Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 166
Filter
1.
J Cancer Res Clin Oncol ; 150(5): 231, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38703241

ABSTRACT

PURPOSE: Acute myeloid leukemia (AML) is a refractory hematologic malignancy that poses a serious threat to human health. Exploring alternative therapeutic strategies capable of inducing alternative modes of cell death, such as ferroptosis, holds great promise as a viable and effective intervention. METHODS: We analyzed online database data and collected clinical samples to verify the expression and function of BMAL1 in AML. We conducted experiments on AML cell proliferation, cell cycle, ferroptosis, and chemotherapy resistance by overexpressing/knocking down BMAL1 and using assays such as MDA detection and BODIPY 581/591 C11 staining. We validated the transcriptional regulation of HMGB1 by BMAL1 through ChIP assay, luciferase assay, RNA level detection, and western blotting. Finally, we confirmed the results of our cell experiments at the animal level. RESULTS: BMAL1 up-regulation is an observed phenomenon in AML patients. Furthermore, there existed a strong correlation between elevated levels of BMAL1 expression and inferior prognosis in individuals with AML. We found that knocking down BMAL1 inhibited AML cell growth by blocking the cell cycle. Conversely, overexpressing BMAL1 promoted AML cell proliferation. Moreover, our research results revealed that BMAL1 inhibited ferroptosis in AML cells through BMAL1-HMGB1-GPX4 pathway. Finally, knocking down BMAL1 can enhance the efficacy of certain first-line cancer therapeutic drugs, including venetoclax, dasatinib, and sorafenib. CONCLUSION: Our research results suggest that BMAL1 plays a crucial regulatory role in AML cell proliferation, drug resistance, and ferroptosis. BMAL1 could be a potential important therapeutic target for AML.


Subject(s)
ARNTL Transcription Factors , Drug Resistance, Neoplasm , Ferroptosis , HMGB1 Protein , Leukemia, Myeloid, Acute , Phospholipid Hydroperoxide Glutathione Peroxidase , Signal Transduction , Animals , Female , Humans , Male , Mice , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Ferroptosis/drug effects , HMGB1 Protein/metabolism , HMGB1 Protein/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/genetics , Mice, Nude , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Prognosis , Sulfonamides/pharmacology , Xenograft Model Antitumor Assays
2.
J Exp Clin Cancer Res ; 43(1): 143, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745179

ABSTRACT

BACKGROUND: Sorafenib is a standard first-line treatment for advanced hepatocellular carcinoma (HCC), yet its effectiveness is often constrained. Emerging studies reveal that sorafenib triggers ferroptosis, an iron-dependent regulated cell death (RCD) mechanism characterized by lipid peroxidation. Our findings isolate the principal target responsible for ferroptosis in HCC cells and outline an approach to potentially augment sorafenib's therapeutic impact on HCC. METHODS: We investigated the gene expression alterations following sgRNA-mediated knockdown induced by erastin and sorafenib in HCC cells using CRISPR screening-based bioinformatics analysis. Gene set enrichment analysis (GSEA) and the "GDCRNATools" package facilitated the correlation studies. We employed tissue microarrays and cDNA microarrays for validation. Ubiquitination assay, Chromatin immunoprecipitation (ChIP) assay, RNA immunoprecipitation (RIP) assay, and dual-luciferase reporter assay were utilized to delineate the specific mechanisms underlying ferroptosis in HCC cells. RESULTS: Our study has revealed that pleiomorphic adenoma gene 1 (PLAG1), a gene implicated in pleomorphic adenoma, confers resistance to ferroptosis in HCC cells treated with sorafenib. Sorafenib leads to the opposite trend of protein and mRNA levels of PLAG1, which is not caused by affecting the stability or ubiquitination of PLAG1 protein, but by the regulation of PLAG1 at the transcriptional level by its upstream competitive endogenous long non-coding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1). Data from 139 HCC patients showed a significant positive correlation between PLAG1 and GPX4 levels in tumor samples, and PLAG1 is instrumental in redox homeostasis by driving the expression of glutathione peroxidase 4 (GPX4), the enzyme that reduces lipid peroxides (LPOs), which further leads to ferroptosis inhibition. CONCLUSIONS: Ferroptosis is a promising target for cancer therapy, especially for patients resistant to standard chemotherapy or immunotherapy. Our findings indicate that PLAG1 holds therapeutic promise and may enhance the efficacy of sorafenib in treating HCC.


Subject(s)
Carcinoma, Hepatocellular , DNA-Binding Proteins , Ferroptosis , Liver Neoplasms , Phospholipid Hydroperoxide Glutathione Peroxidase , Sorafenib , Humans , Sorafenib/pharmacology , Sorafenib/therapeutic use , Ferroptosis/drug effects , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Mice , Animals , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Male
3.
Int J Med Sci ; 21(6): 1103-1116, 2024.
Article in English | MEDLINE | ID: mdl-38774759

ABSTRACT

Background: Colorectal cancer (CRC) has a high morbidity and mortality. Ferroptosis is a phenomenon in which metabolism and cell death are closely related. The role of ferroptosis-related genes in the progression of CRC is still not clear. Therefore, we screened and validated the ferroptosis-related genes which could determine the prevalence, risk and prognosis of patients with CRC. Methods: We firstly screened differentially expressed ferroptosis-related genes by The Cancer Genome Atlas (TCGA) database. Then, these genes were used to construct a risk-score model using the least absolute shrinkage and selection operator (LASSO) regression algorithm. The function and prognosis of the ferroptosis-related genes were confirmed using multi-omics analysis. The gene expression results were validated using publicly available databases and qPCR. We also used publicly available data and ferroptosis-related genes to construct a prognostic prediction nomogram. Results: A total of 24 differential expressed genes associated with ferroptosis were screened in this study. A three-gene risk score model was then established based on these 24 genes and GPX3, CDKN2A and SLC7A11 were selected. The significant prognostic value of this novel three-gene signature was also assessed. Furthermore, we conducted RT-qPCR analysis on cell lines and tissues, and validated the high expression of CDKN2A, GPX3 and low expression of SLC7A11 in CRC cells. The observed mRNA expression of GPX3, CDKN2A and SLC7A11 was consistent with the predicted outcomes. Besides, eight variables including selected ferroptosis related genes were included to establish the prognostic prediction nomogram for patients with CRC. The calibration plots showed favorable consistency between the prediction of the nomogram and actual observations. Also, the time-dependent AUC (>0.7) indicated satisfactory discriminative ability of the nomogram. Conclusions: The present study constructed and validated a novel ferroptosis-related three-gene risk score signature and a prognostic prediction nomogram for patients with CRC. Also, we screened and validated the ferroptosis-related genes GPX3, CDKN2A, and SLC7A11 which could serve as novel biomarkers for patients with CRC.


