Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 253
Filter
1.
Nat Commun ; 15(1): 2869, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693144

ABSTRACT

Only ~20% of heavy drinkers develop alcohol cirrhosis (AC). While differences in metabolism, inflammation, signaling, microbiome signatures and genetic variations have been tied to the pathogenesis of AC, the key underlying mechanisms for this interindividual variability, remain to be fully elucidated. Induced pluripotent stem cell-derived hepatocytes (iHLCs) from patients with AC and healthy controls differ transcriptomically, bioenergetically and histologically. They include a greater number of lipid droplets (LDs) and LD-associated mitochondria compared to control cells. These pre-pathologic indicators are effectively reversed by Aramchol, an inhibitor of stearoyl-CoA desaturase. Bioenergetically, AC iHLCs have lower spare capacity, slower ATP production and their mitochondrial fuel flexibility towards fatty acids and glutamate is weakened. MARC1 and PNPLA3, genes implicated by GWAS in alcohol cirrhosis, show to correlate with lipid droplet-associated and mitochondria-mediated oxidative damage in AC iHLCs. Knockdown of PNPLA3 expression exacerbates mitochondrial deficits and leads to lipid droplets alterations. These findings suggest that differences in mitochondrial bioenergetics and lipid droplet formation are intrinsic to AC hepatocytes and can play a role in its pathogenesis.


Subject(s)
Acyltransferases , Energy Metabolism , Hepatocytes , Induced Pluripotent Stem Cells , Lipase , Lipid Droplets , Liver Cirrhosis, Alcoholic , Mitochondria , Phospholipases A2, Calcium-Independent , Humans , Hepatocytes/metabolism , Hepatocytes/pathology , Induced Pluripotent Stem Cells/metabolism , Lipid Droplets/metabolism , Liver Cirrhosis, Alcoholic/metabolism , Liver Cirrhosis, Alcoholic/pathology , Liver Cirrhosis, Alcoholic/genetics , Lipase/metabolism , Lipase/genetics , Mitochondria/metabolism , Male , Membrane Proteins/metabolism , Membrane Proteins/genetics , Female , Middle Aged , Adult , Oxidative Stress
2.
J Pak Med Assoc ; 74(5): 993-997, 2024 May.
Article in English | MEDLINE | ID: mdl-38783455

ABSTRACT

Mesenter ic p anniculitis (MP) is a b enign infla mmatory condi tion of the abdomin al mesentery, whi ch presents with a wid e variety of symptoms. I t is diagnosed non - invasively through com puted to mography (CT ) scan, whereas biopsy is still co nside red th e gold standa rd. Steroids are the first line of treatment. Here, we report four cases who presented with abdominal pain. These patients were overweight and the CT scan findings were suggestive of mese nte ric panniculitis. Three cases had concomitant non- alcoholic steatohep atitis w ith el evated alanine transaminase levels, dyslipidaemia, and insulin resistance. FibroSca n showed moderate to severe steatosis. PNPLA3 rs738409 genotype was homozygous positive (GG) in one patient, whereas two patients were heterozygous positive (CG ). This a ssociat io n has not been well-described so far and w arrants f ur ther inve s tigation. There may be some common predisposing factors.


Subject(s)
Non-alcoholic Fatty Liver Disease , Panniculitis, Peritoneal , Humans , Panniculitis, Peritoneal/complications , Panniculitis, Peritoneal/diagnosis , Male , Female , Adult , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/genetics , Middle Aged , Tomography, X-Ray Computed , Lipase/genetics , Lipase/blood , Membrane Proteins/genetics , Abdominal Pain/etiology , Acyltransferases , Phospholipases A2, Calcium-Independent
3.
Hepatol Commun ; 8(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38780312

ABSTRACT

BACKGROUND: Metabolic dysfunction-associated steatohepatitis (MASH) is a progressive form of metabolic dysfunction-associated steatotic liver disease, for which there is limited information about patient experience, including the patient journey. METHODS: In this study, we conducted interviews with patients with MASH to qualitatively evaluate the patient journey and help elucidate the experiences of this patient population. We also investigated if the patatin-like phospholipase domain-containing protein 3 (PNPLA3) I148M variant (non-Hispanic) or being of Hispanic ethnicity may influence patient experiences because these 2 subgroups develop advanced liver disease more frequently than other patient groups. RESULTS: One-to-one interviews were conducted with 28 adults (with PNPLA3 I148M genetic variant, n = 10; Hispanic, n = 8) living in the United States who had been diagnosed with MASH with liver fibrosis. Patients were asked open-ended questions about their experiences before, at, and after their diagnosis. The data collected found that patients experienced a long process of misdiagnoses before their diagnosis of MASH, a lack of clear information provided by clinicians, and limited accessibility to support groups. Hispanic patients reported "impact on family/friends" (75%) and "fear of disease progression" (75%) more frequently than the other patient cohorts interviewed. This is the first report of "fear of progression" in patients with MASH. No patients who were White and had the PNPLA3 I148M variant reported nausea/vomiting, in contrast to other patient cohorts. CONCLUSIONS: This qualitative study identified key aspects of the patient journey that are important for clinical providers and medical teams to recognize. We also propose a new algorithm that could be developed to help screen relatives of patients who are found to carry the PNPLA3 I148M variant.


