Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.493
Filter
1.
Hepatol Commun ; 8(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38836837

ABSTRACT

BACKGROUND: Abnormal phospholipid metabolism is linked to metabolic dysfunction-associated steatotic liver disease (MASLD) development and progression. We aimed to clarify whether genetic variants of phospholipid metabolism modify these relationships. METHODS: This case-control study consecutively recruited 600 patients who underwent MRI-based proton density fat fraction examination (240 participants with serum metabonomics analysis, 128 biopsy-proven cases) as 3 groups: healthy control, nonobese MASLD, and obese MASLD, (n = 200 cases each). Ten variants of phospholipid metabolism-related genes [phospholipase A2 Group VII rs1805018, rs76863441, rs1421378, and rs1051931; phospholipase A2 receptor 1 (PLA2R1) rs35771982, rs3828323, and rs3749117; paraoxonase-1 rs662 and rs854560; and ceramide synthase 4 (CERS4) rs17160348)] were genotyped using SNaPshot. RESULTS: The T-allele of CERS4 rs17160348 was associated with a higher risk of both obese and nonobese MASLD (OR: 1.95, 95% CI: 1.20-3.15; OR: 1.76, 95% CI: 1.08-2.86, respectively). PLA2R1 rs35771982-allele is a risk factor for nonobese MASLD (OR: 1.66, 95% CI: 1.11-1.24), moderate-to-severe steatosis (OR: 3.24, 95% CI: 1.96-6.22), and steatohepatitis (OR: 2.61, 95% CI: 1.15-3.87), while the paraoxonase-1 rs854560 T-allele (OR: 0.50, 95% CI: 0.26-0.97) and PLA2R1 rs3749117 C-allele (OR: 1.70, 95% CI: 1.14-2.52) are closely related to obese MASLD. After adjusting for sphingomyelin level, the effect of the PLA2R1 rs35771982CC allele on MASLD was attenuated. Furthermore, similar effects on the association between the CERS4 rs17160348 C allele and MASLD were observed for phosphatidylcholine, phosphatidic acid, sphingomyelin, and phosphatidylinositol. CONCLUSIONS: The mutations in PLA2R1 rs35771982 and CERS4 rs17160348 presented detrimental impact on the risk of occurrence and disease severity in nonobese MASLD through altered phospholipid metabolism.


Subject(s)
Genotype , Receptors, Phospholipase A2 , Humans , Male , Female , Middle Aged , Case-Control Studies , Receptors, Phospholipase A2/genetics , Phospholipids/blood , Adult , Obesity/genetics , Polymorphism, Single Nucleotide , Fatty Liver/genetics , Genetic Predisposition to Disease/genetics
2.
Nutrients ; 16(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38674894

ABSTRACT

The dysfunction of phospholipid metabolism enzymes and the change in membrane phospholipid composition are associated with insulin resistance, indicating that phospholipids play an important role in the regulation of insulin sensitivity. The reflection of phospholipid changes in blood might provide clues for both mechanism understanding and intervention. Using a targeted phospholipidomic approach, 199 phospholipid molecular species were identified and quantified in the plasma of 1053 middle-aged participants from a national investigation. The associations of the phospholipid matrix, clusters, and molecular species with insulin resistance were investigated. A significant association was confirmed between the phospholipid matrix and the homeostatic-model assessment of insulin resistance (HOMA-IR) by a distance-based linear model. Furthermore, three clustered phospholipid modules and 32 phospholipid molecular species were associated with HOMA-IR with the strict control of demographic and lifestyle parameters, family history of diabetes, BMI, WC, and blood lipid parameters. The overall decline in lysophosphatidylcholines (LPCs), the decrease in saturated lysophosphatidylethanolamines (LPEs), the decrease in polyunsaturated/plasmenyl phosphatidylcholines (PCs), and the increase in polyunsaturated phatidylethanolamines (PEs) were the prominent characters of plasma phospholipid perturbation associated with insulin resistance. This suggested that PC- and PE-related metabolic pathways were widely involved in the process of insulin resistance, especially the disorder of LPC acylation to diacyl-PC.


Subject(s)
Insulin Resistance , Phospholipids , Humans , Phospholipids/blood , China , Male , Female , Cross-Sectional Studies , Middle Aged , Adult , Chronic Disease
3.
Maturitas ; 184: 107948, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38447232

ABSTRACT

OBJECTIVE: Middle-aged women with obesity are at increased risk of iron overload and iron disorder is known to disrupt n-3 polyunsaturated fatty acid homeostasis. We evaluated relationships between pretreatment hemoglobin and n-3 polyunsaturated fatty acid levels, and tested whether pretreatment hemoglobin contributed to inter-individual variability in weight loss with special focus on changes in body weight, iron and n-3 polyunsaturated fatty acid profiles. STUDY DESIGN: 117 middle and older aged women with obesity and more than two metabolic abnormalities were randomized to a 12-week hypocaloric diet without or with fish oil supplementation. Blood iron biomarker and erythrocyte membrane phospholipid profiles were evaluated. MAIN OUTCOME: The absolute change from baseline to week 12 in serum iron and erythrocyte n-3 polyunsaturated fatty acid levels according to pretreatment hemoglobin tertiles and fish oil supplementation. RESULTS: A Pearson correlation analysis showed that pretreatment hemoglobin levels were negatively correlated with linoleic acid (r = -0.231), α-linoleic acid (r = -0.279), and n-3 polyunsaturated fatty acid (r = -0.217) (all p < 0.05). Dietary weight loss markedly enhanced erythrocyte membrane lipids of linoleic acid, α-linoleic acid, and n-6 and n-3 polyunsaturated fatty acid only in those women with the highest pretreatment hemoglobin levels (tertile 3) (all p < 0.05). Fish oil supplementation increased bioavailable iron in women with moderate pretreatment hemoglobin levels (tertile 2) (p < 0.05) and, to a lesser extent, prevented a reduction in circulating iron in those with the lowest hemoglobin levels (tertile 1). CONCLUSION: Dietary weight loss is an effective treatment program to manage obesity-related iron and n-3 polyunsaturated fatty acid disorders, particularly for middle-aged women with obesity and iron overload.


