Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.050
Filter
1.
J Phys Chem B ; 128(18): 4414-4427, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38690887

ABSTRACT

This study elucidated the mechanism of formation of a tripartite complex containing daptomycin (Dap), lipid II, and phospholipid phosphatidylglycerol in the bacterial septum membrane, which was previously reported as the cause of the antibacterial action of Dap against gram-positive bacteria via molecular dynamics and enhanced sampling methods. Others have suggested that this transient complex ushers in the inhibition of cell wall synthesis by obstructing the downstream polymerization and cross-linking processes involving lipid II, which is absent in the presence of cardiolipin lipid in the membrane. In this work, we observed that the complex was stabilized by Ca2+-mediated electrostatic interactions between Dap and lipid head groups, hydrophobic interaction, hydrogen bonds, and salt bridges between the lipopeptide and lipids and was associated with Dap concentration-dependent membrane depolarization, thinning of the bilayer, and increased lipid tail disorder. Residues Orn6 and Kyn13, along with the DXDG motif, made simultaneous contact with constituent lipids, hence playing a crucial role in the formation of the complex. Incorporating cardiolipin into the membrane model led to its competitively displacing lipid II away from the Dap, reducing the lifetime of the complex and the nonexistence of lipid tail disorder and membrane depolarization. No evidence of water permeation inside the membrane hydrophobic interior was noted in all of the systems studied. Additionally, it was shown that using hydrophobic contacts between Dap and lipids as collective variables for enhanced sampling gave rise to a free energy barrier for the translocation of the lipopeptide. A better understanding of Dap's antibacterial mechanism, as studied through this work, will help develop lipopeptide-based antibiotics for rising Dap-resistant bacteria.


Subject(s)
Anti-Bacterial Agents , Daptomycin , Molecular Dynamics Simulation , Phospholipids , Daptomycin/pharmacology , Daptomycin/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Phospholipids/chemistry , Phospholipids/metabolism , Uridine Diphosphate N-Acetylmuramic Acid/analogs & derivatives , Uridine Diphosphate N-Acetylmuramic Acid/metabolism , Uridine Diphosphate N-Acetylmuramic Acid/chemistry , Cell Membrane/drug effects , Cell Membrane/metabolism , Phosphatidylglycerols/chemistry , Hydrophobic and Hydrophilic Interactions , Cardiolipins/chemistry , Cardiolipins/metabolism
2.
Article in English | MEDLINE | ID: mdl-38809239

ABSTRACT

Strain HUAS 3-15T was isolated from the leaves of Cathaya argyrophylla collected from Chenzhou, Hunan Province, PR China. The main fatty acids (>5.0 %) of the strain were anteiso-C15 : 0, C16 : 0, C18 : 1 ω9c, iso-C16 : 0, summed feature 5 (C18 : 2 ω6,9c/C18 : 0 ante), iso-C15 : 0 and anteiso-C17 : 0. MK-9(H6), MK-9(H8) and MK-9(H4) were detected as respiratory quinones. The diagnostic cell-wall diamino acid was meso-diaminopimelic acid. Galactose, glucose and ribose were also present in the cell wall. The major polar lipids consisted of diphosphatidylglycerol, phosphatidyl ethanolamine, phosphatidylinositol mannosides and unidentified phospholipids. The DNA G+C content of the genome sequence, consisting of 8 860 963 bp, is 72.4 mol%. blast analysis based on 16S rRNA gene sequences revealed that the strain belongs to the genus Kitasatospora, with 99.37, 99.03, 98.95, 98.68 and 98.67 % sequence similarity to Kitasatospora aureofaciens ATCC 10762T, Kitasatospora viridis DSM 44826T, Kitasatospora xanthocidica NBRC 13469T, Kitasatospora aburaviensis NRRL B-2218T and Kitasatospora kifunensis IFO 15206T, respectively. Phylogenetic trees based on 16S rRNA gene and whole-genome sequences demonstrated that strain HUAS 3-15T formed a well-supported cluster with K. aureofaciens ATCC 10762T. Further genomic characterization through average nucleotide identity (ANIb/m) and digital DNA-DNA hybridization analysis between strain HUAS 3-15T and K. aureofaciens ATCC 10762T showed values of 90.62/92.55 % and 45.3 %, respectively, lower than the 95-96 % ANI threshold and 70.0 % cutoff used as guideline values for species delineation in bacteria. Furthermore, the differences between the strain and its phylogenomic neighbour in terms of physiological (e.g. sole carbon source growth) and chemotaxonomic (e.g. cellular fatty composition) characteristics further supported this conclusion. Consequently, we concluded that strain HUAS 3-15T represents a novel species of the genus Kitasatospora, for which the name Kitasatospora cathayae sp. nov. is proposed. The type strain is HUAS 3-15T (=MCCC 1K08542T=JCM 36274T).