Subject(s)
Lipase , Membrane Proteins , Qualitative Research , Humans , Membrane Proteins/genetics , Lipase/genetics , Male , Female , Middle Aged , Adult , Hispanic or Latino/genetics , Aged , Fatty Liver/genetics , United States , Liver Cirrhosis/genetics , Acyltransferases , Phospholipases A2, Calcium-Independent
4.
Hepatol Commun ; 8(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38780253

ABSTRACT

BACKGROUND: The PNPLA3-rs738409-G, TM6SF2-rs58542926-T, and HSD17B13-rs6834314-A polymorphisms have been associated with cirrhosis, hepatic decompensation, and HCC. However, whether they remain associated with HCC and decompensation in people who already have cirrhosis remains unclear, which limits the clinical utility of genetics in risk stratification as HCC is uncommon in the absence of cirrhosis. We aimed to characterize the effects of PNPLA3, TM6SF2, and HSD17B13 genotype on hepatic decompensation, HCC, and liver-related mortality or liver transplant in patients with baseline compensated cirrhosis. METHODS: We conducted a single-center retrospective study of patients in the Michigan Genomics Initiative who underwent genotyping. The primary predictors were PNPLA3, TM6SF2, and HSD17B13 genotypes. Primary outcomes were either hepatic decompensation, HCC, or liver-related mortality/transplant. We conducted competing risk Fine-Gray analyses on our cohort. RESULTS: We identified 732 patients with baseline compensated cirrhosis. During follow-up, 50% of patients developed decompensation, 13% developed HCC, 24% underwent liver transplant, and 27% died. PNPLA3-rs738409-G genotype was associated with risk of incident HCC: adjusted subhazard hazard ratio 2.42 (1.40-4.17), p=0.0015 for PNPLA3-rs738409-GG vs. PNPLA3-rs738409-CC genotype. The 5-year cumulative incidence of HCC was higher in PNPLA3-rs738409-GG carriers than PNPLA3-rs738409-CC/-CG carriers: 15.6% (9.0%-24.0%) vs. 7.4% (5.2%-10.0%), p<0.001. PNPLA3 genotype was not associated with decompensation or the combined outcome of liver-related mortality or liver transplant. TM6SF2 and HSD17B13 genotypes were not associated with decompensation or HCC. CONCLUSIONS: The PNPLA3-rs738409-G allele is associated with an increased risk of HCC among patients with baseline compensated cirrhosis. People with cirrhosis and PNPLA3-rs738409-GG genotype may warrant more intensive HCC surveillance.


Subject(s)
Alleles , Carcinoma, Hepatocellular , Lipase , Liver Cirrhosis , Liver Neoplasms , Membrane Proteins , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/mortality , Liver Neoplasms/genetics , Liver Neoplasms/mortality , Male , Lipase/genetics , Female , Liver Cirrhosis/genetics , Liver Cirrhosis/complications , Liver Cirrhosis/mortality , Membrane Proteins/genetics , Middle Aged , Retrospective Studies , Aged , 17-Hydroxysteroid Dehydrogenases/genetics , Genotype , Liver Transplantation , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease , Risk Factors , Acyltransferases , Phospholipases A2, Calcium-Independent
5.
Genes (Basel) ; 15(4)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38674389

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), is a frequent clinical condition globally. Single nucleotide polymorphisms (SNPs) associated with NAFLD have been proposed in the literature and based on bioinformatic screening. The association between NAFLD and genetic variants in Egyptians is still unclear. Hence, we sought to investigate the association of some genetic variants with NAFLD in Egyptians. Egyptians have been categorized into either the MASLD group (n = 205) or the healthy control group (n = 187). The severity of hepatic steatosis and liver fibrosis was assessed by a Fibroscan device. TaqMan-based genotyping assays were employed to explore the association of selected SNPs with MASLD. PNPLA3 rs738409 C>G variant is associated with the presence of MASLD with liver fibrosis, the severity of both hepatic steatosis and liver fibrosis, increased systolic and diastolic blood pressure and increased alanine aminotransferase (all p < 0.05), while the TM6SF2 rs58542926 C>T, HSD17B13 rs9992651 G>A, and GCKR rs1260326 T>C variants were not (all p > 0.05). The TM6SF2 rs58542926 T allele is associated with increased fasting blood glucose and a decreased waist circumference. The GCKR rs1260326 C allele is associated with decreased aspartate transaminase and diastolic blood pressure (all p < 0.05). Only after adjusting for the risk factors (age, sex, BMI, WC, HDL, TG, diabetes mellitus, and hypertension) F2 liver fibrosis score is negatively correlated with the HSD17B13 rs9992651 GA genotype. This study offers evidence for the association of the PNPLA3 rs738409 C>G variant with MASLD among Egyptians and for the association of the PNPLA3 rs738409 G allele, the TM6SF2 rs58542926 T allele, and the GCKR rs1260326 C allele with some parameters of cardiometabolic criteria.


Subject(s)
17-Hydroxysteroid Dehydrogenases , Acyltransferases , Adaptor Proteins, Signal Transducing , Lipase , Membrane Proteins , Non-alcoholic Fatty Liver Disease , Phospholipases A2, Calcium-Independent , Polymorphism, Single Nucleotide , Humans , Membrane Proteins/genetics , Lipase/genetics , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Egypt , Male , Female , Middle Aged , Adaptor Proteins, Signal Transducing/genetics , Adult , 17-Hydroxysteroid Dehydrogenases/genetics , Genetic Predisposition to Disease , Severity of Illness Index , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Case-Control Studies , Genotype
6.
Nutrients ; 16(8)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38674929