Subject(s)
Dietary Supplements , Erythrocyte Membrane , Fatty Acids, Omega-3 , Fish Oils , Hemoglobins , Homeostasis , Iron , Obesity , Weight Loss , Humans , Female , Middle Aged , Fatty Acids, Omega-3/administration & dosage , Obesity/diet therapy , Obesity/complications , Obesity/blood , Obesity/metabolism , Fish Oils/administration & dosage , Iron/blood , Iron/metabolism , Erythrocyte Membrane/metabolism , Hemoglobins/metabolism , Hemoglobins/analysis , Diet, Reducing , Adult , Caloric Restriction , Phospholipids/blood
4.
J Nutr ; 154(5): 1561-1570, 2024 May.
Article in English | MEDLINE | ID: mdl-38513888

ABSTRACT

BACKGROUND: The brain is concentrated with omega (ω)-3 (n-3) fatty acids (FAs), and these FAs must come from the plasma pool. The 2 main ω-3 FAs, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), must be in the form of nonesterified fatty acid (NEFA) or esterified within phospholipids (PLs) to reach the brain. We hypothesized that the plasma concentrations of these ω-3 FAs can be modulated by sex, body mass index (BMI, kg/m2), age, and the presence of the apolipoprotein (APO) E-ε4 allele in response to the supplementation. OBJECTIVES: This secondary analysis aimed to determine the concentration of EPA and DHA within plasma PL and in the NEFA form after an ω-3 FA or a placebo supplementation and to investigate whether the factors change the response to the supplement. METHODS: A randomized, double-blind, placebo-controlled trial was conducted. Participants were randomly assigned to either an ω-3 FA supplement (DHA 0.8 g and EPA 1.7 g daily) or to a placebo for 6 mo. FAs from fasting plasma samples were extracted and subsequently separated into PLs with esterified FAs and NEFAs using solid-phase extraction. DHA and EPA concentrations in plasma PLs and as NEFAs were quantified using gas chromatography. RESULTS: EPA and DHA concentrations in the NEFA pool significantly increased by 31%-71% and 42%-82%, respectively, after 1 and 6 mo of ω-3 FA supplementation. No factors influenced plasma DHA and EPA responses in the NEFA pool. In the plasma PL pool, DHA increased by 83%-109% and EPA by 387%-463% after 1 and 6 mo of ω-3 FA supplementation. APOE4 carriers, females, and individuals with a BMI of ≤25 had higher EPA concentrations than noncarriers, males, and those with a BMI of >25, respectively. CONCLUSIONS: The concentration of EPA in plasma PLs are modulated by APOE4, sex, and BMI. These factors should be considered when designing clinical trials involving ω-3 FA supplementation. This trial was registered at clinicaltrials.gov as NCT01625195.


Subject(s)
Apolipoprotein E4 , Body Mass Index , Dietary Supplements , Eicosapentaenoic Acid , Fatty Acids, Omega-3 , Phospholipids , Humans , Female , Male , Phospholipids/blood , Eicosapentaenoic Acid/blood , Eicosapentaenoic Acid/administration & dosage , Double-Blind Method , Fatty Acids, Omega-3/blood , Fatty Acids, Omega-3/administration & dosage , Apolipoprotein E4/genetics , Apolipoprotein E4/blood , Middle Aged , Adult , Sex Factors , Docosahexaenoic Acids/blood , Docosahexaenoic Acids/administration & dosage , Aged
5.
J Biol Chem ; 300(3): 105726, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38325741

ABSTRACT

Hyperlipidemia predisposes individuals to cardiometabolic diseases, the most common cause of global mortality. Microsomal triglyceride transfer protein (MTP) transfers multiple lipids and is essential for the assembly of apolipoprotein B-containing lipoproteins. MTP inhibition lowers plasma lipids but causes lipid retention in the liver and intestine. Previous studies suggested two lipid transfer domains in MTP and that specific inhibition of triglyceride (TG) and not phospholipid (PL) transfer can lower plasma lipids without significant tissue lipid accumulation. However, how MTP transfers different lipids and the domains involved in these activities are unknown. Here, we tested a hypothesis that two different ß-sandwich domains in MTP transfer TG and PL. Mutagenesis of charged amino acids in ß2-sandwich had no effect on PL transfer activity indicating that they are not critical. In contrast, amino acids with bulky hydrophobic side chains in ß1-sandwich were critical for both TG and PL transfer activities. Substitutions of these residues with smaller hydrophobic side chains or positive charges reduced, whereas negatively charged side chains severely attenuated MTP lipid transfer activities. These studies point to a common lipid transfer domain for TG and PL in MTP that is enriched with bulky hydrophobic amino acids. Furthermore, we observed a strong correlation in different MTP mutants with respect to loss of both the lipid transfer activities, again implicating a common binding site for TG and PL in MTP. We propose that targeting of areas other than the identified common lipid transfer domain might reduce plasma lipids without causing cellular lipid retention.