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Endophytes , Fatty Acids , Phospholipids , Phylogeny , Plant Leaves , RNA, Ribosomal, 16S , Sequence Analysis, DNA , RNA, Ribosomal, 16S/genetics , Fatty Acids/chemistry , Plant Leaves/microbiology , DNA, Bacterial/genetics , China , Endophytes/isolation & purification , Endophytes/genetics , Endophytes/classification , Phospholipids/chemistry , Vitamin K 2/analogs & derivatives , Cell Wall/chemistry , Diaminopimelic Acid , Nucleic Acid Hybridization , Actinomycetales/isolation & purification , Actinomycetales/genetics , Actinomycetales/classification
3.
Food Res Int ; 187: 114421, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763671

ABSTRACT

This study focused on the protein-stabilised triglyceride (TG)/water interfaces and oil-in-water emulsions, and explored the influence of varying molar ratios of bile salts (BSs) and phospholipids (PLs) on the intestinal lipolysis of TGs. The presence of these two major groups of biosurfactants delivered with human bile to the physiological environment of intestinal digestion was replicated in our experiments by using mixtures of individual BSs and PLs under in vitro small intestinal lipolysis conditions. Conducted initially, retrospective analysis of available scientific literature revealed that an average molar ratio of 9:4 for BSs to PLs (BS/PL) can be considered physiological in the postprandial adult human small intestine. Our experimental data showed that combining BSs and PLs synergistically enhanced interfacial activity, substantially reducing oil-water interfacial tension (IFT) during interfacial lipolysis experiments with pancreatic lipase, especially at the BS/PL-9:4 ratio. Other BS/PL molar proportions (BS/PL-6.5:6.5 and BS/PL-4:9) and an equimolar amount of BSs (BS-13) followed in IFT reduction efficiency, while using PLs alone as biosurfactants was the least efficient. In the following emulsion lipolysis experiments, BS/PL-9:4 outperformed other BS/PL mixtures in terms of enhancing the TG digestion extent. The degree of TG conversion and the desorption efficiency of interfacial material post-lipolysis correlated directly with the BS/PL ratio, decreasing as the PL proportion increased. In conclusion, this study highlights the crucial role of biliary PLs, alongside BSs, in replicating the physiological function of bile in intestinal lipolysis of emulsified TGs. Our results showed different contributions of PLs and BSs to lipolysis, strongly suggesting that any future in vitro studies aiming to simulate the human digestion conditions should take into account the impact of biliary PLs - not just BSs - to accurately mimic the physiological role of bile in intestinal lipolysis. This is particularly crucial given the fact that existing in vitro digestion protocols typically focus solely on applying specific concentrations and/or compositions of BSs to simulate the action of human bile during intestinal digestion, while overlooking the presence and concentration of biliary PLs under physiological gut conditions.


Subject(s)
Bile Acids and Salts , Digestion , Emulsions , Lipolysis , Phospholipids , Triglycerides , Emulsions/chemistry , Triglycerides/metabolism , Triglycerides/chemistry , Bile Acids and Salts/metabolism , Humans , Phospholipids/chemistry , Phospholipids/metabolism , Digestion/physiology , Lipase/metabolism , Intestine, Small/metabolism , Surface-Active Agents/chemistry
4.
Article in English | MEDLINE | ID: mdl-38767616

ABSTRACT

A Gram-stain-positive actinomycete, designated REN17T, was isolated from fermented grains of Baijiu collected from Sichuan, PR China. It exhibited branched substrate mycelia and a sparse aerial mycelium. The optimal growth conditions for REN17T were determined to be 28 °C and pH 7, with a NaCl concentration of 0 % (w/v). ll-Diaminopimelic acid was the diagnostic amino acid of the cell-wall peptidoglycan and the polar lipids were composed of phosphatidylethanolamine, phosphatidylinositol, an unidentified phospholipid, two unidentified lipids and four unidentified glycolipids. The predominant menaquinone was MK-9 (H2), MK-9 (H4), MK-9 (H6) and MK-9 (H8). The major fatty acids were iso-C16 : 0. The 16S rRNA sequence of REN17T was most closely related to those of Streptomyces apricus SUN 51T (99.8 %), Streptomyces liliiviolaceus BH-SS-21T (99.6 %) and Streptomyces umbirnus JCM 4521T (98.9 %). The digital DNA-DNA hybridization, average nucleotide identity and average amino acid identify values between REN17T and its closest replated strain, of S. apricus SUN 51T, were 35.9, 88.9 and 87.3 %, respectively. Therefore, REN17T represents a novel species within the genus Streptomyces, for which the name Streptomyces beigongshangae sp. nov. is proposed. The type strain is REN17T (=GDMCC 4.193T=JCM 34712T). While exploring the function of the strain, REN17T was found to possess the ability to transform major ginsenosides of Panax notoginseng (Burk.) F.H. Chen (Araliaceae) into minor ginsenoside through HPLC separation, which was due to the presence of ß-glucosidase. The recombinant ß-glucosidase was constructed and purified, which could produce minor ginsenosides of Rg3 and C-K. Finally, the enzymatic properties were characterized.


