Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.513
Filter
1.
Proc Natl Acad Sci U S A ; 121(30): e2407159121, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39012820

ABSTRACT

Mutations in the tyrosine phosphatase Src homology-2 domain-containing protein tyrosine phosphatase-2 (SHP2) are associated with a variety of human diseases. Most mutations in SHP2 increase its basal catalytic activity by disrupting autoinhibitory interactions between its phosphatase domain and N-terminal SH2 (phosphotyrosine recognition) domain. By contrast, some disease-associated mutations located in the ligand-binding pockets of the N- or C-terminal SH2 domains do not increase basal activity and likely exert their pathogenicity through alternative mechanisms. We lack a molecular understanding of how these SH2 mutations impact SHP2 structure, activity, and signaling. Here, we characterize five SHP2 SH2 domain ligand-binding pocket mutants through a combination of high-throughput biochemical screens, biophysical and biochemical measurements, and molecular dynamics simulations. We show that while some of these mutations alter binding affinity to phosphorylation sites, the T42A mutation in the N-SH2 domain is unique in that it also substantially alters ligand-binding specificity, despite being 8 to 10 Å from the specificity-determining region of the SH2 domain. This mutation exerts its effect on sequence specificity by remodeling the phosphotyrosine-binding pocket, altering the mode of engagement of both the phosphotyrosine and surrounding residues on the ligand. The functional consequence of this altered specificity is that the T42A mutant has biased sensitivity toward a subset of activating ligands and enhances downstream signaling. Our study highlights an example of a nuanced mechanism of action for a disease-associated mutation, characterized by a change in protein-protein interaction specificity that alters enzyme activation.


Subject(s)
Molecular Dynamics Simulation , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , src Homology Domains , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/chemistry , Humans , src Homology Domains/genetics , Protein Binding , Mutation , Phosphorylation , Binding Sites/genetics , Phosphotyrosine/metabolism , Ligands
2.
Methods Enzymol ; 698: 301-342, 2024.
Article in English | MEDLINE | ID: mdl-38886037

ABSTRACT

Protein-protein interactions between SH2 domains and segments of proteins that include a post-translationally phosphorylated tyrosine residue (pY) underpin numerous signal transduction cascades that allow cells to respond to their environment. Dysregulation of the writing, erasing, and reading of these posttranslational modifications is a hallmark of human disease, notably cancer. Elucidating the precise role of the SH2 domain-containing adaptor proteins Crk and CrkL in tumor cell migration and invasion is challenging because there are no specific and potent antagonists available. Crk and CrkL SH2s interact with a region of the docking protein p130Cas containing 15 potential pY-containing tetrapeptide motifs. This chapter summarizes recent efforts toward peptide antagonists for this Crk/CrkL-p130Cas interaction. We describe our protocol for recombinant expression and purification of Crk and CrkL SH2s for functional assays and our procedure to determine the consensus binding motif from the p130Cas sequence. To develop a more potent antagonist, we employ methods often associated with structure-based drug design. Computational docking using Rosetta FlexPepDock, which accounts for peptides having a greater number of conformational degrees of freedom than small organic molecules that typically constitute libraries, provides quantitative docking metrics to prioritize candidate peptides for experimental testing. A battery of biophysical assays, including fluorescence polarization, differential scanning fluorimetry and saturation transfer difference nuclear magnetic resonance spectroscopy, were employed to assess the candidates. In parallel, GST pulldown competition assays characterized protein-protein binding in vitro. Taken together, our methodology yields peptide antagonists of the Crk/CrkL-p130Cas axis that will be used to validate targets, assess druggability, foster in vitro assay development, and potentially serve as lead compounds for therapeutic intervention.