Subject(s)
Carrier Proteins , Hydrophobic and Hydrophilic Interactions , Phospholipids , Triglycerides , Humans , Amino Acids/chemistry , Amino Acids/genetics , Amino Acids/metabolism , Apolipoproteins B/chemistry , Apolipoproteins B/metabolism , Carrier Proteins/chemistry , Carrier Proteins/genetics , Carrier Proteins/metabolism , Phospholipids/blood , Phospholipids/metabolism , Triglycerides/blood , Triglycerides/metabolism , Protein Domains , Mutation , Structure-Activity Relationship , Binding Sites
6.
Nutrition ; 106: 111910, 2023 02.
Article in English | MEDLINE | ID: mdl-36459845

ABSTRACT

OBJECTIVES: The role of plasma phospholipid arachidonic acid (AA) in the development of non-alcoholic fatty liver disease (NALFD), cirrhosis, and liver cancer remains unclear. This study aimed to determine the causality of the associations of plasma phospholipid AA with NALFD, cirrhosis, and liver cancer using Mendelian randomization analysis. METHODS: Nine independent single-nucleotide polymorphisms associated with plasma phospholipid AA at the genome-wide significance were used as instrumental variables. Summary-level data for three outcomes were obtained from 1) a genome-wide association study for NAFLD, 2) the UK Biobank study, and 3) the FinnGen study. The sensitivity analysis excluding the pleiotropic variant rs174547 in the FADS1 gene was performed. Estimates from different sources were combined using the fixed-effects meta-analysis method. RESULTS: Per standard deviation increase in AA levels, the combined odds ratio was 1.06 (95% confidence interval, 1.02-1.11; P = 0.008) for NAFLD, 1.05 (95% confidence interval, 1.01-1.09; P = 0.009) for cirrhosis, and 0.99 (95% confidence interval, 0.94-1.05; P = 0.765) for liver cancer. The associations remained stable in the sensitivity analysis excluding rs174547. CONCLUSIONS: This study suggests potential causal associations of high levels of plasma phospholipid AA with the risk of NAFLD and cirrhosis.


Subject(s)
Arachidonic Acid , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Humans , Arachidonic Acid/blood , Arachidonic Acid/chemistry , Genetic Predisposition to Disease , Genome-Wide Association Study , Mendelian Randomization Analysis , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/genetics , Phospholipids/blood , Phospholipids/chemistry , Polymorphism, Single Nucleotide , Risk Factors
7.
Phytomedicine ; 102: 154198, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35636175

ABSTRACT

BACKGROUND: Postmenopausal osteoporosis (PMOP) is a serious problem for the women over 50 years old. Natural product puerarin (PUE) has been proven to improve PMOP with high safety. PMOP is a metabolic disorder affecting bone metabolism, indicating that endogenous metabolites amelioration may be a novel strategy for PMOP therapy. However, what the metabolic profile of POMP will be after PUE treatment is still obscure. PURPOSE: We purpose to figure out the metabolic characteristics of PMOP and to explore the intrinsic mechanism on the anti-osteoporosis efficacy after PUE treatment based on the serum metabolomics. METHODS: We established OVX rats as osteoporosis model, and the animals were distributed into Sham, OVX, and OVX+PUE (100 mg/kg/d) group. The femurs were analyzed by µ-CT and three-point bending test. Serum metabolomics was performed by UPLC/Q-TOF-MS. We also determined the body weight, liver weight, and the levels of serum TC, TG, LDL-C, and HDL-C. The key proteins of the PPARγ pathway and Wnt pathway were analyzed by Western blot and qPCR experiments. RESULTS: PUE treatment for 14 weeks both improved the bone structure and ameliorated lipid metabolism in ovariectomized rats. By determination and further analysis of serum metabolomics, we revealed that the endogenous metabolites was significantly changed in ovariectomized rats, and PUE treatment adjusted 23 differential metabolites, which were involved in phospholipid metabolism metabolism and PUFAs metabolic pathways. Close correlationships were futher found between the indexes of bone metabolism, lipid metabolism and the differential metabolites, particularly LysoPA, S1P and n-3/n-6 PUFAs. Further, we discovered that PUE regulated differentiation of BMSCs to elicit anti-osteoporosis efficacy, attributing to Wnt/ß-catenin signaling activation and PPARγ pathway inhibition initiated by metabolomics. CONCLUSION: PUE improves OVX-induced osteoporosis and lipid metabolism by regulating phospholipid metabolism and biosynthesis of PUFAs, resulting in reducing the adipogenic differentiation and promoting osteogenic differentiation of BMSCs via Wnt pathway activation and PPARγ pathway inhibition in ovariectomized rats. The study provides us a novel mechanism to explain the improvement of osteoporosis by PUE, depicts a metabolic profile of PMOP, and gives us another point cut for further exploring the pathogenesis of PMOP and looking for biomarkers of osteoporosis.