ABSTRACT

This study aimed to investigate the impact of a common non-synonymous gene variant (C>G, rs738409) in patatin-like phospholipase domain-containing 3 (PNPLA3), leading to the substitution of isoleucine with methionine at position 148 (PNPLA3-I148M), on susceptibility to nonalcoholic fatty liver disease (NAFLD) and explore potential therapeutic nutritional strategies targeting PNPLA3. It contributed to understanding sustainable dietary practices for managing NAFLD, recently referred to as metabolic-dysfunction-associated fatty liver. NAFLD had been diagnosed by ultrasound in a metropolitan hospital-based cohort comprising 58,701 middle-aged and older Korean individuals, identifying 2089 NAFLD patients. The interaction between PNPLA3 and lifestyle factors was investigated. In silico analyses, including virtual screening, molecular docking, and molecular dynamics simulations, were conducted to identify bioactive compounds from foods targeting PNPLA3(I148M). Subsequent cellular experiments involved treating oleic acid (OA)-exposed HepG2 cells with selected bioactive compounds, both in the absence and presence of compound C (AMPK inhibitor), targeting PNPLA3 expression. Carriers of the risk allele PNPLA3_rs738409G showed an increased association with NAFLD risk, particularly with adherence to a plant-based diet, avoidance of a Western-style diet, and smoking. Delphinidin 3-caffeoyl-glucoside, pyranocyanin A, delta-viniferin, kaempferol-7-glucoside, and petunidin 3-rutinoside emerged as potential binders to the active site residues of PNPLA3, exhibiting a reduction in binding energy. These compounds demonstrated a dose-dependent reduction in intracellular triglyceride and lipid peroxide levels in HepG2 cells, while pretreatment with compound C showed the opposite trend. Kaempferol-7-glucoside and petunidin-3-rutinoside showed potential as inhibitors of PNPLA3 expression by enhancing AMPK activity, ultimately reducing intrahepatic lipogenesis. In conclusion, there is potential for plant-based diets and specific bioactive compounds to promote sustainable dietary practices to mitigate NAFLD risk, especially in individuals with genetic predispositions.


Subject(s)
Acyltransferases , Life Style , Lipase , Membrane Proteins , Non-alcoholic Fatty Liver Disease , Phospholipases A2, Calcium-Independent , Humans , Non-alcoholic Fatty Liver Disease/genetics , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Lipase/genetics , Female , Middle Aged , Hep G2 Cells , Genetic Predisposition to Disease , Molecular Docking Simulation , Polymorphism, Single Nucleotide , Diet, Healthy/methods , Aged , Phytochemicals/pharmacology
7.
Proc Natl Acad Sci U S A ; 121(18): e2318619121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38657050

ABSTRACT

Nonalcoholic fatty liver disease, recently renamed metabolic dysfunction-associated steatotic liver disease (MASLD), is a progressive metabolic disorder that begins with aberrant triglyceride accumulation in the liver and can lead to cirrhosis and cancer. A common variant in the gene PNPLA3, encoding the protein PNPLA3-I148M, is the strongest known genetic risk factor for MASLD. Despite its discovery 20 y ago, the function of PNPLA3, and now the role of PNPLA3-I148M, remain unclear. In this study, we sought to dissect the biogenesis of PNPLA3 and PNPLA3-I148M and characterize changes induced by endogenous expression of the disease-causing variant. Contrary to bioinformatic predictions and prior studies with overexpressed proteins, we demonstrate here that PNPLA3 and PNPLA3-I148M are not endoplasmic reticulum-resident transmembrane proteins. To identify their intracellular associations, we generated a paired set of isogenic human hepatoma cells expressing PNPLA3 and PNPLA3-I148M at endogenous levels. Both proteins were enriched in lipid droplet, Golgi, and endosomal fractions. Purified PNPLA3 and PNPLA3-I148M proteins associated with phosphoinositides commonly found in these compartments. Despite a similar fractionation pattern as the wild-type variant, PNPLA3-I148M induced morphological changes in the Golgi apparatus, including increased lipid droplet-Golgi contact sites, which were also observed in I148M-expressing primary human patient hepatocytes. In addition to lipid droplet accumulation, PNPLA3-I148M expression caused significant proteomic and transcriptomic changes that resembled all stages of liver disease. Cumulatively, we validate an endogenous human cellular system for investigating PNPLA3-I148M biology and identify the Golgi apparatus as a central hub of PNPLA3-I148M-driven cellular change.


Subject(s)
Acyltransferases , Golgi Apparatus , Lipid Droplets , Phospholipases A2, Calcium-Independent , Humans , Acyltransferases/metabolism , Golgi Apparatus/metabolism , Lipase/metabolism , Lipase/genetics , Lipid Droplets/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Phospholipases A2, Calcium-Independent/metabolism
8.
Hepatol Commun ; 8(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38668731

ABSTRACT

BACKGROUND: Common variants of the max-like protein X (MLX)-interacting protein-like (MLXIPL) gene, encoding the transcription factor carbohydrate-responsive element-binding protein, have been shown to be associated with plasma triglyceride levels. However, the role of these variants in steatotic liver disease (SLD) is unclear. METHODS: We used a genome-first approach to analyze a variety of metabolic phenotypes and clinical outcomes associated with a common missense variant in MLXIPL, Gln241His, in 2 large biobanks: the UK Biobank and the Penn Medicine Biobank. RESULTS: Carriers of MLXIPL Gln241His were associated with significantly lower serum levels of triglycerides, apolipoprotein-B, gamma-glutamyl transferase, and alkaline phosphatase. Additionally, MLXIPL Gln241His carriers were associated with significantly higher serum levels of HDL cholesterol and alanine aminotransferase. Carriers homozygous for MLXIPL Gln241His showed a higher risk of SLD in 2 unrelated cohorts. Carriers of MLXIPL Gln241His were especially more likely to be diagnosed with SLD if they were female, obese, and/or also carried the PNPLA3 I148M variant. Furthermore, the heterozygous carriage of MLXIPL Gln241His was associated with significantly higher all-cause, liver-related, and cardiovascular mortality rates. Nuclear magnetic resonance metabolomics data indicated that carriage of MLXIPL Gln241His was significantly associated with lower serum levels of VLDL and increased serum levels of HDL cholesterol. CONCLUSIONS: Analyses of the MLXIPL Gln241His polymorphism showed a significant association with a higher risk of SLD diagnosis and elevated serum alanine aminotransferase as well as significantly lower serum triglycerides and apolipoprotein-B levels. MLXIPL might, therefore, be a potential pharmacological target for the treatment of SLD and hyperlipidemia, notably for patients at risk. More mechanistic studies are needed to better understand the role of MLXIPL Gln241His on lipid metabolism and steatosis development.