Subject(s)
Bacterial Typing Techniques , DNA, Bacterial , Fatty Acids , Fermentation , Ginsenosides , Nucleic Acid Hybridization , Panax notoginseng , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Streptomyces , Vitamin K 2 , RNA, Ribosomal, 16S/genetics , Fatty Acids/chemistry , Streptomyces/isolation & purification , Streptomyces/genetics , Streptomyces/classification , Vitamin K 2/analogs & derivatives , DNA, Bacterial/genetics , China , Panax notoginseng/microbiology , Ginsenosides/metabolism , Peptidoglycan , Edible Grain/microbiology , Diaminopimelic Acid , Phospholipids/chemistry , Base Composition
5.
Article in English | MEDLINE | ID: mdl-38787363

ABSTRACT

A Gram-negative, rod-shaped, non-motile and strictly aerobic strain, designated NBU2979T, was isolated from a coastal mudflat located on Meishan Island in the East China Sea. Strain NBU2979T grew optimally at 32 °C, with 2.0 % NaCl (w/v) and at pH 7.0-7.5. The predominant fatty acid (>10 %) was iso-C15 : 0. The major polar lipids included phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, phosphatidyldimethylethanolamine, phosphatidylcholine, an unidentified glycolipid, two unidentified aminophospholipids, an unidentified phospholipid and an unidentified lipid. The only respiratory quinone was ubiquinone-8. Comparative analysis of 16S rRNA gene sequences showed that strain NBU2979T exhibited highest similarity to Marinicella sediminis F2T (98.0 %), Marinicella marina S1101T (97.5 %), Marinicella litoralis KMM 3900T (96.6 %), Marinicella rhabdoformis 3539T (95.5 %), Marinicella pacifica sw153T (95.2 %) and Marinicella gelatinilytica S6413T (94.9 %). Phylogenetic analyses indicated that strain NBU2979T clustered with the genus Marinicella and was closely related to strain M. sediminis F2T. The average nucleotide identity and digital DNA-DNA hybridization values between strain NBU2979T and related species of genus Marinicella were well below the threshold limit for prokaryotic species delineation. The DNA G+C content of strain NBU2979T was 51.6 mol%. Based on its phenotypic, chemotaxonomic and genotypic data, strain NBU2979T (=KCTC 82911T=MCCC 1K06402T) is considered to be a representative of a novel species in the genus Marinicella, for which the name Marinicella meishanensis sp. nov. is proposed.


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Geologic Sediments , Nucleic Acid Hybridization , Phospholipids , Phylogeny , RNA, Ribosomal, 16S , Seawater , Sequence Analysis, DNA , Ubiquinone , China , RNA, Ribosomal, 16S/genetics , Fatty Acids/chemistry , Geologic Sediments/microbiology , DNA, Bacterial/genetics , Seawater/microbiology , Ubiquinone/analogs & derivatives , Phospholipids/chemistry , Islands , Molecular Sequence Data
6.
Article in English | MEDLINE | ID: mdl-38787370

ABSTRACT

A Gram-stain-positive, aerobic, non-mobile and spherical strain, designated ZS9-10T, belonging to the genus Deinococcus was isolated from soil sampled at the Chinese Zhong Shan Station, Antarctica. Growth was observed in the presence of 0-4 % (w/v) NaCl, at pH 7.0-8.0 and at 4-25 °C. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain ZS9-10T formed a lineage in the genus Deinococcus. It exhibited highest sequence similarity (97.4 %) to Deinococcus marmoris DSM 12784T. The major phospholipids of ZS9-10T were unidentified phosphoglycolipid, unidentified glycolipids and unidentified lipids. The major fatty acids were summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C16 : 0 and C16 : 1 ω7c. MK-8 was the predominant respiratory quinone. The digital DNA-DNA hybridization and average nucleotide identity values between strain ZS9-10T and its close relative D. marmoris DSM 12784T were 27.4 and 83.9 %, respectively. Based on phenotypic, phylogenetic and genotypic data, a novel species, named Deinococcus arenicola sp. nov., is proposed. The type strain iis ZS9-10T (=CCTCC AB 2019392T=KCTC43192T).