Subject(s)
Fatty Acids, Unsaturated , Isoflavones , Osteoporosis, Postmenopausal , Phospholipids , Animals , Fatty Acids, Unsaturated/biosynthesis , Fatty Acids, Unsaturated/blood , Female , Humans , Isoflavones/pharmacology , Lipid Metabolism , Metabolomics , Osteogenesis , Osteoporosis, Postmenopausal/blood , Osteoporosis, Postmenopausal/drug therapy , Osteoporosis, Postmenopausal/metabolism , Ovariectomy , PPAR gamma/metabolism , Phospholipids/blood , Phospholipids/metabolism , Rats
8.
Sci Rep ; 12(1): 574, 2022 01 12.
Article in English | MEDLINE | ID: mdl-35022422

ABSTRACT

High-throughput techniques allow us to measure a wide-range of phospholipids which can provide insight into the mechanisms of hypertension. We aimed to conduct an in-depth multi-omics study of various phospholipids with systolic blood pressure (SBP) and diastolic blood pressure (DBP). The associations of blood pressure and 151 plasma phospholipids measured by electrospray ionization tandem mass spectrometry were performed by linear regression in five European cohorts (n = 2786 in discovery and n = 1185 in replication). We further explored the blood pressure-related phospholipids in Erasmus Rucphen Family (ERF) study by associating them with multiple cardiometabolic traits (linear regression) and predicting incident hypertension (Cox regression). Mendelian Randomization (MR) and phenome-wide association study (Phewas) were also explored to further investigate these association results. We identified six phosphatidylethanolamines (PE 38:3, PE 38:4, PE 38:6, PE 40:4, PE 40:5 and PE 40:6) and two phosphatidylcholines (PC 32:1 and PC 40:5) which together predicted incident hypertension with an area under the ROC curve (AUC) of 0.61. The identified eight phospholipids are strongly associated with triglycerides, obesity related traits (e.g. waist, waist-hip ratio, total fat percentage, body mass index, lipid-lowering medication, and leptin), diabetes related traits (e.g. glucose, insulin resistance and insulin) and prevalent type 2 diabetes. The genetic determinants of these phospholipids also associated with many lipoproteins, heart rate, pulse rate and blood cell counts. No significant association was identified by bi-directional MR approach. We identified eight blood pressure-related circulating phospholipids that have a predictive value for incident hypertension. Our cross-omics analyses show that phospholipid metabolites in the circulation may yield insight into blood pressure regulation and raise a number of testable hypothesis for future research.


Subject(s)
Blood Pressure , Computational Biology , Hypertension/blood , Phospholipids/blood , Adult , Aged , Biomarkers/blood , Cardiometabolic Risk Factors , Cohort Studies , Diastole , Female , Humans , Male , Mendelian Randomization Analysis , Middle Aged , Systole
9.
Mol Cell Biochem ; 477(2): 559-570, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34843015

ABSTRACT

Impaired high-density lipoprotein (HDL) functions are associated with development of coronary artery disease. In this study, we explored the quantitative differences in HDL (i.e. HDL proteome and fatty acid profile of HDL phospholipids) underlying the functional deficits associated with acute coronary syndrome (ACS). The relationship between HDL function and composition was assessed in 65 consecutive ACS patients and 40 healthy controls. Cholesterol efflux capacity (CEC) of HDL and lecithin cholesterol acyl transferase (LCAT) activity were significantly lower in patients with ACS compared to controls. In HDL proteome analysis, HDL isolated from ACS individuals was enriched in apolipoprotein C2 (inhibitor of LCAT), apolipoprotein C4 and serum amyloid A proteins and was deficient in apolipoprotein A-I and A-II. The fatty acid profile of HDL phospholipids analyzed using gas chromatography showed significantly lower percentages of stearic acid (17.4 ± 2.4 vs 15.8 ± 2.8, p = 0.004) and omega-3 fatty acids [eicosapentaenoic acid (1.0 (0.6-1.4) vs 0.7 (0.4-1.0), p = 0.009) and docosahexaenoic acid (1.5 ± 0.7 vs 1.3 ± 0.5, p = 0.03)] in ACS patients compared to controls. Lower percentages of these fatty acids in HDL were associated with higher odds of developing ACS. Our results suggest that distinct phospholipid fatty acid profiles found in HDL from ACS patients could be one of the contributing factors to the deranged HDL functions in these patients apart from the protein content and the inflammatory conditions.


Subject(s)
Acute Coronary Syndrome/blood , Lipoproteins, HDL/blood , Phospholipids/blood , Proteome/metabolism , Acute Coronary Syndrome/ethnology , Adult , Asian People , Female , Humans , India , Male , Middle Aged
10.
J Clin Endocrinol Metab ; 107(1): e315-e327, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34390344