Subject(s)
Acyltransferases , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Fatty Liver , Phospholipases A2, Calcium-Independent , Triglycerides , Adult , Aged , Female , Humans , Male , Middle Aged , Alanine Transaminase/blood , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Cholesterol, HDL/blood , Fatty Liver/genetics , Fatty Liver/blood , Genetic Predisposition to Disease , Lipase/genetics , Lipase/blood , Lipids/blood , Membrane Proteins/genetics , Membrane Proteins/blood , Mutation, Missense , Triglycerides/blood
9.
Nutr Diabetes ; 14(1): 21, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649714

ABSTRACT

BACKGROUND: Obesity is the result of energy intake (EI) chronically exceeding energy expenditure. However, the potential metabolic factors, including insulin resistance, remain unclear. This study longitudinally investigated factors associated with changes in body weight. SUBJECTS: A cohort of 707 adults without diabetes were investigated at the 4-year follow-up visit. The habitual intake of energy and macronutrients during the past 12 months was assessed using a validated Food Frequency Questionnaire for the local population. Homeostatic model assessment of ß-cell function and insulin resistance (HOMA-IR) was used as a surrogate measure of insulin resistance. Additionally, PNPLA3 was genotyped. RESULTS: Eighty-seven participants were weight gainers (G; cutoff value = 5 kg), and 620 were non-gainers (NG). Initial anthropometric (G vs. NG: age, 44 ± 13 vs 51 ± 13 years, P < 0.001; body mass index, 27.8 ± 6.5 vs 28.1 ± 5.1 kg/m2, P = ns; body weight, 76.7 ± 22.1 vs 74.2 ± 14.7 kg, P = ns; final body weight, 86.3 ± 23.7 vs 72.9 ± 14.2 kg, P < 0.001) and diet characteristics, as well as insulin concentrations and HOMA-IR values, were similar in both groups. Four years later, G showed significantly increased EI, insulin concentrations, and HOMA-IR values. G had a higher prevalence of the PNPLA3 CG and GG alleles than NG (P < 0.05). The presence of G was independently associated with age (OR = 1.031), EI change (OR = 2.257), and unfavorable alleles of PNPLA3 gene (OR = 1.700). Final body mass index, waist circumference, and EI were independently associated with final HOMA-IR (P < 0.001). CONCLUSIONS: EI is associated with body weight gain, and genetic factors may influence the energy balance. Insulin resistance is a consequence of weight gain, suggesting a possible intracellular protective mechanism against substrate overflow. CLINICAL TRIAL REGISTRATION: ISRCTN15840340.


Subject(s)
Acyltransferases , Insulin Resistance , Phospholipases A2, Calcium-Independent , Weight Gain , Humans , Weight Gain/physiology , Male , Female , Insulin Resistance/physiology , Middle Aged , Longitudinal Studies , Adult , Membrane Proteins/genetics , Body Mass Index , Obesity/genetics , Insulin/blood , Lipase/genetics , Energy Intake , Genotype , Diet
10.
Scand J Gastroenterol ; 59(6): 737-741, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38563432

ABSTRACT

BACKGROUND: Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most prevalent chronic liver condition worldwide. There is an urgent need to develop new biomarkers to assess disease severity and to define patients with a progressive phenotype. Activin A is a new promising biomarker with conflicting results about liver fibrosis. In this study we investigate levels of Activin A in patients with biopsy proven MASLD. We assess levels of Activin A in regard to fibrosis stage and genetic variant I148M in the patatin-like phospholipase domain-containing protein 3 (PNPLA3). METHODS: Activin A levels were assessed in plasma samples from patients with biopsy-proven MASLD in a cross-sectional study. All patients were clinically evaluated and the PNPLA3 I148M genotype of the cohort was assessed. FINDINGS: 41 patients were included and 27% of these had advanced fibrosis. In MASLD patients with advanced fibrosis, Activin A levels was higher (p < 0.001) and could classify advanced fibrosis with an AUROC for activin A of 0.836 (p < 0.001). Patients homozygous for PNPLA3 I148M G/G had higher levels of activin A than non-homozygotes (p = 0.027). CONCLUSIONS: Circulating activin A levels were associated with advanced fibrosis and could be a potential blood biomarker for identifying advanced fibrosis in MASLD. Patients with the risk genotype PNPLA3 I148M G/G had higher levels of activin A proposing activin A as a contributor of the transition from simple steatosis to a fibrotic phenotype.