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Deinococcus , Fatty Acids , Nucleic Acid Hybridization , Phospholipids , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Soil Microbiology , Antarctic Regions , RNA, Ribosomal, 16S/genetics , Deinococcus/genetics , Deinococcus/classification , Deinococcus/isolation & purification , Fatty Acids/analysis , Fatty Acids/chemistry , DNA, Bacterial/genetics , Phospholipids/analysis , Phospholipids/chemistry , Vitamin K 2/analogs & derivatives , Vitamin K 2/analysis , Vitamin K 2/chemistry , Sand/microbiology
7.
Biointerphases ; 19(3)2024 May 01.
Article in English | MEDLINE | ID: mdl-38738942

ABSTRACT

Planar supported lipid bilayers (PSLBs) are an ideal model for the study of lipid membrane structures and dynamics when using sum-frequency vibrational spectroscopy (SFVS). In this paper, we describe the construction of asymmetric PSLBs and the basic SFVS theory needed to understand and make measurements on these membranes. Several examples are presented, including the determination of phospholipid orientation and measuring phospholipid transmembrane translocation (flip-flop).


Subject(s)
Lipid Bilayers , Spectrum Analysis , Lipid Bilayers/chemistry , Spectrum Analysis/methods , Vibration , Phospholipids/chemistry , Membrane Lipids/chemistry
8.
J Agric Food Chem ; 72(19): 11268-11277, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38695399

ABSTRACT

Buttermilk is a potential material for the production of a milk fat globule membrane (MFGM) and can be mainly classified into two types: whole cream buttermilk and cheese whey cream buttermilk (WCB). Due to the high casein micelle content of whole cream buttermilk, the removal of casein micelles to improve the purity of MFGM materials is always required. This study investigated the effects of rennet and acid coagulation on the lipid profile of buttermilk rennet-coagulated whey (BRW) and buttermilk acid-coagulated whey (BAW) and compared them with WCB. BRW has significantly higher phospholipids (PLs) and ganglioside contents than BAW and WCB. The abundance of arachidonic acid (ARA)- and eicosapentaenoic acid (EPA)-structured PLs was higher in WCB, while docosahexaenoic acid (DHA)-structured PLs were higher in BRW, indicating that BRW and WCB intake might have a greater effect on improving cardiovascular conditions and neurodevelopment. WCB and BRW had a higher abundance of plasmanyl PL and plasmalogen PL, respectively. Phosphatidylcholine (PC) (28:1), LPE (20:5), and PC (26:0) are characteristic lipids among BRW, BAW, and WCB, and they can be used to distinguish MFGM-enriched whey from different sources.


Subject(s)
Buttermilk , Cheese , Goats , Lipidomics , Whey , Animals , Buttermilk/analysis , Cheese/analysis , Whey/chemistry , Phospholipids/analysis , Phospholipids/chemistry , Glycolipids/chemistry , Milk/chemistry , Lipid Droplets/chemistry , Glycoproteins/chemistry , Glycoproteins/analysis , Lipids/chemistry , Lipids/analysis
9.
Biosens Bioelectron ; 258: 116349, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38705072

ABSTRACT

Detection of cancer-related exosomes in body fluids has become a revolutionary strategy for early cancer diagnosis and prognosis prediction. We have developed a two-step targeting detection method, termed PS-MIPs-NELISA SERS, for rapid and highly sensitive exosomes detection. In the first step, a phospholipid polar site imprinting strategy was employed using magnetic PS-MIPs (phospholipids-molecularly imprinted polymers) to selectively isolate and enrich all exosomes from urine samples. In the second step, a nanozyme-linked immunosorbent assay (NELISA) technique was utilized. We constructed Au/Na7PMo11O39 nanoparticles (NPs) with both surface-enhanced Raman scattering (SERS) property and peroxidase catalytic activity, followed by the immobilization of CD9 antibodies on the surface of Au/Na7PMo11O39 NPs. The Au/Na7PMo11O39-CD9 antibody complexes were then used to recognize CD9 proteins on the surface of exosomes enriched by magnetic PS-MIPs. Lastly, the high sensitivity detection of exosomes was achieved indirectly via the SERS activity and peroxidase-like activity of Au/Na7PMo11O39 NPs. The quantity of exosomes in urine samples from pancreatic cancer patients obtained by the PS-MIPs-NELISA SERS technique showed a linear relationship with the SERS intensity in the range of 6.21 × 107-2.81 × 108 particles/mL, with a limit of detection (LOD) of 5.82 × 107 particles/mL. The SERS signal intensity of exosomes in urine samples from pancreatic cancer patients was higher than that of healthy volunteers. This bidirectional MIPs-NELISA-SERS approach enables noninvasive, highly sensitive, and rapid detection of cancer, facilitating the monitoring of disease progression during treatment and opening up a new avenue for rapid early cancer screening.