ABSTRACT

CONTEXT: Maternal prepregnancy body mass index (BMI) has a strong influence on gestational metabolism, but detailed metabolic alterations are unknown. OBJECTIVE: First, to examine the associations of maternal prepregnancy BMI with maternal early-pregnancy metabolite alterations. Second, to identify an early-pregnancy metabolite profile associated with birthweight in women with a higher prepregnancy BMI that improved prediction of birthweight compared to glucose and lipid concentrations. DESIGN, SETTING, AND PARTICIPANTS: Prepregnancy BMI was obtained in a subgroup of 682 Dutch pregnant women from the Generation R prospective cohort study. MAIN OUTCOME MEASURES: Maternal nonfasting targeted amino acids, nonesterified fatty acid, phospholipid, and carnitine concentrations measured in blood serum at mean gestational age of 12.8 weeks. Birthweight was obtained from medical records. RESULTS: A higher prepregnancy BMI was associated with 72 altered amino acids, nonesterified fatty acid, phospholipid and carnitine concentrations, and 6 metabolite ratios reflecting Krebs cycle, inflammatory, oxidative stress, and lipid metabolic processes (P-values < 0.05). Using penalized regression models, a metabolite profile was selected including 15 metabolites and 4 metabolite ratios based on its association with birthweight in addition to prepregnancy BMI. The adjusted R2 of birthweight was 6.1% for prepregnancy BMI alone, 6.2% after addition of glucose and lipid concentrations, and 12.9% after addition of the metabolite profile. CONCLUSIONS: A higher maternal prepregnancy BMI was associated with altered maternal early-pregnancy amino acids, nonesterified fatty acids, phospholipids, and carnitines. Using these metabolites, we identified a maternal metabolite profile that improved prediction of birthweight in women with a higher prepregnancy BMI compared to glucose and lipid concentrations.


Subject(s)
Birth Weight , Body Mass Index , Obesity, Maternal/metabolism , Adult , Amino Acids/blood , Amino Acids/metabolism , Carnitine/blood , Carnitine/metabolism , Fatty Acids, Nonesterified/blood , Fatty Acids, Nonesterified/metabolism , Female , Humans , Maternal Age , Metabolomics , Obesity, Maternal/blood , Obesity, Maternal/diagnosis , Phospholipids/blood , Phospholipids/metabolism , Pregnancy , Pregnancy Trimester, Second/blood , Pregnancy Trimester, Second/metabolism , Pregnancy Trimester, Third/blood , Pregnancy Trimester, Third/metabolism , Prospective Studies , Risk Factors
11.
Crit Care Med ; 50(2): e199-e208, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34259447

ABSTRACT

OBJECTIVES: Cardiac arrest and subsequent resuscitation have been shown to deplete plasma phospholipids. This depletion of phospholipids in circulating plasma may contribute to organ damage postresuscitation. Our aim was to identify the diminishment of essential phospholipids in postresuscitation plasma and develop a novel therapeutic approach of supplementing these depleted phospholipids that are required to prevent organ dysfunction postcardiac arrest, which may lead to improved survival. DESIGN: Clinical case control study followed by translational laboratory study. SETTING: Research institution. PATIENTS/SUBJECTS: Adult cardiac arrest patients and male Sprague-Dawley rats. INTERVENTIONS: Resuscitated rats after 10-minute asphyxial cardiac arrest were randomized to be treated with lysophosphatidylcholine specie or vehicle. MEASUREMENTS AND MAIN RESULTS: We first performed a phospholipid survey on human cardiac arrest and control plasma. Using mass spectrometry analysis followed by multivariable regression analyses, we found that plasma lysophosphatidylcholine levels were an independent discriminator of cardiac arrest. We also found that decreased plasma lysophosphatidylcholine was associated with poor patient outcomes. A similar association was observed in our rat model, with significantly greater depletion of plasma lysophosphatidylcholine with increased cardiac arrest time, suggesting an association of lysophosphatidylcholine levels with injury severity. Using a 10-minute cardiac arrest rat model, we tested supplementation of depleted lysophosphatidylcholine species, lysophosphatidylcholine(18:1), and lysophosphatidylcholine(22:6), which resulted in significantly increased survival compared with control. Furthermore, the survived rats treated with these lysophosphatidylcholine species exhibited significantly improved brain function. However, supplementing lysophosphatidylcholine(18:0), which did not decrease in the plasma after 10-minute cardiac arrest, had no beneficial effect. CONCLUSIONS: Our data suggest that decreased plasma lysophosphatidylcholine is a major contributor to mortality and brain damage postcardiac arrest, and its supplementation may be a novel therapeutic approach.


Subject(s)
Heart Arrest/metabolism , Lysophosphatidylcholines/analysis , Mass Screening/standards , Phospholipids/analysis , Aged , Aged, 80 and over , Animals , Female , Heart Arrest/blood , Heart Arrest/complications , Humans , Lysophosphatidylcholines/blood , Male , Mass Screening/methods , Mass Screening/statistics & numerical data , Phospholipids/blood , Rats , Rats, Sprague-Dawley , Severity of Illness Index
12.
Biol Pharm Bull ; 44(12): 1851-1859, 2021.
Article in English | MEDLINE | ID: mdl-34853267

ABSTRACT

The physical characteristics and behavior of the ATP-binding cassette (ABC) A1, A7, and apolipoprotein (apo) E knockout (KO) mice with lipid transport dysfunction were investigated. These KO mice exhibited adequate growth, and their body masses increased steadily. No remarkable changes were observed in their blood pressure and heart rate. However, there was a slight increase in the heart rate of the ABCA7 KO mice compared with that of the wild-type (WT) mice. ABCA1 and apoE KO mice showed hypo- and hyper-cholesterol concentrations in the plasma, respectively. With regard to the cerebrum, however, the weight of the ABCA1 KO mice was lighter than those of the other genotypes. Furthermore, the cholesterol, triglyceride and phospholipid concentrations, and fatty acid composition were generally similar. Compared with the WT mice, ABCA1 KO mice stayed for a shorter time in the closed arm of the elevated plus maze, and performed worse in the initial stage of the Morris water maze. To thermal stimuli, the ABCA1 and apoE KO mice showed hyper- and hypo-sensitivities, respectively. Only the response of the ABCA1 KO mice was significantly inhibited by pretreatment with indomethacin. A low concentration of the prostaglandin E metabolites was detected in the plasma of the ABCA1 KO mice. Thus, ABCA1 is thought to play a specific role in the neural function.