Subject(s)
Activins , Biomarkers , Fatty Liver , Lipase , Liver Cirrhosis , Membrane Proteins , Humans , Male , Membrane Proteins/genetics , Membrane Proteins/blood , Female , Middle Aged , Lipase/genetics , Lipase/blood , Liver Cirrhosis/genetics , Liver Cirrhosis/blood , Cross-Sectional Studies , Activins/blood , Activins/genetics , Biomarkers/blood , Adult , Fatty Liver/genetics , Fatty Liver/blood , Fatty Liver/pathology , Aged , Genotype , Liver/pathology , Severity of Illness Index , Acyltransferases , Phospholipases A2, Calcium-Independent
11.
Sci Rep ; 14(1): 9753, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38679617

ABSTRACT

Genome-wide association studies have identified several genetic variants associated with nonalcoholic fatty liver disease. To emphasize metabolic abnormalities in fatty liver, metabolic (dysfunction)-associated fatty liver disease (MAFLD) has been introduced; thus, we aimed to investigate single-nucleotide polymorphisms related to MAFLD and its subtypes. A genome-wide association study was performed to identify genetic factors related to MAFLD. We used a Korean population-based sample of 2282 subjects with MAFLD and a control group of 4669. We replicated the results in a validation sample which included 639 patients with MAFLD and 1578 controls. Additionally, we categorized participants into three groups, no MAFLD, metabolic dysfunction (MD)-MAFLD, and overweight/obese-MAFLD. After adjusting for age, sex, and principal component scores, rs738409 [risk allele G] and rs3810622 [risk allele T], located in the PNPLA3 gene, showed significant associations with MAFLD (P-values, discovery set = 1.60 × 10-15 and 4.84 × 10-10; odds ratios, 1.365 and 1.284, validation set = 1.39 × 10-4, and 7.15 × 10-4, odds ratios, 1.299 and 1.264, respectively). An additional SNP rs59148799 [risk allele G] located in the GATAD2A gene showed a significant association with MAFLD (P-values, discovery set = 2.08 × 10-8 and validation set = 0.034, odds ratios, 1.387 and 1.250). rs738409 was significantly associated with MAFLD subtypes ([overweight/obese-MAFLD; odds ratio (95% confidence interval), P-values, 1.515 (1.351-1.700), 1.43 × 10-12 and MD-MAFLD: 1.300 (1.191-1.416), 2.90 × 10-9]. There was a significant relationship between rs3810622 and overweight/obese-MAFLD and MD-MAFLD [odds ratios (95% confidence interval), P-values, 1.418 (1.258, 1.600), 1.21 × 10-8 and 1.225 (1.122, 1.340), 7.06 × 10-6, respectively]; the statistical significance remained in the validation set. PNPLA3 was significantly associated with MAFLD and MAFLD subtypes in the Korean population. These results indicate that genetic factors play an important role in the pathogenesis of MAFLD.


Subject(s)
Acyltransferases , Genetic Predisposition to Disease , Genome-Wide Association Study , Lipase , Non-alcoholic Fatty Liver Disease , Phospholipases A2, Calcium-Independent , Polymorphism, Single Nucleotide , Humans , Male , Female , Republic of Korea/epidemiology , Middle Aged , Lipase/genetics , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/epidemiology , Adult , Membrane Proteins/genetics , Obesity/genetics , Alleles , Aged , Case-Control Studies
12.
Gut ; 73(6): 1008-1014, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38458749

ABSTRACT

OBJECTIVE: Fat deposition is modulated by environmental factors and genetic predisposition. Genome-wide association studies identified PNPLA3 p.I148M (rs738409) as a common variant that increases risk of developing liver steatosis. When and how this variant evolved in humans has not been studied to date. DESIGN: Here we analyse ancient DNA to track the history of this allele throughout human history. In total, 6444 published ancient (modern humans, Neanderthal, Denisovan) and 3943 published present day genomes were used for analysis after extracting genotype calls for PNPLA3 p.I148M. To quantify changes through time, logistic and, by grouping individuals according to geography and age, linear regression analyses were performed. RESULTS: We find that archaic human individuals (Neanderthal, Denisovan) exclusively carried a fixed PNPLA3 risk allele, whereas allele frequencies in modern human populations range from very low in Africa to >50% in Mesoamerica. Over the last 15 000 years, distributions of ancestral and derived alleles roughly match the present day distribution. Logistic regression analyses did not yield signals of natural selection during the last 10 000 years. CONCLUSION: Archaic human individuals exclusively carried a fixed PNPLA3 allele associated with fatty liver, whereas allele frequencies in modern human populations are variable even in the oldest samples. Our observation might underscore the advantage of fat storage in cold climate and particularly for Neanderthal under ice age conditions. The absent signals of natural selection during modern human history does not support the thrifty gene hypothesis in case of PNPLA3 p.I148M.


Subject(s)
Alleles , Fatty Liver , Lipase , Membrane Proteins , Neanderthals , Humans , Neanderthals/genetics , Lipase/genetics , Animals , Membrane Proteins/genetics , Fatty Liver/genetics , Gene Frequency , Genetic Predisposition to Disease , DNA, Ancient/analysis , Genome-Wide Association Study , Genotype , Acyltransferases , Phospholipases A2, Calcium-Independent
13.
J Hepatol ; 80(6): 941-956, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38365182

