ongoing open-label extension study, which was supplemented at later time points by investigators, including health-related quality of life (HRQoL) assessed through a clinician-reported questionnaire. We observed improvements in HRQoL: 5 of 6 patients experienced an increase in physical capabilities and socialization, and a decrease in prescribed medications. Immune subsets improved in all patients: mean transitional B-cell levels decreased from 38.17% to 2.47% and the CD4:CD8 T-cell ratio normalized to 1.11. Manifestations seen before and within the first year of leniolisib exposure, such as infections and gastrointestinal conditions, attenuated after year 2, with few new conditions emerging out to year 6. Thrombocytopenia or lymphopenia remained present in half of patients at year 6. Of 83 adverse events through year 5, 90.36% were grade 1; none were grade 4/5 nor deemed leniolisib related. Collectively, we saw an enhancement in HRQoL as well as durable changes in lymphocyte subsets and clinical manifestations, further supporting the use of leniolisib as a long-term therapeutic option for the treatment of APDS. This trial was registered at www.ClinicalTrials.gov as #NCT02859727.


Subject(s)
Class I Phosphatidylinositol 3-Kinases , Primary Immunodeficiency Diseases , Humans , Adult , Male , Female , Primary Immunodeficiency Diseases/drug therapy , Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Quality of Life , Treatment Outcome , Middle Aged , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
19.
Cell Rep ; 43(5): 114132, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38656871

ABSTRACT

Insulin-PI3K signaling controls insulin secretion. Understanding this feedback mechanism is crucial for comprehending how insulin functions. However, the role of adipocyte insulin-PI3K signaling in controlling insulin secretion in vivo remains unclear. Using adipocyte-specific PI3Kα knockout mice (PI3KαAdQ) and a panel of isoform-selective PI3K inhibitors, we show that PI3Kα and PI3Kß activities are functionally redundant in adipocyte insulin signaling. PI3Kß-selective inhibitors have no effect on adipocyte AKT phosphorylation in control mice but blunt it in adipocytes of PI3KαAdQ mice, demonstrating adipocyte-selective pharmacological PI3K inhibition in the latter. Acute adipocyte-selective PI3K inhibition increases serum free fatty acid (FFA) and potently induces insulin secretion. We name this phenomenon the adipoincretin effect. The adipoincretin effect operates in fasted mice with increasing FFA and decreasing glycemia, indicating that it is not primarily a control system for blood glucose. This feedback control system defines the rates of adipose tissue lipolysis and chiefly controls basal insulin secretion during fasting.


Subject(s)
Adipocytes , Fasting , Insulin Secretion , Insulin , Mice, Knockout , Phosphatidylinositol 3-Kinases , Animals , Adipocytes/metabolism , Insulin/metabolism , Mice , Fasting/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , Fatty Acids, Nonesterified/metabolism , Fatty Acids, Nonesterified/blood , Lipolysis , Male , Proto-Oncogene Proteins c-akt/metabolism , Mice, Inbred C57BL , Phosphorylation , Phosphoinositide-3 Kinase Inhibitors/pharmacology
20.
Cell Biochem Funct ; 42(3): e3998, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38561964

ABSTRACT

Breast cancer (BC) is the most commonly diagnosed cancer and the leading cause of cancer mortality in women. As the phosphatidylinositol 3-kinase (PI3K) signaling pathway is involved in a wide range of physiological functions of cells including growth, proliferation, motility, and angiogenesis, any alteration in this axis could induce oncogenic features; therefore, numerous preclinical and clinical studies assessed agents able to inhibit the components of this pathway in BC patients. To the best of our knowledge, this is the first study that analyzed all the registered clinical trials investigating safety and efficacy of the PI3K/AKT/mTOR axis inhibitors in BC. Of note, we found that the trends of PI3K inhibitors in recent years were superior as compared with the inhibitors of either AKT or mTOR. However, most of the trials entering phase III and IV used mTOR inhibitors (majorly Everolimus) followed by PI3K inhibitors (majorly Alpelisib) leading to the FDA approval of these drugs in the BC context. Despite favorable efficacies, our analysis shows that the majority of trials are utilizing PI3K pathway inhibitors in combination with hormone therapy and chemotherapy; implying monotherapy cannot yield huge clinical benefits, at least partly, due to the activation of compensatory mechanisms. To emphasize the beneficial effects of these inhibitors in combined-modal strategies, we also reviewed recent studies which investigated the conjugation of nanocarriers with PI3K inhibitors to reduce harmful toxicities, increase the local concentration, and improve their efficacies in the context of BC therapy.


Subject(s)
Breast Neoplasms , Phosphatidylinositol 3-Kinase , Humans , Female , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinase/pharmacology , Phosphatidylinositol 3-Kinase/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...