Subject(s)
Crk-Associated Substrate Protein , Peptides , Phosphotyrosine , Proto-Oncogene Proteins c-crk , src Homology Domains , Crk-Associated Substrate Protein/metabolism , Crk-Associated Substrate Protein/chemistry , Proto-Oncogene Proteins c-crk/metabolism , Proto-Oncogene Proteins c-crk/chemistry , Humans , Phosphotyrosine/metabolism , Phosphotyrosine/chemistry , Peptides/chemistry , Peptides/pharmacology , Peptides/metabolism , Protein Binding , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Molecular Docking Simulation/methods , Nuclear Proteins/metabolism , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/chemistry
3.
Anal Chem ; 96(24): 9849-9858, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38836774

ABSTRACT

The scarcity and dynamic nature of phosphotyrosine (pTyr)-modified proteins pose a challenge for researching protein complexes with pTyr modification, which are assembled through multiple protein-protein interactions. We developed an integrated complex-centric platform for large-scale quantitative profiling of pTyr signaling complexes based on cofractionation/mass spectrometry (CoFrac-MS) and a complex-centric algorithm. We initially constructed a trifunctional probe based on pTyr superbinder (SH2-S) for specifically binding and isolation of intact pTyr protein complexes. Then, the CoFrac-MS strategy was employed for the identification of pTyr protein complexes by integrating ion exchange chromatography in conjunction with data independent acquisition mass spectrometry. Furthermore, we developed a novel complex-centric algorithm for quantifying protein complexes based on the protein complex elution curve. Utilizing this algorithm, we effectively quantified 216 putative protein complexes. We further screened 21 regulated pTyr protein complexes related to the epidermal growth factor signal. Our study engenders a comprehensive framework for the intricate examination of pTyr protein complexes and presents, for the foremost occasion, a quantitative landscape delineating the composition of pTyr protein complexes in HeLa cells.


Subject(s)
Algorithms , Mass Spectrometry , Phosphotyrosine , Signal Transduction , Phosphotyrosine/metabolism , Phosphotyrosine/analysis , Phosphotyrosine/chemistry , Humans , HeLa Cells , Chromatography, Ion Exchange/methods
4.
J Med Chem ; 67(11): 8817-8835, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38768084

ABSTRACT

Together with protein tyrosine kinases, protein tyrosine phosphatases (PTPs) control protein tyrosine phosphorylation and regulate numerous cellular functions. Dysregulated PTP activity is associated with the onset of multiple human diseases. Nevertheless, understanding of the physiological function and disease biology of most PTPs remains limited, largely due to the lack of PTP-specific chemical probes. In this study, starting from a well-known nonhydrolyzable phosphotyrosine (pTyr) mimetic, phosphonodifluoromethyl phenylalanine (F2Pmp), we synthesized 7 novel phosphonodifluoromethyl-containing bicyclic/tricyclic aryl derivatives with improved cell permeability and potency toward various PTPs. Furthermore, with fragment- and structure-based design strategies, we advanced compound 9 to compound 15, a first-in-class, potent, selective, and bioavailable inhibitor of human CDC14A and B phosphatases. This study demonstrates the applicability of the fragment-based design strategy in creating potent, selective, and bioavailable PTP inhibitors and provides a valuable probe for interrogating the biological roles of hCDC14 phosphatases and assessing their potential for therapeutic interventions.


Subject(s)
Enzyme Inhibitors , Phosphotyrosine , Humans , Phosphotyrosine/metabolism , Phosphotyrosine/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Structure-Activity Relationship , Protein Tyrosine Phosphatases, Non-Receptor/antagonists & inhibitors , Protein Tyrosine Phosphatases, Non-Receptor/metabolism , Protein Tyrosine Phosphatases, Non-Receptor/chemistry , Protein Tyrosine Phosphatases/antagonists & inhibitors , Protein Tyrosine Phosphatases/metabolism , Molecular Structure , Biological Availability
5.
Nature ; 631(8020): 393-401, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38776962