Subject(s)
Biosensing Techniques , Exosomes , Gold , Spectrum Analysis, Raman , Humans , Exosomes/chemistry , Gold/chemistry , Spectrum Analysis, Raman/methods , Phospholipids/chemistry , Phospholipids/urine , Limit of Detection , Molecular Imprinting , Molecularly Imprinted Polymers/chemistry , Epitopes/immunology , Epitopes/chemistry , Metal Nanoparticles/chemistry , Tetraspanin 29/urine , Tetraspanin 29/analysis , Antibodies, Immobilized/chemistry
10.
Langmuir ; 40(20): 10477-10485, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38710504

ABSTRACT

Insertion of hydrophobic nanoparticles into phospholipid bilayers is limited to small particles that can incorporate into a hydrophobic membrane core between two lipid leaflets. Incorporation of nanoparticles above this size limit requires the development of challenging surface engineering methodologies. In principle, increasing the long-chain lipid component in the lipid mixture should facilitate incorporation of larger nanoparticles. Here, we explore the effect of incorporating very long phospholipids (C24:1) into small unilamellar vesicles on the membrane insertion efficiency of hydrophobic nanoparticles that are 5-11 nm in diameter. To this end, we improve an existing vesicle preparation protocol and utilized cryogenic electron microscopy imaging to examine the mode of interaction and evaluate the insertion efficiency of membrane-inserted nanoparticles. We also perform classical coarse-grained molecular dynamics simulations to identify changes in lipid membrane structural properties that may increase insertion efficiency. Our results indicate that long-chain lipids increase the insertion efficiency by preferentially accumulating near membrane-inserted nanoparticles to reduce the thermodynamically unfavorable disruption of the membrane.


Subject(s)
Nanoparticles , Unilamellar Liposomes , Nanoparticles/chemistry , Unilamellar Liposomes/chemistry , Hydrophobic and Hydrophilic Interactions , Lipid Bilayers/chemistry , Phospholipids/chemistry , Particle Size
11.
ACS Nano ; 18(20): 13214-13225, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38717114

ABSTRACT

Facing the escalating threat of viruses worldwide, the development of efficient sensor elements for rapid virus detection has never been more critical. Traditional point-of-care (POC) sensors struggle due to their reliance on fragile biological receptors and limited adaptability to viral strains. In this study, we introduce a nanosensor design for receptor-free virus recognitions using near-infrared (NIR) fluorescent single-walled carbon nanotubes (SWCNTs) functionalized with a poly(ethylene glycol) (PEG)-phospholipid (PEG-lipid) array. Three-dimensional (3D) corona interfaces of the nanosensor array enable selective and sensitive detection of diverse viruses, including Ebola, Lassa, H3N2, H1N1, Middle East respiratory syndrome (MERS), severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1), and SARS-CoV-2, even without any biological receptors. The PEG-lipid components, designed considering chain length, fatty acid saturation, molecular weight, and end-group moieties, allow for precise quantification of viral recognition abilities. High-throughput automated screening of the array demonstrates how the physicochemical properties of the PEG-lipid/SWCNT 3D corona interfaces correlate with viral detection efficiency. Utilizing molecular dynamics and AutoDock simulations, we investigated the impact of PEG-lipid components on 3D corona interface formation, such as surface coverage and hydrodynamic radius and specific molecular interactions based on chemical potentials. Our findings not only enhance detection specificity across various antigens but also accelerate the development of sensor materials for promptly identifying and responding to emerging antigen threats.


Subject(s)
Nanotubes, Carbon , Polyethylene Glycols , SARS-CoV-2 , Nanotubes, Carbon/chemistry , Polyethylene Glycols/chemistry , SARS-CoV-2/isolation & purification , Humans , COVID-19/virology , Phospholipids/chemistry , Biosensing Techniques/methods , Viruses/chemistry , Polymers/chemistry
12.
Syst Appl Microbiol ; 47(2-3): 126514, 2024 May.
Article in English | MEDLINE | ID: mdl-38735274

ABSTRACT

Use of curldlan, an insoluble ß-1,3-glucan, as an enrichment substrate under aerobic conditions resulted in the selection from hypersaline soda lakes of a single natronarchaeon, strain AArc-curdl1. This organism is an obligately aerobic saccharolytic, possessing a poorly explored (in Archaea) potential to utilize beta-1-3 glucans, being only a second example of a haloarchaeon with this ability known in pure culture. The main phenotypic property of the isolate is the ability to grow with insoluble ß-1,3-backboned glucans, i.e. curdlan and pachyman. Furthermore, the strain utilized starch family α-glucans, beta-fructan inulin and a limited spectrum of sugars. The major ether-bound membrane polar phospholipids included PGP-Me and PG. The glyco- and sulfolipids were absent. The major respiratory menaquinone is MK-8:8. According to phylogenomic analysis, AArc-curdl1 represents a separate species in the recently described genus Natronosalvus within the family Natrialbaceae. The closest related species is Natronosalvus amylolyticus (ANI, AAI and DDH values of 90.2, 91.6 and 44 %, respectively). On the basis of its unique physiological properties and phylogenomic distance, strain AArc-curdl1T is classified as a novel species Natronosalvus hydrolyticus sp. nov. (=JCM 34865 = UQM 41566).