Subject(s)
Amino Acid Transport System y+ , Biomarkers, Tumor , Colorectal Neoplasms , Ferroptosis , Gene Expression Regulation, Neoplastic , Nomograms , Humans , Ferroptosis/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/mortality , Prognosis , Biomarkers, Tumor/genetics , Amino Acid Transport System y+/genetics , Male , Female , Cyclin-Dependent Kinase Inhibitor p16/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Middle Aged , Gene Expression Profiling , Risk Assessment/methods , Risk Assessment/statistics & numerical data , Aged
4.
Zhongguo Zhen Jiu ; 44(5): 555-64, 2024 May 12.
Article in Chinese | MEDLINE | ID: mdl-38764106

ABSTRACT

OBJECTIVE: To observe the effect of acupotomy on heat shock protein A family member 5 (HSPA5)/glutathione peroxidase 4 (GPX4) signaling pathway in the chondrocytes of the rabbits with knee osteoarthritis (KOA) and explore the mechanism of acupotomy on chondrocyte ferroptosis in KOA. METHODS: Twenty-seven New Zealand rabbits were randomly divided into a normal group, a model group and an acupotomy group, with 9 rabbits in each group. The left hind limb was fixed by the modified Videman method for 6 weeks to establish KOA model. After modeling, acupotomy was given in the acupotomy group, once a week and for consecutive 3 weeks. Using Lequesne MG score, the local symptoms, physical signs and functions of knee joint were evaluated. With HE staining and saffrane-solid green staining adopted, the morphology of chondrocytes and cartilage tissue was observed. Under transmission electron microscope, the mitochondrial structure of chondrocytes was observed. The iron content of cartilage tissue was detected by iron ion kit. The mitochondrial membrane potential (Δψm) and the reactive oxygen species (ROS) level in cartilage tissue were determined by flow cytometry, and the mitochondrial damage rate was calculated. The mRNA expression of HSPA5, GPX4, type Ⅱ collagen α1 chain (COL2A1), matrix metalloproteinases (MMP) 3 and MMP13 was detected by the real-time quantitative PCR; and the protein expression of HSPA5, GPX4, type Ⅱ collagen (COL-Ⅱ), MMP3 and MMP13 was detected by Western blot. The mean flourscence intensity of HSPA5 and GPX4 in cartilage tissue was determined by immunofluorescence. RESULTS: Before intervention, compared with the normal group, the Lequesne MG scores were increased in the model group and the acupotomy group (P<0.01). After intervention, the Lequesne MG score in the acupotomy group was decreased when compared with that in the model group. In comparison with that in the normal group, the number of chondrocytes was reduced and the cells were disarranged; the layers of cartilage structure were unclear, the tide lines disordered and blurred; the mitochondria were wrinkled and the mitochondrial crista decreased or even disappeared in the model group. Compared with the model group, the number of chondrocytes was increased, the layers of cartilage structure were clear, the tide lines recovered, the number of mitochondria elevated, with normal structure and more crista in the acupotomy group. The iron content of cartilage tissue was increased (P<0.01), the Δψm of chondrocytes was declined, the mitochondrial damage rate was increased (P<0.01), the average fluorescence intensity of ROS was increased (P<0.01); the mRNA and corresponding protein expression of HSPA5, GPX4 and COL2A1 was decreased (P<0.01), the mRNA and protein expression of MMP3 and MMP13 was increased (P<0.01) and the average fluorescence intensity of HSPA5, GPX4 was decreased (P<0.01) in the model group when compared with those in the normal group. Compared with the model group, the iron content in cartilage tissue was reduced (P<0.01), the Δψm of chondrocytes was increased, the mitochondrial damage rate was decreased (P<0.01), and the average fluorescence intensity of ROS was decreased (P<0.01); the mRNA and corresponding protein expression of HSPA5, GPX4 and COL2A1 was higher (P<0.01), and the mRNA and protein expression of MMP3 and MMP13 was lower, and the average fluorescence intensity of HSPA5, GPX4 was increased (P<0.01) in the acupotomy group. CONCLUSION: Acupotomy can alleviate cartilage injury of KOA rabbits, and its mechanism may be related to the regulation of HSPA5/GPX4 signaling pathway to maintain iron homeostasis in articular cartilage, thus inhibiting chondrocyte ferroptosis and relieving extracellular matrix degradation.