ABSTRACT

BACKGROUND & AIMS: The PNPLA3 rs738409 C>G (encoding for I148M) variant is a risk locus for the fibrogenic progression of chronic liver diseases, a process driven by hepatic stellate cells (HSCs). We investigated how the PNPLA3 I148M variant affects HSC biology using transcriptomic data and validated findings in 3D-culture models. METHODS: RNA sequencing was performed on 2D-cultured primary human HSCs and liver biopsies of individuals with obesity, genotyped for the PNPLA3 I148M variant. Data were validated in wild-type (WT) or PNPLA3 I148M variant-carrying HSCs cultured on 3D extracellular matrix (ECM) scaffolds from human healthy and cirrhotic livers, with/without TGFB1 or cytosporone B (Csn-B) treatment. RESULTS: Transcriptomic analyses of liver biopsies and HSCs highlighted shared PNPLA3 I148M-driven dysregulated pathways related to mitochondrial function, antioxidant response, ECM remodelling and TGFB1 signalling. Analogous pathways were dysregulated in WT/PNPLA3-I148M HSCs cultured in 3D liver scaffolds. Mitochondrial dysfunction in PNPLA3-I148M cells was linked to respiratory chain complex IV insufficiency. Antioxidant capacity was lower in PNPLA3-I148M HSCs, while reactive oxygen species secretion was increased in PNPLA3-I148M HSCs and higher in bioengineered cirrhotic vs. healthy scaffolds. TGFB1 signalling followed the same trend. In PNPLA3-I148M cells, expression and activation of the endogenous TGFB1 inhibitor NR4A1 were decreased: treatment with the Csn-B agonist increased total NR4A1 in HSCs cultured in healthy but not in cirrhotic 3D scaffolds. NR4A1 regulation by TGFB1/Csn-B was linked to Akt signalling in PNPLA3-WT HSCs and to Erk signalling in PNPLA3-I148M HSCs. CONCLUSION: HSCs carrying the PNPLA3 I148M variant have impaired mitochondrial function, antioxidant responses, and increased TGFB1 signalling, which dampens antifibrotic NR4A1 activity. These features are exacerbated by cirrhotic ECM, highlighting the dual impact of the PNPLA3 I148M variant and the fibrotic microenvironment in progressive chronic liver diseases. IMPACT AND IMPLICATIONS: Hepatic stellate cells (HSCs) play a key role in the fibrogenic process associated with chronic liver disease. The PNPLA3 genetic mutation has been linked with increased risk of fibrogenesis, but its role in HSCs requires further investigation. Here, by using comparative transcriptomics and a novel 3D in vitro model, we demonstrate the impact of the PNPLA3 genetic mutation on primary human HSCs' behaviour, and we show that it affects the cell's mitochondrial function and antioxidant response, as well as the antifibrotic gene NR4A1. Our publicly available transcriptomic data, 3D platform and our findings on NR4A1 could facilitate the discovery of targets to develop more effective treatments for chronic liver diseases.


Subject(s)
Extracellular Matrix , Hepatic Stellate Cells , Lipase , Liver Cirrhosis , Membrane Proteins , Transforming Growth Factor beta1 , Humans , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Extracellular Matrix/metabolism , Extracellular Matrix/genetics , Lipase/genetics , Lipase/metabolism , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Cells, Cultured , Liver/pathology , Liver/metabolism , Signal Transduction/genetics , Obesity/genetics , Obesity/metabolism , Male , Acyltransferases , Phospholipases A2, Calcium-Independent
14.
Eur J Clin Nutr ; 78(5): 442-448, 2024 May.
Article in English | MEDLINE | ID: mdl-38403728

ABSTRACT

BACKGROUND & AIM: Patatin-like phospholipase domain-containing 3 gene (PNPLA3) polymorphism has been implicated in susceptibility to non-alcoholic fatty liver disease (NAFLD), with evidence for potential interaction with nutrition. However, the combination of meat consumption with genetic polymorphism has not been tested. Therefore, this study aims to test the association between the joint presence of PNPLA3 rs738409 G-allele with high meat consumption and NAFLD in populations with diverse meat consumption. METHODS: A cross-sectional study among Israeli screening and Brazilian primary healthcare populations. Food consumption was assessed by a food-frequency questionnaire. PNPLA3 polymorphism was defined as homozygous (GG) or heterozygous (GC). Inconclusive/probable NAFLD was defined as a fatty liver index (FLI) ≥ 30 and probable NAFLD as FLI ≥ 60. RESULTS: The sample included 511 subjects from the screening and primary healthcare populations (n = 213 and n = 298, respectively). Genetic polymorphism (homozygous GG or heterozygous GC) combined with high consumption of total meat, red and/or processed meat, unprocessed red meat, and processed meat was associated with the highest odds for inconclusive/probable NAFLD (OR = 2.75, 95%CI 1.27-5.97, p = 0.011; OR = 3.24, 1.43-7.34, p = 0.005; OR = 2.92, 1.32-6.47, p = 0.008; OR = 3.16, 1.46-6.83, p = 0.003, respectively), adjusting for age, gender, BMI, alcohol consumption, carbohydrate, and saturated fat intake. In addition, genetic polymorphism combined with high processed meat consumption was associated with the highest odds for probable NAFLD (OR = 2.40, 95%CI 1.04-5.56, p = 0.040). CONCLUSIONS: High red meat intake may confer a greater risk for NAFLD among PNPLA3 polymorphism carriers. Prospective studies are needed to confirm these findings and consider minimizing red and processed meat consumption among PNPLA3 polymorphism carriers.