Subject(s)
Lakes , Phylogeny , RNA, Ribosomal, 16S , beta-Glucans , Lakes/microbiology , beta-Glucans/metabolism , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Phospholipids/analysis , Phospholipids/chemistry , Salinity , DNA, Archaeal/genetics , DNA, Archaeal/chemistry , Vitamin K 2/analysis , Vitamin K 2/chemistry , Vitamin K 2/analogs & derivatives
13.
Food Chem ; 451: 139469, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38703727

ABSTRACT

Excipient selection is crucial to address the oxidation and solubility challenges of bioactive substances, impacting their safety and efficacy. AKPL, a novel ω-3 polyunsaturated fatty acids (PUFAs) esterified phospholipid derived from Antarctic krill, demonstrates unique antioxidant capabilities and synergistic effects. It exhibits pronounced surface activity and electronegativity at physiological pH, as evidenced by a critical micelle concentration (CMC) of 0.15 g/L and ζ-potential of -49.9 mV. In aqueous environments, AKPL self-assembles into liposomal structures, offering high biocompatibility and promoting cell proliferation. Its polyunsaturated bond-rich structure provides additional oxidation sites, imparting antioxidant properties superior to other phospholipids like DSPC and DOPC. Additionally, AKPL augments the efficacy of lipophilic antioxidants, such as alpha-tocopherol and curcumin, in aqueous media through both intermolecular and intramolecular interactions. In sum, AKPL emerges as an innovative unsaturated phospholipid, offering new strategies for encapsulating and delivering oxygen-sensitive agents.


Subject(s)
Antioxidants , Euphausiacea , Phospholipids , Euphausiacea/chemistry , Animals , Phospholipids/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Colloids/chemistry , Humans , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Antarctic Regions , Fatty Acids, Omega-3/chemistry , Fatty Acids, Omega-3/pharmacology
14.
Article in English | MEDLINE | ID: mdl-38805028

ABSTRACT

A polyphasic approach was used to characterize two novel actinobacterial strains, designated PKS22-38T and LSe1-13T, which were isolated from mangrove soils and leaves of halophyte Sesuvium portulacastrum (L.), respectively. Phylogenetic analyses based on 16S rRNA gene sequences showed that they belonged to the genus Gordonia and were most closely related to three validly published species with similarities ranging from 98.6 to 98.1 %. The genomic DNA G+C contents of strains PKS22-38T and LSe1-13T were 67.3 and 67.2 mol%, respectively. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between the two strains were 93.3 and 54.9 %, respectively, revealing that they are independent species. Meanwhile, the ANI and dDDH values between the two novel strains and closely related type strains were below 80.5 and 24.0 %, respectively. Strains PKS22-38T and LSe1-13T contained C16 : 0, C18 : 1 ω9c and C18 : 0 10-methyl (TBSA) as the major fatty acids and diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol as the main phospholipids. The predominant menaquinone was MK-9(H2). Based on phenotypic, chemotaxonomic, phylogenetic and genomic data, strains PKS22-38T and LSe1-13T are considered to represent two novel species within the genus Gordonia, for which the names Gordonia prachuapensis sp. nov. and Gordonia sesuvii sp. nov. are proposed, with strain PKS22-38T (=TBRC 17540T=NBRC 116256T) and strain LSe1-13T (=TBRC 17706T=NBRC 116396T) as the type strains, respectively.


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Nucleic Acid Hybridization , Phylogeny , Plant Leaves , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Soil Microbiology , Vitamin K 2 , RNA, Ribosomal, 16S/genetics , Plant Leaves/microbiology , DNA, Bacterial/genetics , Vitamin K 2/analogs & derivatives , Vitamin K 2/analysis , Fatty Acids/chemistry , Fatty Acids/analysis , Thailand , Salt-Tolerant Plants/microbiology , Geologic Sediments/microbiology , Phospholipids/analysis , Phospholipids/chemistry , Wetlands , Gordonia Bacterium/genetics , Gordonia Bacterium/classification , Gordonia Bacterium/isolation & purification
15.
ACS Appl Mater Interfaces ; 16(21): 27040-27054, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38743443

ABSTRACT

Strong precorneal clearance mechanisms including reflex blink, constant tear drainage, and rapid mucus turnover constitute great challenges for eye drops for effective drug delivery to the ocular epithelium. In this study, cyclosporine A (CsA) for the treatment of dry eye disease (DED) was selected as the model drug. Two strategies, PEGylation for mucus penetration and cationization for potent cellular uptake, were combined to construct a novel CsA nanosuspension (NS@lipid-PEG/CKC) by coating nanoscale drug particles with a mixture of lipids, DSPE-PEG2000, and a cationic surfactant, cetalkonium chloride (CKC). NS@lipid-PEG/CKC with the mean size ∼173 nm and positive zeta potential ∼+40 mV showed promoted mucus penetration, good cytocompatibility, more cellular uptake, and prolonged precorneal retention without obvious ocular irritation. More importantly, NS@lipid-PEG/CKC recovered tear production and goblet cell density more efficiently than the commercial cationic nanoemulsion on a dry eye disease rat model. All results indicated that a combination of PEGylation and cationization might provide a promising strategy to coordinate mucus penetration and cellular uptake for enhanced drug delivery to the ocular epithelium for nanomedicine-based eye drops.