Subject(s)
Acupuncture Therapy , Chondrocytes , Ferroptosis , Heat-Shock Proteins , Osteoarthritis, Knee , Phospholipid Hydroperoxide Glutathione Peroxidase , Signal Transduction , Animals , Rabbits , Osteoarthritis, Knee/therapy , Osteoarthritis, Knee/metabolism , Osteoarthritis, Knee/physiopathology , Chondrocytes/metabolism , Male , Humans , Acupuncture Therapy/instrumentation , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Glutathione Peroxidase/metabolism , Glutathione Peroxidase/genetics , Endoplasmic Reticulum Chaperone BiP , Female
5.
Mol Cell ; 84(10): 1964-1979.e6, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38759628

ABSTRACT

The role of the mitochondrial electron transport chain (ETC) in regulating ferroptosis is not fully elucidated. Here, we reveal that pharmacological inhibition of the ETC complex I reduces ubiquinol levels while decreasing ATP levels and activating AMP-activated protein kinase (AMPK), the two effects known for their roles in promoting and suppressing ferroptosis, respectively. Consequently, the impact of complex I inhibitors on ferroptosis induced by glutathione peroxidase 4 (GPX4) inhibition is limited. The pharmacological inhibition of complex I in LKB1-AMPK-inactivated cells, or genetic ablation of complex I (which does not trigger apparent AMPK activation), abrogates the AMPK-mediated ferroptosis-suppressive effect and sensitizes cancer cells to GPX4-inactivation-induced ferroptosis. Furthermore, complex I inhibition synergizes with radiotherapy (RT) to selectively suppress the growth of LKB1-deficient tumors by inducing ferroptosis in mouse models. Our data demonstrate a multifaceted role of complex I in regulating ferroptosis and propose a ferroptosis-inducing therapeutic strategy for LKB1-deficient cancers.


Subject(s)
AMP-Activated Protein Kinases , Electron Transport Complex I , Ferroptosis , Phospholipid Hydroperoxide Glutathione Peroxidase , Protein Serine-Threonine Kinases , Ferroptosis/genetics , Ferroptosis/drug effects , Animals , Humans , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , Electron Transport Complex I/metabolism , Electron Transport Complex I/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Mice , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Cell Line, Tumor , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism , Neoplasms/drug therapy , AMP-Activated Protein Kinase Kinases/genetics , Mitochondria/metabolism , Mitochondria/genetics , Mitochondria/drug effects , Xenograft Model Antitumor Assays , Signal Transduction , Female
6.
Int Immunopharmacol ; 134: 112175, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38733821

ABSTRACT

BACKGROUND: Our previous study has revealed that asiaticoside (AC) promotes endoplasmic reticulum stress and antagonizes proliferation and migration of gastric cancer (GC) via miR-635/HMGA1 axis. However, the effect and mechanism of AC on other progressions of GC, such as ferroptosis and immune escape, are still unknown. METHODS: AGS and HGC27 cells were incubated with 1, 2 and 4 µM of AC for 24 h. Mice xenografted with AGS cells were intragastrically injected with AC. The effect and mechanism of AC on GC were determined by the measurement of the ferrous iron level, the ROS level and the glutathione peroxidase (GSH) content, flow cytometry, enzyme-linked immunosorbent assay (ELISA), immunohistochemistry and western blotting assays. RESULTS: AC increased the Fe2+ level and the ROS level, but decreased the expression of GPX4 and SLC7A11 and the GSH level. Besides, AC enhanced the percent of CD8+ T cells and the IFN-γ concentration, but reduced the PD-L1 expression and the IL-10 level. Mechanically, AC downregulated the relative levels of ß-catenin, active-ß-catenin, p-GSK3ß/GSK3ß, cyclin D1 and c-Myc in GC cells, which were rescued with the application of LiCl (an activator of Wnt/ß-catenin pathway) in AGS cells. Moreover, activation of Wnt/ß-catenin pathway by LiCl or the ß-catenin overexpression inverted the effect of AC on ferroptosis and immune escape in GC cells. In vivo, AC treatment declined the tumor size and weight, the level of GPX4, SLC7A11, PD-L1 and IFN-γ, and the expression of Wnt/ß-catenin pathway. CONCLUSION: AC enhanced ferroptosis and repressed immune escape by downregulating the Wnt/ß-catenin signaling in GC.


Subject(s)
Down-Regulation , Ferroptosis , Stomach Neoplasms , Triterpenes , Tumor Escape , Wnt Signaling Pathway , Ferroptosis/drug effects , Stomach Neoplasms/drug therapy , Stomach Neoplasms/immunology , Stomach Neoplasms/pathology , Animals , Humans , Wnt Signaling Pathway/drug effects , Cell Line, Tumor , Triterpenes/pharmacology , Triterpenes/therapeutic use , Tumor Escape/drug effects , Mice , Down-Regulation/drug effects , Mice, Inbred BALB C , beta Catenin/metabolism , Xenograft Model Antitumor Assays , Mice, Nude , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Male , Reactive Oxygen Species/metabolism , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects
7.
Int Immunopharmacol ; 134: 112165, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38692017

ABSTRACT

Particulate matter (PM) is considered the fundamental component of atmospheric pollutants and is associated with the pathogenesis of many respiratory diseases. Fibroblast growth factor 10 (FGF10) mediates mesenchymal-epithelial signaling and has been linked with the repair process of PM-induced lung injury (PMLI). However, the pathogenic mechanism of PMLI and the specific FGF10 protective mechanism against this injury are still undetermined. PM was administered in vivo into murine airways or in vitro to human bronchial epithelial cells (HBECs), and the inflammatory response and ferroptosis-related proteins SLC7A11 and GPX4 were assessed. The present research investigates the FGF10-mediated regulation of ferroptosis in PMLI mice models in vivo and HBECs in vitro. The results showed that FGF10 pretreatment reduced PM-mediated oxidative damage and ferroptosis in vivo and in vitro. Furthermore, FGF10 pretreatment led to reduced oxidative stress, decreased secretion of inflammatory mediators, and activation of the Nrf2-dependent antioxidant signaling. Additionally, silencing of Nrf2 using siRNA in the context of FGF10 treatment attenuated the effect on ferroptosis. Altogether, both in vivo and in vitro assessments confirmed that FGF10 protects against PMLI by inhibiting ferroptosis via the Nrf2 signaling. Thus, FGF10 can be used as a novel ferroptosis suppressor and a potential treatment target in PMLI.