ABSTRACT

AMPylation is a post-translational modification in which AMP is added to the amino acid side chains of proteins1,2. Here we show that, with ATP as the ligand and actin as the host activator, the effector protein LnaB of Legionella pneumophila exhibits AMPylase activity towards the phosphoryl group of phosphoribose on PRR42-Ub that is generated by the SidE family of effectors, and deubiquitinases DupA and DupB in an E1- and E2-independent ubiquitination process3-7. The product of LnaB is further hydrolysed by an ADP-ribosylhydrolase, MavL, to Ub, thereby preventing the accumulation of PRR42-Ub and ADPRR42-Ub and protecting canonical ubiquitination in host cells. LnaB represents a large family of AMPylases that adopt a common structural fold, distinct from those of the previously known AMPylases, and LnaB homologues are found in more than 20 species of bacterial pathogens. Moreover, LnaB also exhibits robust phosphoryl AMPylase activity towards phosphorylated residues and produces unique ADPylation modifications in proteins. During infection, LnaB AMPylates the conserved phosphorylated tyrosine residues in the activation loop of the Src family of kinases8,9, which dampens downstream phosphorylation signalling in the host. Structural studies reveal the actin-dependent activation and catalytic mechanisms of the LnaB family of AMPylases. This study identifies, to our knowledge, an unprecedented molecular regulation mechanism in bacterial pathogenesis and protein phosphorylation.


Subject(s)
Adenosine Monophosphate , Bacterial Proteins , Legionella pneumophila , Phosphotyrosine , Signal Transduction , Humans , Actins/metabolism , Adenosine Monophosphate/metabolism , Adenosine Triphosphate/metabolism , ADP-Ribosylation , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Hydrolysis , Legionella pneumophila/enzymology , Legionella pneumophila/metabolism , Legionella pneumophila/pathogenicity , Ligands , Models, Molecular , N-Glycosyl Hydrolases/metabolism , Phosphorylation , Protein Processing, Post-Translational , Tyrosine/metabolism , Tyrosine/chemistry , Ubiquitin/metabolism , Ubiquitination , Deubiquitinating Enzymes/metabolism , Protein Folding , Phosphotyrosine/chemistry , Phosphotyrosine/metabolism
6.
Nature ; 629(8014): 1174-1181, 2024 May.
Article in English | MEDLINE | ID: mdl-38720073

ABSTRACT

Phosphorylation of proteins on tyrosine (Tyr) residues evolved in metazoan organisms as a mechanism of coordinating tissue growth1. Multicellular eukaryotes typically have more than 50 distinct protein Tyr kinases that catalyse the phosphorylation of thousands of Tyr residues throughout the proteome1-3. How a given Tyr kinase can phosphorylate a specific subset of proteins at unique Tyr sites is only partially understood4-7. Here we used combinatorial peptide arrays to profile the substrate sequence specificity of all human Tyr kinases. Globally, the Tyr kinases demonstrate considerable diversity in optimal patterns of residues surrounding the site of phosphorylation, revealing the functional organization of the human Tyr kinome by substrate motif preference. Using this information, Tyr kinases that are most compatible with phosphorylating any Tyr site can be identified. Analysis of mass spectrometry phosphoproteomic datasets using this compendium of kinase specificities accurately identifies specific Tyr kinases that are dysregulated in cells after stimulation with growth factors, treatment with anti-cancer drugs or expression of oncogenic variants. Furthermore, the topology of known Tyr signalling networks naturally emerged from a comparison of the sequence specificities of the Tyr kinases and the SH2 phosphotyrosine (pTyr)-binding domains. Finally we show that the intrinsic substrate specificity of Tyr kinases has remained fundamentally unchanged from worms to humans, suggesting that the fidelity between Tyr kinases and their protein substrate sequences has been maintained across hundreds of millions of years of evolution.


Subject(s)
Phosphotyrosine , Protein-Tyrosine Kinases , Substrate Specificity , Tyrosine , Animals , Humans , Amino Acid Motifs , Evolution, Molecular , Mass Spectrometry , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Phosphorylation , Phosphotyrosine/metabolism , Protein-Tyrosine Kinases/drug effects , Protein-Tyrosine Kinases/metabolism , Proteome/chemistry , Proteome/metabolism , Proteomics , Signal Transduction , src Homology Domains , Tyrosine/metabolism , Tyrosine/chemistry
7.
Methods Mol Biol ; 2743: 239-270, 2024.
Article in English | MEDLINE | ID: mdl-38147220

ABSTRACT

Phosphotyrosine biomimetics are starting points for potent inhibitors of protein tyrosine phosphatases (PTPs) and, thus, crucial for drug development. Their identification, however, has been heavily driven by rational design, limiting the discovery of diverse, novel, and improved mimetics. In this chapter, we describe two screening approaches utilizing fragment ligation methods: one to identify new mimetics and the other to optimize existing mimetics into more potent and selective inhibitors.