Subject(s)
Cyclosporine , Dry Eye Syndromes , Phospholipids , Polyethylene Glycols , Animals , Cyclosporine/chemistry , Cyclosporine/pharmacology , Cyclosporine/pharmacokinetics , Cyclosporine/administration & dosage , Polyethylene Glycols/chemistry , Rats , Dry Eye Syndromes/drug therapy , Dry Eye Syndromes/pathology , Phospholipids/chemistry , Rats, Sprague-Dawley , Nanoparticles/chemistry , Drug Delivery Systems , Cations/chemistry , Ophthalmic Solutions/chemistry , Ophthalmic Solutions/pharmacology , Humans , Male , Cornea/metabolism , Cornea/drug effects
16.
Article in English | MEDLINE | ID: mdl-38728178

ABSTRACT

A Gram-negative, facultative anaerobic, non-motile and rod-shaped bacterium, designated 10c7w1T, was isolated from a human gastrointestinal tract. Colonies on agar plates were small, circular, smooth and beige. The optimal growth conditions were determined to be 37 °C, pH 7.0-7.5 and 0 % (w/v) NaCl. Comparative analysis of complete 16S rRNA gene sequences revealed that strain 10c7w1T showed the highest sequence similarity of 95.8 % to Ottowia beijingensis MCCC 1A01410T, followed by Ottowia thiooxydans (95.2 %) JCM 11629T. The average amino acid identity values between 10c7w1T and O. beijingensis MCCC 1A01410T and O. thiooxydans JCM 11629T were above 60 % (71.4 and 69.5 %). The average nucleotide identity values between strain 10c7w1T and O. beijingensis MCCC 1A01410T and O. thiooxydans JCM 11629T were 76.9 and 72.5 %, respectively. The dominant fatty acids (≥10 %) were straight chain ones, with summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c), summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c) and C16 : 00 being the most abundant. Q-8 was the only respiratory quinone. The major polar lipids of strain 10c7w1T were phosphatidylethanolamine, diphosphatidylglycerol and unknown lipids. The DNA G+C content of strain 10c7w1T was 63.6 mol%. On the basis of phylogenetic, phenotypic and chemotaxonomic data, strain 10c7w1T is considered to represent a novel species within the genus Ottowia, for which the name Ottowia cancrivicina sp. nov. is proposed. The type strain is 10c7w1T (=MCCC 1H01399T=KCTC 92200T).


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Stomach , RNA, Ribosomal, 16S/genetics , Fatty Acids/chemistry , Humans , DNA, Bacterial/genetics , Stomach/microbiology , Nucleic Acid Hybridization , Ubiquinone , Phospholipids/chemistry
17.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731809

ABSTRACT

Polysaccharide-based systems have very good emulsifying and stabilizing properties, and starch plays a leading role. Their modifications should add new quality features to the product to such an extent that preserves the structure-forming properties of native starch. The aim of this manuscript was to examine the physicochemical characteristics of the combinations of starch with phospholipids or lysozymes and determine the effect of starch modification (surface hydrophobization or biological additives) and preparation temperature (before and after gelatinization). Changes in electrokinetic potential (zeta), effective diameter, and size distribution as a function of time were analyzed using the dynamic light scattering and microelectrophoresis techniques. The wettability of starch-coated glass plates before and after modification was checked by the advancing and receding contact angle measurements, as well as the angle hysteresis, using the settle drop method as a complement to profilometry and FTIR. It can be generalized that starch dispersions are more stable than analogous n-alkane/starch emulsions at room and physiological temperatures. On the other hand, the contact angle hysteresis values usually decrease with temperature increase, pointing to a more homogeneous surface, and the hydrophobization effect decreases vs. the thickness of the substrate. Surface hydrophobization of starch carried out using an n-alkane film does not change its bulk properties and leads to improvement of its mechanical and functional properties. The obtained specific starch-based hybrid systems, characterized in detail by switchable wettability, give the possibility to determine the energetic state of the starch surface and understand the strength and specificity of interactions with substances of different polarities in biological processes and their applicability for multidirectional use.