Subject(s)
ATP Binding Cassette Transporter 1/metabolism , ATP-Binding Cassette Transporters/metabolism , Apolipoproteins E/metabolism , Brain/metabolism , Dyslipidemias/metabolism , Lipids/blood , Alzheimer Disease/metabolism , Animals , Atherosclerosis/metabolism , Behavior, Animal , Biological Transport , Cholesterol/blood , Cognition , Fatty Acids/blood , Hyperalgesia/metabolism , Lipid Metabolism , Locomotion , Male , Maze Learning , Mice, Knockout , Phospholipids/blood , Prostaglandins E/blood , Triglycerides/blood
13.
Nutrients ; 13(11)2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34836034

ABSTRACT

Atopic eczema, the most common atopic disease in infants, may pave the way for sensitization and allergy later in childhood. Fatty acids have immune-regulating properties and may regulate skin permeability. Here we examine whether the proportions of fatty acids among the infant and maternal plasma phospholipids at birth were associated with maternal dietary intake during pregnancy and development of atopic eczema during the first year of age in the Nutritional impact on Immunological maturation during Childhood in relation to the Environment (NICE) birth cohort. Dietary data were collected with a semi-quantitative food frequency questionnaire, fatty acids were measured with GC-MS and atopic eczema was diagnosed by a pediatric allergologist at 12 months of age. We found that higher proportions of n-6 PUFAs (including arachidonic acid) but lower proportions of n-3 PUFAs (including DPA) in the infant's phospholipids at birth were associated with an increased risk of atopic eczema at 12 months of age. The n-6 and n-3 PUFAs were related to maternal intake of meat and fish, respectively. Our results suggest that prenatal exposure to unsaturated fatty acids is associated with eczema development in the infant. Maternal diet during pregnancy may partly explain the fatty acid profiles in utero.


Subject(s)
Dermatitis, Atopic/etiology , Diet/adverse effects , Fatty Acids, Unsaturated/blood , Fetal Blood/chemistry , Maternal Exposure/adverse effects , Birth Cohort , Diet Surveys , Female , Humans , Infant , Infant, Newborn , Maternal Nutritional Physiological Phenomena , Phospholipids/blood , Pregnancy
14.
Nutrients ; 13(10)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34684479

ABSTRACT

Dihomo-gamma-linolenic acid (DGLA) is an n-6 polyunsaturated fatty acid (PUFA) derived from linoleic acid (LA). The LA:DGLA ratio reflects conversion from LA to DGLA. Low levels of DGLA in serum have been related to poor outcome in myocardial infarction (MI) patients. Aims: To assess the association of DGLA and LA:DGLA with total death as a primary aim and incident cardiovascular events as a secondary objective. Methods: Baseline samples from 1002 patients, aged 70 to 82 years, included 2-8 weeks after an MI and followed for 2 years, were used. Major adverse clinical events (MACE) consisted of nonfatal MI, unscheduled coronary revascularization, stroke, hospitalization for heart failure or all-cause death. Cox regression analysis was used to relate serum n-6 PUFA phospholipid levels (%wt) to the risk of MACE, adjusting for the following: (1) age, sex and body mass index (BMI); (2) adding baseline cod liver oil supplementation; (3) adding prevalent hypertension, chronic kidney disease and diabetes mellitus. Results: Median DGLA level in serum phospholipids was 2.89 (Q1-Q3 2.43-3.38) %wt. DGLA was inversely related to LA and LA:DGLA ratio. There were 208 incident cases of MACE and 55 deaths. In the multivariable analysis, the hazard ratio (HR) for the total death in the three higher quartiles (Q2-4) of DGLA as compared to Q1 was 0.54 (0.31-0.95), with p = 0.03 (Model-1), 0.50 (0.28-0.91), with p = 0.02 (Model-2), and 0.47 (0.26-0.84), with p = 0.012 (Model-3), and non-significant for MACE. Risk of MACE (Model 3) approached borderline significance for LA:DGLA in Q2-4 vs. Q1 [HR 1.42 (1.00-2.04), p = 0.052]. Conclusions: Low levels of DGLA were related to a high LA:DGLA ratio and risk of total death in elderly patients with recent MI.


Subject(s)
8,11,14-Eicosatrienoic Acid/blood , Linoleic Acid/blood , Myocardial Infarction/blood , Myocardial Infarction/mortality , Aged , Female , Humans , Kaplan-Meier Estimate , Male , Multivariate Analysis , Phospholipids/blood , Proportional Hazards Models
15.
Nutrients ; 13(9)2021 Sep 04.
Article in English | MEDLINE | ID: mdl-34578988