Subject(s)
Biomimetics , Drug Development , Phosphotyrosine , Protein Tyrosine Phosphatases
8.
J Proteome Res ; 22(12): 3754-3772, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37939282

ABSTRACT

Protein tyrosine sulfation (sY) is a post-translational modification (PTM) catalyzed by Golgi-resident tyrosyl protein sulfo transferases (TPSTs). Information on sY in humans is currently limited to ∼50 proteins, with only a handful having verified sites of sulfation. As such, the contribution of sulfation to the regulation of biological processes remains poorly defined. Mass spectrometry (MS)-based proteomics is the method of choice for PTM analysis but has yet to be applied for systematic investigation of the "sulfome", primarily due to issues associated with discrimination of sY-containing from phosphotyrosine (pY)-containing peptides. In this study, we developed an MS-based workflow for sY-peptide characterization, incorporating optimized Zr4+ immobilized metal-ion affinity chromatography (IMAC) and TiO2 enrichment strategies. Extensive characterization of a panel of sY- and pY-peptides using an array of fragmentation regimes (CID, HCD, EThcD, ETciD, UVPD) highlighted differences in the generation of site-determining product ions and allowed us to develop a strategy for differentiating sulfated peptides from nominally isobaric phosphopeptides based on low collision energy-induced neutral loss. Application of our "sulfomics" workflow to a HEK-293 cell extracellular secretome facilitated identification of 21 new sulfotyrosine-containing proteins, several of which we validate enzymatically, and reveals new interplay between enzymes relevant to both protein and glycan sulfation.


Subject(s)
Phosphopeptides , Tyrosine , Humans , Phosphopeptides/analysis , HEK293 Cells , Workflow , Tyrosine/metabolism , Proteins , Phosphotyrosine
9.
J Chem Inf Model ; 63(20): 6344-6353, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37824286

ABSTRACT

The folding process of multidomain proteins is a highly intricate phenomenon involving the assembly of distinct domains into a functional three-dimensional structure. During this process, each domain may fold independently while interacting with others. The folding of multidomain proteins can be influenced by various factors, including their composition, the structure of each domain, or the presence of disordered regions, as well as the surrounding environment. Misfolding of multidomain proteins can lead to the formation of nonfunctional structures associated with a range of diseases, including cancers or neurodegenerative disorders. Understanding this process is an important step for many biophysical analyses such as stability, interaction, malfunctioning, and rational drug design. One such multidomain protein is growth factor receptor-bound protein 2 (GRB2), an adaptor protein that is essential in regulating cell survival. GRB2 consists of one central Src homology 2 (SH2) domain flanked by two Src homology 3 (SH3) domains. The SH2 domain interacts with phosphotyrosine regions in other proteins, while the SH3 domains recognize proline-rich regions on protein partners during cell signaling. Here, we combined computational and experimental techniques to investigate the folding process of GRB2. Through computational simulations, we sampled the conformational space and mapped the mechanisms involved by the free energy profiles, which may indicate possible intermediate states. From the molecular dynamics trajectories, we used the energy landscape visualization method (ELViM), which allowed us to visualize a three-dimensional (3D) representation of the overall energy surface. We identified two possible parallel folding routes that cannot be seen in a one-dimensional analysis, with one occurring more frequently during folding. Supporting these results, we used differential scanning calorimetry (DSC) and fluorescence spectroscopy techniques to confirm these intermediate states in vitro. Finally, we analyzed the deletion of domains to compare our model outputs to previously published results, supporting the presence of interdomain modulation. Overall, our study highlights the significance of interdomain communication within the GRB2 protein and its impact on the formation, stability, and structural plasticity of the protein, which are crucial for its interaction with other proteins in key signaling pathways.