Subject(s)
Ferroptosis , Fibroblast Growth Factor 10 , Lung Injury , Mice, Inbred C57BL , NF-E2-Related Factor 2 , Oxidative Stress , Particulate Matter , Signal Transduction , Ferroptosis/drug effects , NF-E2-Related Factor 2/metabolism , Animals , Particulate Matter/toxicity , Humans , Signal Transduction/drug effects , Fibroblast Growth Factor 10/metabolism , Fibroblast Growth Factor 10/genetics , Mice , Oxidative Stress/drug effects , Lung Injury/chemically induced , Lung Injury/metabolism , Lung Injury/pathology , Lung Injury/prevention & control , Male , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Cell Line , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Disease Models, Animal , Amino Acid Transport System y+
8.
Front Biosci (Landmark Ed) ; 29(5): 167, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38812318

ABSTRACT

BACKGROUND: Ovarian cancer is a highly lethal gynecologic malignancy. ARHGAP10, a member of Rho GTPase-activating proteins, is a potential tumor suppressor in ovarian cancer. However, its role and the involved mechanism need further examination. Here, we investigated whether ARHGAP10 is also associated with ferroptosis. METHODS: Lentivirus infection was used for gene overexpression or silencing. Real-time polymerase chain reaction (RT-PCR) and Western blot were used to assess mRNA and protein levels, respectively. Cell viability was assessed by Cell Counting Kit-8 (CCK-8) assay. Lipid reactive oxygen species level was measured by flow cytometry. A tumorigenicity assay was performed to evaluate tumor growth in vivo, and sections of mouse tumor tissues were examined by immunofluorescence microscopy. Chromatin Immunoprecipitation (ChIP) assay was used to assess the binding of H3K9ac to the promoter region of ARHGAP10. RESULTS: ARHGAP10 overexpression promoted ferroptosis in ovarian cancer cells, resulting in decreased cell viability, and increased lipid reactive oxygen species (ROS) level. Further, it decreased and increased GPX4 and PTGS2 expression, respectively, and also induced suppression of tumor growth in mice. Fer-1, a potent inhibitor of ferroptosis, suppressed the above effects of ARHGAP10. Contrarily, ARHGAP10 silencing alleviated ferroptosis in ovarian cancer cells, which was reversed by RSL3, a ferroptosis-inducing agent. Lastly, sodium butyrate (SB) was found to transcriptionally regulate ARHGAP10, thereby also contributing to the ferroptosis of ovarian cancer cells. CONCLUSIONS: Our results suggest that SB/ARHGAP10/GPX4 is a new signaling axis involved in inducing ferroptosis in ovarian cancer cells and suppressing tumor growth, which has potential clinical significance.


Subject(s)
Butyric Acid , Ferroptosis , GTPase-Activating Proteins , Gene Expression Regulation, Neoplastic , Ovarian Neoplasms , Reactive Oxygen Species , Ferroptosis/drug effects , Ferroptosis/genetics , Female , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/drug therapy , Humans , Animals , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Cell Line, Tumor , Reactive Oxygen Species/metabolism , Butyric Acid/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Mice , Mice, Nude , Cell Survival/drug effects , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics
9.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(2): 286-295, 2024 Feb 28.
Article in English, Chinese | MEDLINE | ID: mdl-38755725

ABSTRACT

Bladder cancer (BC) is one of the 3 common malignant tumors in the urinary system, with high incidence, easy metastasis, poor therapeutic efficacy, and poor prognosis, which seriously threatens the health of human. Tumor cells exhibit a strong demand for iron, and iron overload can induce ferroptosis, which is an iron dependent cell death caused by lipid peroxidation and cell membrane damage. Therefore, ferroptosis has strong anti-tumor potential. The molecular mechanisms of ferroptosis is associated with abnormalities in cellular phospholipid metabolism and iron metabolism, and dysregulation of antioxidant and non-antioxidant systems Xc-/glutathione (GSH)/glutathione peroxidase 4 (GPX4). Ferroptosis relevant molecules play important roles in the occurrence and development, metastasis, drug resistance, and immune response of BC, and are expected to become targets for the treatment of BC.


Subject(s)
Ferroptosis , Iron , Lipid Peroxidation , Phospholipid Hydroperoxide Glutathione Peroxidase , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/genetics , Iron/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Glutathione/metabolism , Antioxidants/metabolism , Phospholipids/metabolism , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics
10.
Ann Clin Lab Sci ; 54(2): 160-169, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38802161

ABSTRACT

OBJECTIVE: Glutathione peroxidase-4 (GPX4) is a member of Ferroptosis and lipid circulation. This study aims to investigate the expression of GPX4 in esophageal squamous cell carcinoma and its impact on radiosensitivity. METHOD: Immunohistochemistry staining was used to detect GPX4 expression in 180 samples of ESCC tissues and adjacent tissues. We analyzed the relationship between GPX4 expression and ESCC clinical parameters. In vitro experiments were conducted using apoptosis assays and colony formation assays to investigate the effect of GPX4 on the radiosensitivity of ESCC cells. In vivo experiments were carried out using a nude mouse xenograft model to evaluate the impact of GPX4 on the radiosensitivity of ESCC. RESULTS: GPX4 expression was lower in adjacent tissues than tumor tissues. The expression of GPX4 was significantly associated with the pathological grade of ESCC. The overall survival time (OS) of ESCC patients with low GPX4 expression was significantly longer than that of patients with high GPX4 expression. GPX4 could be used as independent prognostic factors in patients with ESCC. In vivo experiments, silencing of GPX4 or using GPX4 inhibitors significantly inhibits the viability and colony formation of ESCC cells after radiation exposure while increasing intracellular reactive oxygen species (ROS) levels, and significantly suppresses the tumorigenic ability of ESCC cells in subcutaneous xenografts after radiation exposure. CONCLUSION: GPX4 is highly expressed in ESCC, which has the potential value for prognostic assessment of ESCC. Silencing or inhibiting GPX4 can enhance the radiosensitivity of ESCC.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Mice, Nude , Phospholipid Hydroperoxide Glutathione Peroxidase , Radiation Tolerance , Humans , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/radiotherapy , Radiation Tolerance/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Animals , Esophageal Neoplasms/pathology , Esophageal Neoplasms/genetics , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/radiotherapy , Male , Female , Mice , Middle Aged , Prognosis , Apoptosis , Cell Line, Tumor , Xenograft Model Antitumor Assays , Gene Expression Regulation, Neoplastic , Aged , Cell Proliferation , Reactive Oxygen Species/metabolism , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Mice, Inbred BALB C
11.
Lipids Health Dis ; 23(1): 128, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38685023