ABSTRACT

Recently we established a cell-free assay to evaluate "cholesterol uptake capacity (CUC)" as a novel concept for high-density lipoprotein (HDL) functionality and demonstrated the feasibility of CUC for coronary risk stratification, although its regulatory mechanism remains unclear. HDL fluidity affects cholesterol efflux, and trans fatty acids (TFA) reduce lipid membrane fluidity when incorporated into phospholipids (PL). This study aimed to clarify the effect of TFA in HDL-PL on CUC. Serum was collected from 264 patients after coronary angiography or percutaneous coronary intervention to measure CUC and elaidic acid levels in HDL-PL, and in vitro analysis using reconstituted HDL (rHDL) was used to determine the HDL-PL mechanism affecting CUC. CUC was positively associated with HDL-PL levels but negatively associated with the proportion of elaidic acid in HDL-PL (elaidic acid in HDL-PL/HDL-PL ratio). Increased elaidic acid-phosphatidylcholine (PC) content in rHDL exhibited no change in particle size or CUC compared to rHDL containing oleic acid in PC. Recombinant human lecithin-cholesterol acyltransferase (LCAT) enhanced CUC, and LCAT-dependent enhancement of CUC and LCAT-dependent cholesterol esterification were suppressed in rHDL containing elaidic acid in PC. Therefore, CUC is affected by HDL-PL concentration, HDL-PL acyl group composition, and LCAT-dependent cholesterol esterification. Elaidic acid precipitated an inhibition of cholesterol uptake and maturation of HDL; therefore, modulation of HDL-PL acyl groups could improve CUC.


Subject(s)
Cardiovascular Diseases/blood , Cholesterol, HDL/blood , Oleic Acids/physiology , Aged , Biological Transport , Biomarkers/blood , Female , Humans , Male , Membrane Lipids/blood , Phosphatidylcholine-Sterol O-Acyltransferase/blood , Phosphatidylcholines/blood , Phospholipids/blood , Registries , Trans Fatty Acids/blood
16.
Eur Rev Med Pharmacol Sci ; 25(16): 5304-5309, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34486706

ABSTRACT

OBJECTIVE: There is more pronounced hypercoagulation in COVID-19 infection than in other viral lung infections. Oxidized phospholipids (OxPLs) appear in COVID-19-infected lungs due to oxidative stress, after which they promote the induction of tissue factor (TF) expression and inflammatory programmers in monocytes, as well as activate endothelial cells to recruit and bind to monocytes. Therefore, we aimed to demonstrate the role of OxPLs in inflammatory and procoagulant responses in COVID-19 infection. PATIENTS AND METHODS: Patients with a positive SARS-CoV-2 polymerase chain reaction test and ten healthy donors were included in the study. Peripheral blood was drawn at inclusion for OxPAPC, IFN-γ, and CCL2 serum level measurements. Clinical data were collected from electronic patient medical files. The serum levels of OxPAPC, IFNγ, and CCL2 were measured by immune assays. RESULTS: Seventy-two patients were included in the study. OxPAPC and CCL2 were higher in the patients than in the controls (<0.003 and 0.011, respectively). INF-γ did not significantly differ between groups. There was no difference between the patients with lung involvement and those without CCL2, INF-γ, and OxPAPC. D-dimer, CRP, and ferritin were higher in the patients with lung involvement. Serum levels of INF-γ and CCL2 were positively correlated with each other (r:0.757, p<0.0001), but no correlation was detected between OxPAPC and INF-γ or CCL2. There was no correlation between OxPAPC and hematologic or biochemical parameters. CONCLUSIONS: OxPAPC, which is thought to contribute to hypercoagulability, was found to be high in the patients with Covid-19 infection. The role of OxPLs in COVID-19-associated hypercoagulopathy should be investigated further in experimental models and in larger patient groups.


Subject(s)
Blood Coagulation , COVID-19/blood , Phospholipids/blood , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Oxidation-Reduction , Oxidative Stress , SARS-CoV-2/isolation & purification , Young Adult
17.
Arterioscler Thromb Vasc Biol ; 41(11): e498-e511, 2021 11.
Article in English | MEDLINE | ID: mdl-34470476

ABSTRACT

Objective: To clarify the pathogenesis of human atheroma, the origin of deposited lipids, the developmental mechanism of liponecrotic tissue, and the significance of the oxidation of phospholipids were investigated using mass spectrometry-aided imaging and immunohistochemistry.Atherosclerotic lesions in human coronary arteries were divided into 3 groups: pathologic intimal thickening with lipid pool, atheroma with lipid core, and atheroma with necrotic core. The lipid pool and lipid core were characterized by the deposition of extracellular lipids. The necrotic core comprised extracellular lipids and liponecrotic tissue. The proportion of cholesteryl linoleate in cholesteryl linoleate+cholesteryl oleate fraction in the extracellular lipid and liponecrotic regions differed significantly from that of the macrophage foam cell-dominant region, and the plasma-derived components (apolipoprotein B and fibrinogen) were localized in the regions. The liponecrotic region was devoid of elastic and collagen fibers and accompanied by macrophage infiltration in the surrounding tissue. Non-oxidized phospholipid (Non-OxPL), OxPL, and Mox macrophages were detected in the three lesions. In the atheroma with lipid core and atheroma with necrotic core, non-OxPL tended to localize in the superficial layer, whereas OxPL was distributed evenly. Mox macrophages were colocalized with OxPL epitopes.In human atherosclerosis, plasma-derived lipids accumulate to form the lipid pool of pathologic intimal thickening, lipid core of atheroma with lipid core, and necrotic core of atheroma with necrotic core. The liponecrotic tissue in the necrotic core appears to be developed by the loss of elastic and collagen fibers. Non-OxPL in the accumulated lipids is oxidized to form OxPL, which may contribute to the lesion development through Mox macrophages.