Subject(s)
Neoplasms , Signal Transduction , Amino Acid Sequence , GRB2 Adaptor Protein , Phosphotyrosine , Protein Binding , src Homology Domains
10.
Nat Commun ; 14(1): 6345, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37816714

ABSTRACT

The Src homology 2 (SH2) domain recognizes phosphotyrosine (pY) post translational modifications in partner proteins to trigger downstream signaling. Drug discovery efforts targeting the SH2 domains have long been stymied by the poor drug-like properties of phosphate and its mimetics. Here, we use structure-based design to target the SH2 domain of the E3 ligase suppressor of cytokine signaling 2 (SOCS2). Starting from the highly ligand-efficient pY amino acid, a fragment growing approach reveals covalent modification of Cys111 in a co-crystal structure, which we leverage to rationally design a cysteine-directed electrophilic covalent inhibitor MN551. We report the prodrug MN714 containing a pivaloyloxymethyl (POM) protecting group and evidence its cell permeability and capping group unmasking using cellular target engagement and in-cell 19F NMR spectroscopy. Covalent engagement at Cys111 competitively blocks recruitment of cellular SOCS2 protein to its native substrate. The qualified inhibitors of SOCS2 could find attractive applications as chemical probes to understand the biology of SOCS2 and its CRL5 complex, and as E3 ligase handles in proteolysis targeting chimera (PROTACs) to induce targeted protein degradation.


Subject(s)
Proteins , Ubiquitin-Protein Ligases , Ubiquitin-Protein Ligases/metabolism , Phosphotyrosine , Ligands , src Homology Domains
11.
Methods Mol Biol ; 2705: 3-23, 2023.
Article in English | MEDLINE | ID: mdl-37668966

ABSTRACT

Nuclear magnetic resonance (NMR) spectroscopy is a powerful technique to solve the structure of biomolecular complexes at atomic resolution in solution. Small proteins such as Src-homology 2 (SH2) domains have fast tumbling rates and long-lived NMR signals, making them particularly suited to be studied by standard NMR methods. SH2 domains are modular proteins whose function is the recognition of sequences containing phosphotyrosines. In this chapter, we describe the application of NMR to assess the interaction between SH2 domains and phosphopeptides and determine the structure of the resulting complexes.


Subject(s)
Phosphopeptides , src Homology Domains , Magnetic Resonance Imaging , Phosphotyrosine , Magnetic Resonance Spectroscopy
12.
Methods Mol Biol ; 2705: 39-58, 2023.
Article in English | MEDLINE | ID: mdl-37668968

ABSTRACT

While the number of tertiary structures solved by cryoelectron microscopy has rapidly increased, X-ray crystallography is still a popular method to determine the tertiary structure of proteins at atomic resolution. However, there are still problems associated with X-ray crystallography, including crystallization and crystal twinning. Indeed, we encountered crystallization and twinning problems in the crystal structure analysis of the SH2 domains complexed with a phosphorylated peptide derived from the oncoprotein CagA. In this chapter, we describe the methods used to overcome these problems. In addition, we provide details of the optimization of the crystallization conditions and cryo-conditions, which are usually not given in published crystal structure analyses.


Subject(s)
Peptides , src Homology Domains , Phosphotyrosine , Cryoelectron Microscopy , Calgranulin A
13.
Methods Mol Biol ; 2705: 59-75, 2023.
Article in English | MEDLINE | ID: mdl-37668969

ABSTRACT

Src-homology 2 (SH2) domains are protein interaction domains that bind to specific peptide motifs containing phosphotyrosine. SHP2, a tyrosine phosphatase encoded by PTPN11 gene, which has been emerged as positive or negative modulator in multiple signaling pathways, contains two SH2 domains, respectively, called N-SH2 and C-SH2. These domains play a relevant role in regulating SHP2 activity, either by recognizing its binding partners or by blocking its catalytic site. Considering the multiple functions that these domains carry out in SHP2, N-SH2 and C-SH2 represent an interesting case of study. In this chapter, we present a methodology that permits, by means of the principal component analysis (PCA), to study and to rationalize the structures adopted by the SH2 domains, in terms of the conformations of their binding sites. The structures can be distinguished, grouped, classified, and reported in a diagram. This approach permits to identify the accessible conformations of the SH2 domains in different binding conditions and to eventually reveal allosteric interactions. The method further reveals that the conformation dynamics of N-SH2 and C-SH2 strongly differ, which likely reflects their distinct functional roles.