ABSTRACT

BACKGROUND: Sepsis-associated encephalopathy (SAE) refers to the widespread impairment of brain function caused by noncentral nervous system infection mediated by sepsis. Lipid peroxidation-induced ferroptosis contributes to the occurrence and course of SAE. This study aimed to investigate the relationship between neuronal injury and lipid peroxidation-induced ferroptosis in SAE. METHODS: Baseline data were collected from pediatric patients upon admission, and the expression levels of various markers related to lipid peroxidation and ferroptosis were monitored in the serum and peripheral blood mononuclear cells (PBMCs) of patients with SAE as well as SAE model mice. The hippocampal phosphatidylethanolamine-binding protein (PEBP)-1/15-lysine oxidase (LOX)/ glutathione peroxidase 4 (GPX4) pathway was assessed for its role on the inhibitory effect of ferroptosis in SAE treatment. RESULTS: The results showed elevated levels of S100 calcium-binding protein beta (S-100ß), glial fibrillary acidic protein, and malondialdehyde in the serum of SAE patients, while superoxide dismutase levels were reduced. Furthermore, analysis of PBMCs revealed increased transcription levels of PEBP1, LOX, and long-chain fatty acyl-CoA synthetase family member 4 (ACSL4) in SAE patients, while the transcription levels of GPX4 and cystine/glutamate transporter xCT (SLC7A11) were decreased. In comparison to the control group, the SAE mice exhibited increased expression of S-100ß and neuron-specific enolase (NSE) in the hippocampus, whereas the expression of S-100ß and NSE were reduced in deferoxamine (DFO) mice. Additionally, iron accumulation was observed in the hippocampus of SAE mice, while the iron ion levels were reduced in the DFO mice. Inhibition of ferroptosis alleviated the mitochondrial damage (as assessed by transmission electron microscopy, hippocampal mitochondrial ATP detection, and the JC-1 polymer-to-monomer ratio in the hippocampus) and the oxidative stress response induced by SAE as well as attenuated neuroinflammatory reactions. Further investigations revealed that the mechanism underlying the inhibitory effect of ferroptosis in SAE treatment is associated with the hippocampal PEBP-1/15-LOX/GPX4 pathway. CONCLUSION: These results offer potential therapeutic targets for the management of neuronal injury in SAE and valuable insights into the potential mechanisms of ferroptosis in neurological disorders.


Subject(s)
Ferroptosis , Hippocampus , Lipid Peroxidation , Phosphatidylethanolamine Binding Protein , Phospholipid Hydroperoxide Glutathione Peroxidase , Sepsis-Associated Encephalopathy , Ferroptosis/drug effects , Animals , Hippocampus/metabolism , Hippocampus/drug effects , Hippocampus/pathology , Humans , Sepsis-Associated Encephalopathy/drug therapy , Sepsis-Associated Encephalopathy/metabolism , Sepsis-Associated Encephalopathy/pathology , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Lipid Peroxidation/drug effects , Mice , Male , Female , Phosphatidylethanolamine Binding Protein/metabolism , Phosphatidylethanolamine Binding Protein/genetics , Neurons/metabolism , Neurons/drug effects , Neurons/pathology , Coenzyme A Ligases/metabolism , Coenzyme A Ligases/genetics , Coenzyme A Ligases/antagonists & inhibitors , Inflammation/metabolism , Inflammation/pathology , Inflammation/drug therapy , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , S100 Calcium Binding Protein beta Subunit/metabolism , S100 Calcium Binding Protein beta Subunit/genetics , Disease Models, Animal , Child, Preschool , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/drug effects , Signal Transduction/drug effects , Child , Glial Fibrillary Acidic Protein/metabolism , Glial Fibrillary Acidic Protein/genetics , Malondialdehyde/metabolism , Sepsis/complications , Sepsis/metabolism , Sepsis/drug therapy , Infant
12.
J Cell Mol Med ; 28(9): e18318, 2024 May.
Article in English | MEDLINE | ID: mdl-38685674

ABSTRACT

Glioblastoma (GBM) represents a prevalent form of primary malignant tumours in the central nervous system, but the options for effective treatment are extremely limited. Ferroptosis, as the most enriched programmed cell death process in glioma, makes a critical difference in glioma progression. Consequently, inducing ferroptosis has become an appealing strategy for tackling gliomas. Through the utilization of multi-omics sequencing data analysis, flow cytometry, MDA detection and transmission electron microscopy, the impact of orexin-A on ferroptosis in GBM was assessed. In this report, we provide the first evidence that orexin-A exerts inhibitory effects on GBM proliferation via the induction of ferroptosis. This induction is achieved by instigating an unsustainable increase in iron levels and depletion of GPX4. Moreover, the regulation of TFRC, FTH1 and GPX4 expression through the targeting of NFE2L2 appears to be one of the potential mechanisms underlying orexin-A-induced ferroptosis.