Subject(s)
Cholesterol/analysis , Coronary Artery Disease/metabolism , Coronary Artery Disease/pathology , Coronary Vessels/chemistry , Coronary Vessels/pathology , Molecular Imaging , Phospholipids/analysis , Plaque, Atherosclerotic , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Adult , Aged , Aged, 80 and over , Apoptosis , Autophagy , Biopsy , Case-Control Studies , Cholesterol/blood , Coronary Artery Disease/blood , Female , Foam Cells/chemistry , Foam Cells/pathology , Humans , Immunohistochemistry , Male , Middle Aged , Necrosis , Neointima , Oxidation-Reduction , Phospholipids/blood , Predictive Value of Tests
19.
Arterioscler Thromb Vasc Biol ; 41(10): 2588-2597, 2021 10.
Article in English | MEDLINE | ID: mdl-34433296

ABSTRACT

Objective: Cholesterol efflux capacity (CEC), the ability of extracellular acceptors to pick-up cholesterol from macrophages, is a clinically relevant cardiovascular biomarker. CEC is inversely associated with incident atherosclerotic cardiovascular disease events. However, CEC is only modestly associated with HDL-C (high-density lipoprotein cholesterol) levels, which may explain the failure of HDL-C raising therapies to improve atherosclerotic cardiovascular disease outcomes. Determinants of variation in CEC are not well understood. Thus, we sought to establish whether extreme high and low CEC is a robust persistent phenotype and to characterize associations with cholesterol, protein, and phospholipids across the particle size distribution. Approach and Results: CEC was previously measured in 2924 participants enrolled in the Dallas Heart Study, a multi-ethnic population-based study from 2000 to 2002. We prospectively recruited those who were below the 10th and above 90th percentile of CEC. Our study revealed that extreme low and high CEC are persistent, robust phenotypes after 15 years of follow-up. Using size exclusion chromatography, CEC to fractionated plasma depleted of apolipoprotein B (fraction-specific CEC) demonstrated significant differences in CEC patterns between persistent high and low efflux groups. Fraction-specific CEC was correlated with fraction-specific total phospholipid but not apolipoprotein A-I, cholesterol, or total protein. These correlations varied across the size distribution and differed among persistent high versus low efflux groups. Conclusions: Extreme high and low CEC are persistent and robust phenotypes. CEC patterns in fractionated plasma reveal marked variation across the size distribution. Future studies are warranted to determine specific molecular species linked to CEC in a size-specific manner.


Subject(s)
Cholesterol/blood , Macrophages/metabolism , Phospholipids/blood , Aged , Animals , Apolipoprotein A-I/blood , Apolipoprotein B-100/blood , Biological Transport , Cell Line , Female , Follow-Up Studies , Humans , Male , Mice , Middle Aged , Particle Size , Prospective Studies , Texas , Time Factors
20.
JAMA Netw Open ; 4(8): e2120616, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34383061

ABSTRACT

Importance: Identifying novel factors that protect against age-related diseases and promote healthy aging is critical to public health. Higher levels of circulating very-long-chain saturated fatty acids (VLSFAs) are integrated biomarkers of diet and metabolism shown to have beneficial associations in cardiovascular disease and total mortality, but whether they are associated with overall healthy aging is unknown. Objective: To examine the association of circulating levels of 3 VLSFAs with unhealthy aging events, including incident chronic disease (cardiovascular disease, cancer, lung disease or severe kidney disease), physical dysfunction, and cognitive decline. Design, Setting, and Participants: This cohort study used 1992 to 2014 data from the Cardiovascular Health Study (CHS). The CHS is a multicenter, population-based study of cardiovascular disease among older adults. Among the 4559 CHS participants with available fatty acid data, 1879 participants who had an age-related event before their first measurement were excluded. Data analysis was performed in 2020. Main Outcomes and Measures: Plasma phospholipid VLSFA levels were measured by thin-layer chromatography followed by gas chromatography. The main outcome was the hazard ratio (HR) of an incident unhealthy aging event associated with serial measures of plasma arachidic acid, behenic acid, and lignoceric acid. Results: Among the 2680 study participants (976 men [36.4%]), the mean (SD) age was 74.7 (4.8) years old at entry. During a median (interquartile range) of 6.4 (2.9-12.9) years of follow-up, 2484 participants experienced an unhealthy event. Compared with the lowest quintile, levels of behenic acid in the highest quintile of the fatty acid distribution were associated with 15% lower risk of an unhealthy event (HR, 0.85; 95% CI, 0.74-0.97; P for trend = .01) after adjustment for demographic characteristics, lifestyle factors, and clinical conditions. In analogous comparisons, levels of lignoceric acid were similarly associated with 16% lower risk of an unhealthy event (HR, 0.84; 95% CI, 0.73-0.95; P for trend = .001). Conclusions and Relevance: These findings suggest that higher levels of circulating behenic acid and lignoceric acid are associated with lower risk of unhealthy aging events. These results highlight the need to explore determinants of circulating VLSFAs for potential novel efforts to promote healthy aging.


Subject(s)
Biomarkers/blood , Cardiovascular Diseases/blood , Cardiovascular Diseases/physiopathology , Fatty Acids/blood , Healthy Aging/blood , Healthy Aging/physiology , Phospholipids/blood , Aged , Aged, 80 and over , California , Cohort Studies , Diagnostic Tests, Routine , Female , Humans , Life Style , Male , Maryland , North Carolina , Pennsylvania
SELECTION OF CITATIONS
SEARCH DETAIL
...