Subject(s)
Lipase , Membrane Proteins , Non-alcoholic Fatty Liver Disease , Red Meat , Humans , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/epidemiology , Cross-Sectional Studies , Male , Female , Lipase/genetics , Middle Aged , Red Meat/adverse effects , Brazil/epidemiology , Membrane Proteins/genetics , Adult , Israel/epidemiology , Genetic Predisposition to Disease , Diet/adverse effects , Polymorphism, Single Nucleotide , Alleles , Polymorphism, Genetic , Acyltransferases , Phospholipases A2, Calcium-Independent
16.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167016, 2024 03.
Article in English | MEDLINE | ID: mdl-38198970

ABSTRACT

Polymorphisms of group VIA calcium-independent phospholipase A2 (PLA2G6) are associated with blood C-reactive protein suggesting its role in inflammation. We showed that myeloid-specific Pla2g6-deficiency in Pla2g6M-/- mice led to exaggerated inflammation and fibrosis in a lean fatty liver model. We here investigated whether these mutants display alteration in immune response after treatment with E. coli lipopolysaccharides (LPS) under acute (a single dose) and persistent (four doses) conditions. Without LPS treatment, male Pla2g6M-/- (but not Flox) mice at 12 months of age exhibited splenomegaly and hepatic necrosis, and ~ 30 % of them exhibited autoimmune hepatitis showing lymphoplasma cells with CD3(+) and CD45R(+) staining. Under acute LPS, male mutants showed an elevation of plasma MIP-1α and immunoglobulinA as well as upregulation of hepatic apoptosis and fibrosis PARP-1, Bax, MCP-1, α-SMA, and collagen I proteins. Their bone-marrow-derived macrophages also showed an elevation of MIP-1α release upon LPS stimulation in vitro. Female mutants under acute LPS showed a moderate increase in plasma KC/CXCL1, MCP-1, and IL10, and they showed no remarkable increase in hepatic fibrosis under acute or persistent LPS. Male mutants under persistent LPS displayed an elevation of aspartate aminotransferase, blood eosinophils, and hepatic apoptosis. Moreover, ~30 % of these mutants exhibited eosinophilic sclerosing portal hepatitis associated with an upregulated protein expression of hepatic CD8α, CD68, eosinophilic cationic protein, and Ly6G. Thus, myeloid-PLA2G6 deficiency led to an autoimmune and LPS-induced inflammatory liver disease via MIP-1α in a male-predominant manner. Our results may be applicable to patients with PLA2G6 mutations who undergo bacterial infection and sepsis.


Subject(s)
Lipopolysaccharides , Phospholipases A2, Calcium-Independent , Animals , Female , Humans , Male , Mice , Chemokine CCL3 , Escherichia coli , Fibrosis , Group VI Phospholipases A2 , Inflammation/chemically induced , Inflammation/genetics , Inflammation/metabolism , Lipopolysaccharides/pharmacology
17.
Proc Natl Acad Sci U S A ; 121(6): e2312291121, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38294943

ABSTRACT

A missense variant in patatin-like phospholipase domain-containing protein 3 [PNPLA3(I148M)] is the most impactful genetic risk factor for fatty liver disease (FLD). We previously showed that PNPLA3 is ubiquitylated and subsequently degraded by proteasomes and autophagosomes and that the PNPLA3(148M) variant interferes with this process. To define the machinery responsible for PNPLA3 turnover, we used small interfering (si)RNAs to inactivate components of the ubiquitin proteasome system. Inactivation of bifunctional apoptosis regulator (BFAR), a membrane-bound E3 ubiquitin ligase, reproducibly increased PNPLA3 levels in two lines of cultured hepatocytes. Conversely, overexpression of BFAR decreased levels of endogenous PNPLA3 in HuH7 cells. BFAR and PNPLA3 co-immunoprecipitated when co-expressed in cells. BFAR promoted ubiquitylation of PNPLA3 in vitro in a reconstitution assay using purified, epitope-tagged recombinant proteins. To confirm that BFAR targets PNPLA3, we inactivated Bfar in mice. Levels of PNPLA3 protein were increased twofold in hepatic lipid droplets of Bfar-/- mice with no associated increase in PNPLA3 mRNA levels. Taken together these data are consistent with a model in which BFAR plays a role in the post-translational degradation of PNPLA3. The identification of BFAR provides a potential target to enhance PNPLA3 turnover and prevent FLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Ubiquitin , Mice , Animals , Ubiquitin-Protein Ligases/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Hepatocytes/metabolism , Acyltransferases , Phospholipases A2, Calcium-Independent/genetics
18.
Hepatology ; 79(4): 898-911, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-37625151

ABSTRACT

BACKGROUND AND AIMS: Genetic risk factors are major determinants of chronic liver disease (CLD) progression. Patatin-like phospholipase domain-containing protein 3 (PNPLA3) I148M polymorphism and alpha-1 antitrypsin (AAT) E342K variant, termed PiZ, are major modifiers of metabolic CLD. Both variants are known to affect metabolic CLD through increased endoplasmic reticulum stress, but their combined effect on CLD progression remains largely unknown. Here, we aimed to test our working hypothesis that their combined incidence triggers CLD disease progression. APPROACH AND RESULTS: We showed that patients with PiZZ/PNPLA3 I148M from the European alpha-1-antitrypsin deficiency (AATD) liver consortium and the UK Biobank had a trend towards higher liver enzymes, but no increased liver fat accumulation was evident between subgroups. After generating transgenic mice that overexpress the PiZ variant and simultaneously harbor the PNPLA3 I148M knockin (designated as PiZ/PNPLA3 I148M ), we observed that animals with PiZ and PiZ/PNPLA3 I148M showed increased liver enzymes compared to controls during aging. However, no significant difference between PiZ and PiZ/PNPLA3 I148M groups was observed, with no increased liver fat accumulation over time. To further study the impact on CLD progression, a Western-styled diet was administered, which resulted in increased fat accumulation and fibrosis in PiZ and PiZ/PNPLA3 I148M livers compared to controls, but the additional presence of PNPLA3 I148M had no impact on liver phenotype. Notably, the PiZ variant protected PNPLA3 I148M mice from liver damage and obesity after Western-styled diet feeding. CONCLUSION: Our results demonstrate that the PNPLA3 polymorphism in the absence of additional metabolic risk factors is insufficient to drive the development of advanced liver disease in severe AATD.