Subject(s)
Cell Proliferation , Ferroptosis , Glioblastoma , Iron , Orexins , Phospholipid Hydroperoxide Glutathione Peroxidase , Animals , Humans , Mice , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Ferroptosis/drug effects , Ferroptosis/genetics , Gene Expression Regulation, Neoplastic/drug effects , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , Iron/metabolism , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Orexins/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics
13.
Free Radic Biol Med ; 218: 1-15, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574973

ABSTRACT

Sjogren's syndrome (SS) is an autoimmune disease characterized by dysfunction of exocrine glands, such as salivary glands. However, the molecular mechanism of salivary secretion dysfunction in SS is still unclear. Given the significance of glutathione peroxidase 4 (GPX4) in cellular redox homeostasis, we hypothesized that dysregulation of GPX4 may play a pivotal role in the pathogenesis of salivary secretion dysfunction observed in SS. The salivary gland of SS patients and the SS mouse model exhibited reduced expression of the ferroptosis inhibitor GPX4 and the important protein aquaporin 5 (AQP5), which is involved in salivary secretion. GPX4 overexpression upregulated and GPX4 knockdown downregulated AQP5 expression in salivary gland epithelial cells (SGECs) and salivary secretion. Bioinformatics analysis of GSE databases from SS patients' salivary glands revealed STAT4 as a key intermediary regulator between GPX4 and AQP5. A higher level of nuclear pSTAT4 was observed in the salivary gland of the SS mouse model. GPX4 overexpression inhibited and GPX4 knockdown promoted STAT4 phosphorylation and nuclear translocation in SGECs. CHIP assay confirmed the binding of pSTAT4 within the promoter of AQP5 inhibiting AQP5 transcription. GPX4 downregulation accumulates intracellular lipid ROS in SGECs. Lipid ROS inhibitor ferrostatin-1 treatment during in vitro and in vivo studies confirmed that lipid ROS activates STAT4 phosphorylation and nuclear translocation in SGECs. In summary, the downregulated GPX4 in SGECs contributes to salivary secretion dysfunction in SS via the lipid ROS/pSTAT4/AQP5 axis. This study unraveled novel targets to revitalize the salivary secretion function in SS patients.


Subject(s)
Aquaporin 5 , Epithelial Cells , Phospholipid Hydroperoxide Glutathione Peroxidase , Reactive Oxygen Species , STAT4 Transcription Factor , Salivary Glands , Sjogren's Syndrome , Sjogren's Syndrome/metabolism , Sjogren's Syndrome/genetics , Sjogren's Syndrome/pathology , Animals , Humans , Mice , Salivary Glands/metabolism , Salivary Glands/pathology , Aquaporin 5/metabolism , Aquaporin 5/genetics , Epithelial Cells/metabolism , Epithelial Cells/pathology , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Reactive Oxygen Species/metabolism , STAT4 Transcription Factor/metabolism , STAT4 Transcription Factor/genetics , Disease Models, Animal , Female , Down-Regulation , Male , Signal Transduction , Gene Expression Regulation , Ferroptosis/genetics , Saliva/metabolism , Middle Aged
14.
Food Chem Toxicol ; 188: 114682, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657941

ABSTRACT

Butylated hydroxyanisole (BHA) is one of the most commonly used antioxidants and is widely used in food, but whether it causes vascular damage has not been clearly studied. The present study demonstrated for the first time that BHA reduced the viability of human umbilical vein endothelial cells (HUVECs) and mouse brain microvascular endothelial cells (BEND3) in a dose- and time-dependent manner. Moreover, BHA inhibited the migration and proliferation of vascular endothelial cells (ECs). Further analysis revealed that in ECs, the ferroptosis inhibitor ferrostatin-1 (Fer-1) reversed the BHA-induced increase in Fe2+ and malonaldehyde (MDA) levels. Acridine orange staining demonstrated that BHA increased lysosomal permeability. At the protein level, BHA increased the expression of transcription factor EB (TFEB) and decreased the expression of glutathione peroxidase (GPX4), solute carrier family 7 member 11 (SLC7A11, xCT), and ferritin heavy chain 1 (FTH1). Moreover, these effects of BHA could be reversed by knocking down TFEB. In vivo experiments confirmed that BHA caused elevated pulse wave velocity (PWV) and reduced acetylcholine-dependent vascular endothelial diastole. In conclusion, BHA degrades GPX4, xCT, and FTH1 through activation of the TFEB-mediated lysosomal pathway and promotes ferroptosis, ultimately leading to vascular endothelial cell injury.


Subject(s)
Butylated Hydroxyanisole , Human Umbilical Vein Endothelial Cells , Phospholipid Hydroperoxide Glutathione Peroxidase , Animals , Humans , Mice , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Butylated Hydroxyanisole/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , Ferroptosis/drug effects , Cell Proliferation/drug effects , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Cell Movement/drug effects , Ferritins/metabolism , Ferritins/genetics , Cyclohexylamines , Oxidoreductases , Phenylenediamines
15.
Environ Toxicol ; 39(6): 3760-3771, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38558500

ABSTRACT

Liver fibrosis is an invertible pathophysiologic process featured by excessive accumulation of extracellular matrix (ECM) which injures liver cells and activates hepatic stellate cells (HSCs). Besides, inducing ferroptosis in activated HSCs can alleviate liver fibrosis. LncRNAs modulate ferroptosis in activated HSCs and ECM deposition in liver fibrosis. However, the role of lncRNA FRMD6-AS1 in liver fibrosis is not discovered. In this study, lncRNA FRMD6-AS1 was dramatically up-regulated in activated HSCs. Knockdown of FRMD6-AS1 markedly increased iron ion, ROS and MDA levels, decreased GSH level, SLC7A11 and GPX4 protein expressions in activated HSCs. In addition, HSCs activation markers α-SMA and COL1α1 expressions were up-regulated in activated HSCs; knockdown of FRMD6-AS1 markedly down-regulated α-SMA and COL1α1 expressions in HSCs. Besides, lncRNA FRMD6-AS1 could interact with miR-491-5p, and negatively modulate miR-491-5p expression. USP13 was a target of miR-491-5p, and could be negatively modulated by miR-491-5p. Moreover, FRMD6-AS1 knockdown increased iron ion and ROS levels, decreased SLC7A11 and GPX4 protein expressions, facilitated HSCs viability, and up-regulated α-SMA and COL1α1 expressions via miR-491-5p/USP13 pathway. Finally, FRMD6-AS1 knockdown restored liver tissue structure and abrogated fibrosis in livers in a CCL4 liver fibrosis mouse model. Hence, lncRNA FRMD6-AS1/miR-491-5p/USP13 pathway repressed ferroptosis, promoted ECM deposition and facilitated liver fibrosis in vitro and in vivo models.