Subject(s)
src Homology Domains , Protein Interaction Domains and Motifs , Binding Sites , Catalytic Domain , Phosphotyrosine
14.
Methods Mol Biol ; 2705: 77-89, 2023.
Article in English | MEDLINE | ID: mdl-37668970

ABSTRACT

The p120RasGAP protein contains two Src homology 2 (SH2) domains, each with phosphotyrosine-binding activity. We describe the crystallization of the isolated and purified p120RasGAP SH2 domains with phosphopeptides derived from a binding partner protein, p190RhoGAP. Purified recombinant SH2 domain protein is mixed with synthetic phosphopeptide at a stoichiometric ratio to form the complex in vitro. Crystallization is then achieved by the hanging drop vapor diffusion method over specific reservoir solutions that yield single macromolecular co-crystals containing SH2 domain protein and phosphopeptide. This protocol yields suitable crystals for X-ray diffraction studies, and our recent X-ray crystallography studies of the two SH2 domains of p120RasGAP demonstrate that the N-terminal SH2 domain binds phosphopeptide in a canonical interaction. In contrast, the C-terminal SH2 domain binds phosphopeptide via a unique atypical binding mode. The crystallographic studies for p120RasGAP illustrate that although the three-dimensional structure of SH2 domains and the molecular details of their binding to phosphotyrosine peptides are well defined, careful structural analysis can continue to yield new molecular-level insights.


Subject(s)
Phosphopeptides , p120 GTPase Activating Protein , Crystallography, X-Ray , Phosphotyrosine , X-Ray Diffraction
15.
Methods Mol Biol ; 2705: 153-197, 2023.
Article in English | MEDLINE | ID: mdl-37668974

ABSTRACT

The SH2-binding phosphotyrosine class of short linear motifs (SLiMs) are key conditional regulatory elements, particularly in signaling protein complexes beneath the cell's plasma membrane. In addition to transmitting cellular signaling information, they can also play roles in cellular hijack by invasive pathogens. Researchers can take advantage of bioinformatics tools and resources to predict the motifs at conserved phosphotyrosine residues in regions of intrinsically disordered protein. A candidate SH2-binding motif can be established and assigned to one or more of the SH2 domain subgroups. It is, however, not so straightforward to predict which SH2 domains are capable of binding the given candidate. This is largely due to the cooperative nature of the binding amino acids which enables poorer binding residues to be tolerated when the other residues are optimal. High-throughput peptide arrays are powerful tools used to derive SH2 domain-binding specificity, but they are unable to capture these cooperative effects and also suffer from other shortcomings. Tissue and cell type expression can help to restrict the list of available interactors: for example, some well-studied SH2 domain proteins are only present in the immune cell lineages. In this article, we provide a table of motif patterns and four bioinformatics strategies that introduce a range of tools that can be used in motif hunting in cellular and pathogen proteins. Experimental followup is essential to determine which SH2 domain/motif-containing proteins are the actual functional partners.


Subject(s)
Amino Acids , src Homology Domains , Phosphotyrosine , Cell Lineage , Cell Membrane
16.
Methods Mol Biol ; 2705: 255-267, 2023.
Article in English | MEDLINE | ID: mdl-37668979

ABSTRACT

Proximal crosslinking refers to the site-specific conjugation reaction between a synthetic ligand with a bioorthogonal reactive group incorporated at a particular site and a protein of interest (POI). The binding interaction positions a reactive group of a native amino acid of the POI to the proximity of the reactive group in the ligand. The covalent conjugation increases the molecular weight of the POI, shows an upshift in the polyacrylamide gel, and gives a fluorescent band if the ligand is fluorescently labeled. Here, we summarize a method to covalently conjugate phosphotyrosine peptides and SH2 domains that contain cysteine residues. This method yields covalent peptide blockers for a set of SH2 proteins and elucidates the binding interaction between phosphotyrosine peptides and SH2 domains.