Subject(s)
Digestive System Diseases , Non-alcoholic Fatty Liver Disease , alpha 1-Antitrypsin Deficiency , Animals , Humans , Mice , Acyltransferases/genetics , Acyltransferases/metabolism , alpha 1-Antitrypsin Deficiency/complications , alpha 1-Antitrypsin Deficiency/genetics , Disease Progression , Genetic Predisposition to Disease , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Phospholipases A2, Calcium-Independent/genetics , Phospholipases A2, Calcium-Independent/metabolism , Risk Factors
19.
Clin Gastroenterol Hepatol ; 22(5): 1024-1036.e2, 2024 May.
Article in English | MEDLINE | ID: mdl-38145725

ABSTRACT

BACKGROUND & AIMS: PNPLA3 G-allele is an important determinant of disease severity in nonalcoholic fatty liver disease (NAFLD). Here, we investigated the effect of age, body mass index (BMI), and type 2 diabetes mellitus (T2DM) on the relationship between PNPLA3 G-allele and advanced fibrosis in adults and children with histologically characterized NAFLD. METHODS: A total of 1047 children and 2057 adults were included. DNA was genotyped for rs738409 in duplicate. Primary outcome of interest was advanced fibrosis (fibrosis stage ≥3). Regression analyses were performed after controlling for relevant covariates. An additive model was used to assess the effect of PNPLA3 G-allele (CC vs CG vs GG). RESULTS: PNPLA3 G-allele was significantly associated with advanced fibrosis in children (odds ratio [OR], 1.55; 95% confidence interval [CI], 1.16-2.09) and adults (OR, 1.55; 95% CI, 1.16-1.54). Across the cohort, older age significantly increased the risk for advanced fibrosis for PNPLA3 CC (OR, 1.019; 95% CI, 1.013-1.026), CG (OR, 1.024; 95% CI, 1.018-1.030), and GG (OR, 1.03; 95% CI, 1.023-1.037) genotypes. BMI significantly increased the relationship between PNPLA3 genotypes and advanced fibrosis in children and adults. A BMI of 30 kg/m2 was the cutoff beyond which PNPLA3 G-allele had exponential effect on the risk for advanced fibrosis in children and adults. T2DM significantly worsened the relationship between PNPLA3 G-allele and advanced fibrosis in children and adults (interaction P < .01 for both). CONCLUSIONS: Age, BMI, and T2DM modify the risk of advanced fibrosis associated with PNPLA3 G-allele. Preventing or reversing T2DM and obesity in persons carrying PNPLA3 G-allele may lower the risk for advanced fibrosis in NAFLD.


Subject(s)
Acyltransferases , Body Mass Index , Diabetes Mellitus, Type 2 , Lipase , Liver Cirrhosis , Membrane Proteins , Non-alcoholic Fatty Liver Disease , Phospholipases A2, Calcium-Independent , Humans , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Lipase/genetics , Membrane Proteins/genetics , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/complications , Female , Male , Adult , Child , Middle Aged , Adolescent , Age Factors , Liver Cirrhosis/genetics , Young Adult , Aged , Genotype , Genetic Predisposition to Disease
20.
Int J Mol Sci ; 24(24)2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38138960

ABSTRACT

Non-alcoholic fatty liver disease or steatosis is an accumulation of fat in the liver. Increased amounts of non-esterified fatty acids, calcium deficiency, or insulin resistance may disturb endoplasmic reticulum (ER) homeostasis, which leads to the abnormal accumulation of misfolded proteins, activating the unfolded protein response. The ER is the primary location site for chaperones like thioredoxin domain-containing 5 (TXNDC5). Glutathione participates in cellular oxidative stress, and its interaction with TXNDC5 in the ER may decrease the disulfide bonds of this protein. In addition, glutathione is utilized by glutathione peroxidases to inactivate oxidized lipids. To characterize proteins interacting with TXNDC5, immunoprecipitation and liquid chromatography-mass spectrometry were used. Lipid peroxidation, reduced glutathione, inducible phospholipase A2 (iPLA2) and hepatic transcriptome were assessed in the AML12 and TXNDC5-deficient AML12 cell lines. The results showed that HSPA9 and PRDX6 interact with TXNDC5 in AML12 cells. In addition, TXNDC5 deficiency reduced the protein levels of PRDX6 and HSPA9 in AML12. Moreover, lipid peroxidation, glutathione and iPLA2 activities were significantly decreased in TXNDC5-deficient cells, and to find the cause of the PRDX6 protein reduction, proteasome suppression revealed no considerable effect on it. Finally, hepatic transcripts connected to PRDX6 and HSPA9 indicated an increase in the Dnaja3, Mfn2 and Prdx5 and a decrease in Npm1, Oplah, Gstp3, Gstm6, Gstt1, Serpina1a, Serpina1b, Serpina3m, Hsp90aa1 and Rps14 mRNA levels in AML12 KO cells. In conclusion, the lipid peroxidation system and glutathione mechanism in AML12 cells may be disrupted by the absence of TXNDC5, a novel protein-protein interacting partner of PRDX6 and HSPA9.


Subject(s)
Protein Disulfide-Isomerases , Thioredoxins , Cell Line , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress , Glutathione/metabolism , Lipid Metabolism , Lipid Peroxidation , Liver/metabolism , Phospholipases A2, Calcium-Independent/metabolism , Protein Disulfide-Isomerases/genetics , Protein Disulfide-Isomerases/metabolism , Thioredoxins/metabolism , Animals , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...