Subject(s)
Ferroptosis , Hepatic Stellate Cells , Liver Cirrhosis , MicroRNAs , RNA, Long Noncoding , Ferroptosis/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Mice , Mice, Inbred C57BL , Male , Carbon Tetrachloride/toxicity , Humans , Cell Line , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Amino Acid Transport System y+/genetics , Amino Acid Transport System y+/metabolism
16.
J Integr Med ; 22(3): 286-294, 2024 May.
Article in English | MEDLINE | ID: mdl-38565435

ABSTRACT

OBJECTIVE: Research has shown that celastrol can effectively treat a variety of diseases, yet when passing a certain dosage threshold, celastrol becomes toxic, causing complications such as liver and kidney damage and erythrocytopenia, among others. With this dichotomy in mind, it is extremely important to find ways to preserve celastrol's efficacy while reducing or preventing its toxicity. METHODS: In this study, insulin-resistant HepG2 (IR-HepG2) cells were prepared using palmitic acid and used for in vitro experiments. IR-HepG2 cells were treated with celastrol alone or in combination with N-acetylcysteine (NAC) or ferrostatin-1 (Fer-1) for 12, 24 or 48 h, at a range of doses. Cell counting kit-8 assay, Western blotting, quantitative reverse transcription-polymerase chain reaction, glucose consumption assessment, and flow cytometry were performed to measure celastrol's cytotoxicity and whether the cell death was linked to ferroptosis. RESULTS: Celastrol treatment increased lipid oxidation and decreased expression of anti-ferroptosis proteins in IR-HepG2 cells. Celastrol downregulated glutathione peroxidase 4 (GPX4) mRNA. Molecular docking models predicted that solute carrier family 7 member 11 (SLC7A11) and GPX4 were covalently bound by celastrol. Importantly, we found for the first time that the application of ferroptosis inhibitors (especially NAC) was able to reduce celastrol's toxicity while preserving its ability to improve insulin sensitivity in IR-HepG2 cells. CONCLUSION: One potential mechanism of celastrol's cytotoxicity is the induction of ferroptosis, which can be alleviated by treatment with ferroptosis inhibitors. These findings provide a new strategy to block celastrol's toxicity while preserving its therapeutic effects. Please cite this article as: Liu JJ, Zhang X, Qi MM, Chi YB, Cai BL, Peng B, Zhang DH. Ferroptosis inhibitors reduce celastrol toxicity and preserve its insulin sensitizing effects in insulin resistant HepG2 cells. J Integr Med. 2024; 22(3): 286-294.


Subject(s)
Ferroptosis , Insulin Resistance , Pentacyclic Triterpenes , Humans , Hep G2 Cells , Pentacyclic Triterpenes/pharmacology , Ferroptosis/drug effects , Triterpenes/pharmacology , Cyclohexylamines/pharmacology , Acetylcysteine/pharmacology , Phenylenediamines/pharmacology , Molecular Docking Simulation , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism
17.
Free Radic Biol Med ; 220: 125-138, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38657754

ABSTRACT

Fusobacterium (F.) nucleatum is a carcinogenesis microbiota in colorectal cancer (CRC). Growing evidence shows that F. nucleatum contributes to chemoresistance. Ferroptosis is reported to restore the susceptibility of resistant cells to chemotherapy. However, the role of gut microbiota affecting ferroptosis in chemoresistance remains unclear. Here, we examined the CRC tissues of patients using 16S rRNA sequencing to investigate the possible connection between gut microbiota dysbiosis and the relapse of CRC. We found that a high abundance of F. nucleatum in CRC tissue is associated with relapse. We further demonstrated that F. nucleatum induced oxaliplatin resistance in vitro and in vivo. The transcriptome of an F. nucleatum-infected cell revealed ferroptosis was associated with F. nucleatum infection. We perform malondialdehyde, ferrous iron, and glutathione assays to verify the effect of F. nucleatum on ferroptosis under oxaliplatin treatment in vivo and in vitro. Mechanistically, F. nucleatum promoted oxaliplatin resistance by overexpressing GPX4 and then inhibiting ferroptosis. E-cadherin/ß-catenin/TCF4 pathway conducted the GPX4 overexpression effect of F. nucleatum. The chromatin immuno-precipitation quantitative PCR (CHIP-qPCR) and dual-luciferase reporter assay showed that F. nucleatum promoted TCF4 binding with GPX4. We also determined the E-cadherin/ß-catenin/TCF4/GPX4 axis related to tumor tissue F. nucleatum status and CRC relapse clinically. Here, we revealed the contribution of F. nucleatum to oxaliplatin resistance by inhibiting ferroptosis in CRC. Targeting F. nucleatum and ferroptosis will provide valuable insight into chemoresistance management and may improve outcomes for patients with CRC.


Subject(s)
Cadherins , Colorectal Neoplasms , Drug Resistance, Neoplasm , Ferroptosis , Fusobacterium nucleatum , Gastrointestinal Microbiome , Oxaliplatin , Phospholipid Hydroperoxide Glutathione Peroxidase , beta Catenin , Ferroptosis/drug effects , Ferroptosis/genetics , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/microbiology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Cadherins/metabolism , Cadherins/genetics , Oxaliplatin/pharmacology , beta Catenin/metabolism , beta Catenin/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Animals , Fusobacterium nucleatum/pathogenicity , Mice , Gastrointestinal Microbiome/drug effects , Xenograft Model Antitumor Assays , Gene Expression Regulation, Neoplastic/drug effects , Male , Antigens, CD/metabolism , Antigens, CD/genetics , Female , Cell Line, Tumor , Fusobacterium Infections/microbiology , Fusobacterium Infections/drug therapy , Fusobacterium Infections/metabolism , Fusobacterium Infections/genetics , Fusobacterium Infections/pathology , Dysbiosis/microbiology , Transcription Factor 4/metabolism , Transcription Factor 4/genetics , Mice, Nude
18.
Cancer Sci ; 115(6): 2067-2081, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38566528