Subject(s)
Peptides , src Homology Domains , Phosphotyrosine , Ligands , Amino Acids
17.
Methods Mol Biol ; 2705: 269-290, 2023.
Article in English | MEDLINE | ID: mdl-37668980

ABSTRACT

This protocol discloses the synthesis of monocarboxylic inhibitors with a macrocyclic peptide scaffold to bind with the GRB2 SH2 domain and disrupt the protein-protein interactions (PPIs) between GRB2 and phosphotyrosine-containing proteins.


Subject(s)
src Homology Domains , Phosphotyrosine
18.
Methods Mol Biol ; 2705: 239-253, 2023.
Article in English | MEDLINE | ID: mdl-37668978

ABSTRACT

The Src homology 2 (SH2) domain is a modular protein interaction domain that specifically recognizes the phosphotyrosine (pY) motif of a target molecule. We recently reported that a large majority of human SH2 domains tightly bind membrane lipids, and many show high lipid specificity. Most of them can bind a lipid and the pY motif coincidently because their lipid-binding sites are topologically distinct from pY-binding pockets. Lipid binding of SH2 domain-containing kinases and phosphatases is functionally important because it exerts exquisite spatiotemporal control on protein-protein interaction and cell signaling activities mediated by these proteins. Here, we describe two assays, surface plasmon resonance analysis and fluorescence quenching analysis, which allow quantitative determination of the affinity and specificity of SH2-lipid interaction and high-throughput screening for SH2 domain-lipid-binding inhibitors.


Subject(s)
Signal Transduction , src Homology Domains , Humans , Protein Interaction Domains and Motifs , Binding Sites , Membrane Lipids , Phosphotyrosine
19.
Methods Mol Biol ; 2705: 351-358, 2023.
Article in English | MEDLINE | ID: mdl-37668983

ABSTRACT

Src-homology-2 (SH2) domains bind selectively to phosphotyrosine (pTyr) residues located in target binding proteins; therefore, they are key elements in pTyr-mediated signaling pathways. The binding of an SH2 domain to a pTyr acts as a docking mechanism that attracts proteins into signaling hubs, and in some cases, it can also regulate the catalytic activity of signaling enzymes such as protein kinases or protein phosphatases. Therefore, compounds that selectively bind SH2 domains can be potentially used to modulate the activity of such SH2 domain-containing enzymes. This chapter describes how to measure the regulation of protein tyrosine phosphatase activity through allosteric binding of peptides to SH2 domains, and uses human recombinant protein tyrosine phosphatase SHP2 (Src homology-2 domain-containing protein tyrosine phosphatase 2) purified from bacteria as a case example. The phosphatase activity against the artificial substrate DiFMUP (6, 8-Difluoro-4-Methylumbelliferyl Phosphate) is measured over time in the presence of a peptide that selectively binds and activates SHP2 at different concentrations to determine the half maximal effective concentration (EC50).


Subject(s)
Phosphates , src Homology Domains , Humans , Phosphotyrosine , Protein Processing, Post-Translational , Signal Transduction
20.
Methods Mol Biol ; 2705: 359-369, 2023.
Article in English | MEDLINE | ID: mdl-37668984

ABSTRACT

Phosphotyrosine (pTyr)-containing amino acid sequences have regulatory effects on proteins that contain pTyr recognition motifs, such as Src Homology 2 (SH2) domains. Using pTyr-containing peptides as a bait for coprecipitation, by immobilization of the synthesized phosphopeptides to beads and incubation with cell lysates, enables to study the binding preference of the SH2 domain for the specific pTyr-sequence obtained from a pTyr-containing protein in a complex biological environment. Using phosphopeptides allows to not only assess the wild-type sequence, but also peptides that can contain modified sequences which carry a nonhydrolyzable pTyr or other modifications varying the binding strength and selectivity, for example, to create strong SH2 domain binders to inhibit their interaction with pTyr-containing proteins. This pulldown experiment can be used as an assay to evaluate the ability of a peptide to bind to the protein of interest in the cell lysate or investigate the selectivity of the peptide. Therefore, immobilizing phosphopeptides and using them as a pulldown tool has a wide range of applications.


Subject(s)
Phosphopeptides , src Homology Domains , Amino Acid Sequence , Biological Assay , Phosphotyrosine
SELECTION OF CITATIONS
SEARCH DETAIL
...