Subject(s)
Polysaccharides , Starch , Wettability , Starch/chemistry , Polysaccharides/chemistry , Temperature , Muramidase/chemistry , Hydrophobic and Hydrophilic Interactions , Phospholipids/chemistry , Chemical Phenomena , Emulsions/chemistry
18.
ACS Sens ; 9(5): 2356-2363, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38752383

ABSTRACT

Activatable microbubble contrast agents for contrast-enhanced ultrasound have a potential role for measuring physiologic and pathologic states in deep tissues, including tumor acidosis. In this study, we describe a novel observation of increased harmonic oscillation of phosphatidylcholine microbubbles (PC-MBs) in response to lower ambient pH using a clinical ultrasound scanner. MB echogenicity and nonlinear echoes were monitored at neutral and acidic pH using B-mode and Cadence contrast pulse sequencing (CPS), a harmonic imaging technique at 7.0 and 1.5 MHz. A 3-fold increase in harmonic signal intensity was observed when the pH of PC-MB suspensions was decreased from 7.4 to 5.5 to mimic normal and pathophysiological levels that can be encountered in vivo. This pH-mediated activation is tunable based on the chemical structure and length of phospholipids composing the MB shell. It is also reliant on the presence of phosphate groups, as the use of lipids without phosphate instead of phospholipids completely abrogated this phenomenon. The increased harmonic signal likely is the result of increased MB oscillation caused by a decrease of the interfacial tension induced at a lower pH, altering the lipid conformation. While relative signal changes are interpreted clinically as mostly related to blood flow, pH effects could be significant contributors, particularly when imaging tumors. While our observation can be used clinically, it requires further research to isolate the effect of pH from other variables. These findings could pave the way toward for the development of new smart ultrasound contrast agents that expand the clinical utility of contrast-enhanced ultrasound.


Subject(s)
Contrast Media , Microbubbles , Phospholipids , Ultrasonography , Hydrogen-Ion Concentration , Ultrasonography/methods , Phospholipids/chemistry , Contrast Media/chemistry , Acoustics , Humans
19.
Soft Matter ; 20(21): 4291-4307, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38758097

ABSTRACT

Lipid asymmetry - that is, a nonuniform lipid distribution between the leaflets of a bilayer - is a ubiquitous feature of biomembranes and is implicated in several cellular phenomena. Differential tension - that is, unequal lateral monolayer tensions comparing the leaflets of a bilayer- is closely associated with lipid asymmetry underlying these varied roles. Because differential tension is not directly measurable in combination with the fact that common methods to adjust this quantity grant only semi-quantitative control over it, a detailed understanding of lipid asymmetry and differential tension are impeded. To overcome these challenges, we leveraged reversible complexation of phospholipid by methyl-ß-cyclodextrin (mbCD) to tune the direction and magnitude of lipid asymmetry in synthetic vesicles. Lipid asymmetry generated in our study induced (i) vesicle shape changes and (ii) gel-liquid phase coexistence in 1-component vesicles. By applying mass-action considerations to interpret our findings, we discuss how this approach provides access to phospholipid thermodynamic potentials in bilayers containing lipid asymmetry (which are coupled to the differential tension of a bilayer). Because lipid asymmetry yielded by our approach is (i) tunable and (ii) maintained over minute to hour timescales, we anticipate that this approach will be a valuable addition to the experimental toolbox for systematic investigation into the biophysical role(s) of lipid asymmetry (and differential tension).


Subject(s)
Lipid Bilayers , Phospholipids , beta-Cyclodextrins , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , beta-Cyclodextrins/chemistry , Phospholipids/chemistry , Thermodynamics
20.
Article in English | MEDLINE | ID: mdl-38747693

ABSTRACT

The use of algae as feedstock for industrial purposes, such as in bioethanol production, is desirable. During a search for new agarolytic marine bacteria, a novel Gram-stain-negative, strictly aerobic, and agarolytic bacterium, designated as TS8T, was isolated from algae in the harbour of the island of Susak, Croatia. The cells were rod-shaped and motile. The G+C content of the sequenced genome was 38.6 mol%. Growth was observed at 11-37 °C, with 0.5-13 % (w/v) NaCl, and at pH 6.0-9.0. The main fatty acids were summed feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c), summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), and C16 : 0. The main respiratory quinone was ubiquinone-8. The major polar lipids were phosphatidylethanolamine and phosphatidylglycerol. Analysis of 16S rRNA gene sequences indicated that the newly isolated strain belongs to the genus Catenovulum. Based on 16S rRNA gene sequence data, strain TS8T is closely related to Catenovulum sediminis D2T (95.7 %), Catenovulum agarivorans YM01T (95.0 %), and Catenovulum maritimum Q1T (93.2 %). Digital DNA-DNA hybridization values between TS8T and the other Catenovulum strains were below 25 %. Based on genotypic, phenotypic, and phylogenetic data, strain TS8T represents a new species of the genus Catenovulum, for which the name Catenovulum adriaticum sp. nov. is proposed. The type strain is TS8T (=DSM 114830T=NCIMB 15451T).


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Ubiquinone , RNA, Ribosomal, 16S/genetics , Fatty Acids/analysis , Fatty Acids/chemistry , Croatia , DNA, Bacterial/genetics , Phospholipids/chemistry , Phospholipids/analysis , Nucleic Acid Hybridization , Phosphatidylethanolamines
SELECTION OF CITATIONS
SEARCH DETAIL
...