ABSTRACT

Prostaglandin E receptor 3 (PTGER3) is involved in a variety of biological processes in the human body and is closely associated with the development and progression of a variety of cancer types. However, the role of PTGER3 in triple-negative breast cancer (TNBC) remains unclear. In the present study, low PTGER3 expression was found to be associated with poor prognosis in TNBC patients. PTGER3 plays a crucial role in regulating TNBC cell invasion, migration, and proliferation. Upregulation of PTGER3 weakens the epithelial-mesenchymal phenotype in TNBC and promotes ferroptosis both in vitro and in vivo by repressing glutathione peroxidase 4 (GPX4) expression. On the other hand, downregulation of PTGER3 inhibits ferroptosis by increasing GPX4 expression and activating the PI3K-AKT pathway. Upregulation of PTGER3 also enhances the sensitivity of TNBC cells to paclitaxel. Overall, this study has elucidated critical pathways in which low PTGER3 expression protects TNBC cells from undergoing ferroptosis, thereby promoting its progression. PTGER3 may thus serve as a novel and promising biomarker and therapeutic target for TNBC.


Subject(s)
Cell Proliferation , Ferroptosis , Triple Negative Breast Neoplasms , Ferroptosis/genetics , Humans , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Female , Cell Line, Tumor , Mice , Animals , Cell Proliferation/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Epithelial-Mesenchymal Transition/genetics , Prognosis , Paclitaxel/pharmacology , Signal Transduction , Receptors, Prostaglandin E, EP3 Subtype
19.
Free Radic Biol Med ; 218: 82-93, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38579937

ABSTRACT

Peroxiredoxin 6 (Prdx6) repairs peroxidized membranes by reducing oxidized phospholipids, and by replacing oxidized sn-2 fatty acyl groups through hydrolysis/reacylation by its phospholipase A2 (aiPLA2) and lysophosphatidylcholine acyltransferase activities. Prdx6 is highly expressed in the lung, and intact lungs and cells null for Prdx6 or with single-point mutations that inactivate either Prdx6-peroxidase or aiPLA2 activity alone exhibit decreased viability, increased lipid peroxidation, and incomplete repair when exposed to paraquat, hyperoxia, or organic peroxides. Ferroptosis is form of cell death driven by the accumulation of phospholipid hydroperoxides. We studied the role of Prdx6 as a ferroptosis suppressor in the lung. We first compared the expression Prdx6 and glutathione peroxidase 4 (GPx4) and visualized Prdx6 and GPx4 within the lung. Lung Prdx6 mRNA levels were five times higher than GPx4 levels. Both Prdx6 and GPx4 localized to epithelial and endothelial cells. Prdx6 knockout or knockdown sensitized lung endothelial cells to erastin-induced ferroptosis. Cells with genetic inactivation of either aiPLA2 or Prdx6-peroxidase were more sensitive to ferroptosis than WT cells, but less sensitive than KO cells. We then conducted RNA-seq analyses in Prdx6-depleted cells to further explore how the loss of Prdx6 sensitizes lung endothelial cells to ferroptosis. Prdx6 KD upregulated transcriptional signatures associated with selenoamino acid metabolism and mitochondrial function. Accordingly, Prdx6 deficiency blunted mitochondrial function and increased GPx4 abundance whereas GPx4 KD had the opposite effect on Prdx6. Moreover, we detected Prdx6 and GPx4 interactions in intact cells, suggesting that both enzymes cooperate to suppress lipid peroxidation. Notably, Prdx6-depleted cells remained sensitive to erastin-induced ferroptosis despite the compensatory increase in GPx4. These results show that Prdx6 suppresses ferroptosis in lung endothelial cells and that both aiPLA2 and Prdx6-peroxidase contribute to this effect. These results also show that Prdx6 supports mitochondrial function and modulates several coordinated cytoprotective pathways in the pulmonary endothelium.


Subject(s)
Endothelial Cells , Ferroptosis , Group VI Phospholipases A2 , Lipid Peroxidation , Lung , Peroxiredoxin VI , Phospholipid Hydroperoxide Glutathione Peroxidase , Piperazines , Ferroptosis/genetics , Peroxiredoxin VI/metabolism , Peroxiredoxin VI/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Lung/metabolism , Lung/pathology , Animals , Endothelial Cells/metabolism , Mice , Humans , Phospholipases A2/metabolism , Phospholipases A2/genetics , Mice, Knockout
20.
Vet Microbiol ; 293: 110068, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38579482

ABSTRACT

Ferroptosis is a form of controlled cell death that was first described relatively recently and that is dependent on the formation and accumulation of lipid free radicals through an iron-mediated mechanism. A growing body of evidence supports the close relationship between pathogenic infections and ferroptotic cell death, particularly for viral infections. Ferroptosis is also closely tied to the pathogenic development of hepatic steatosis and other forms of liver disease. Fowl adenovirus serotype 4 (FAdV-4) is a hepatotropic aviadenovirus causing hydropericardium syndrome (HPS) that is capable of impacting fat metabolism. However, it remains uncertain as to what role, if any, ferroptotic death plays in the context of FAdV-4 infection. Here, FAdV-4 was found to promote ferroptosis via the p53-SLC7A11-GPX4 axis, while ferrostain-1 was capable of inhibiting this FAdV-4-mediated ferroptotic death through marked reductions in lipid peroxidation. The incidence of FAdV-4-induced fatty liver was also found to be associated with the activation of ferroptotic activity. Together, these results offer novel insights regarding potential approaches to treating HPS.


Subject(s)
Ferroptosis , Lipid Metabolism , Animals , Lipid Peroxidation , Chickens , Aviadenovirus/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Cell Line , Fatty Liver/veterinary , Fatty Liver/metabolism , Adenoviridae Infections/veterinary , Adenoviridae Infections/virology , Adenoviridae Infections/metabolism , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Poultry Diseases/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...