Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Appl Pharmacol ; 418: 115480, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33689843

ABSTRACT

Drug-induced cardiotoxicity is a major barrier to drug development and a main cause of withdrawal of marketed drugs. Drugs can strongly alter the spontaneous functioning of the heart by interacting with the cardiac membrane ion channels. If these effects only surface during in vivo preclinical tests, clinical trials or worse after commercialization, the societal and economic burden will be significant and seriously hinder the efficient drug development process. Hence, cardiac safety pharmacology requires in vitro electrophysiological screening assays of all drug candidates to predict cardiotoxic effects before clinical trials. In the past 10 years, microelectrode array (MEA) technology began to be considered a valuable approach in pharmaceutical applications. However, an effective tool for high-throughput intracellular measurements, compatible with pharmaceutical standards, is not yet available. Here, we propose laser-induced optoacoustic poration combined with CMOS-MEA technology as a reliable and effective platform to detect cardiotoxicity. This approach enables the acquisition of high-quality action potential recordings from large numbers of cardiomyocytes within the same culture well, providing reliable data using single-well MEA devices and single cardiac syncytia per each drug. Thus, this technology could be applied in drug safety screening platforms reducing times and costs of cardiotoxicity assessments, while simultaneously improving the data reliability.


Subject(s)
Action Potentials/drug effects , Arrhythmias, Cardiac/chemically induced , Induced Pluripotent Stem Cells/drug effects , Lasers , Microelectrodes , Myocytes, Cardiac/drug effects , Photoacoustic Techniques/instrumentation , Toxicity Tests/instrumentation , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/physiopathology , Cardiotoxicity , Cost Savings , Cost-Benefit Analysis , Heart Rate/drug effects , Humans , Induced Pluripotent Stem Cells/metabolism , Microelectrodes/economics , Myocytes, Cardiac/metabolism , Photoacoustic Techniques/economics , Reproducibility of Results , Risk Assessment , Time Factors , Toxicity Tests/economics , Workflow
2.
Opt Lett ; 45(24): 6579-6582, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33325844

ABSTRACT

Optical sensors developed for the assessment of oxygen in tissue microvasculature, such as those based on near-infrared spectroscopy, are limited in application by light scattering. Optoacoustic methods are insensitive to light scattering, and therefore, they can provide higher specificity and accuracy when quantifying local vascular oxygenation. However, currently, to the best of our knowledge, there is no low-cost, single point, optoacoustic sensor for the dedicated measurement of oxygen saturation in tissue microvasculature. This work introduces a spectroscopic optoacoustic sensor (SPOAS) for the non-invasive measurement of local vascular oxygenation in real time. SPOAS employs continuous wave laser diodes and measures at a single point, which makes it low-cost and portable. The SPOAS performance was benchmarked using blood phantoms, and it showed excellent linear correlation (R2=0.98) with a blood gas analyzer. Subsequent measurements of local vascular oxygenation in living mice during an oxygen stress test correlated well with simultaneous readings from a reference instrument.


Subject(s)
Monitoring, Physiologic/instrumentation , Oxygen/blood , Photoacoustic Techniques/economics , Photoacoustic Techniques/instrumentation , Animals , Lasers , Mice , Mice, Nude , Spectrum Analysis
3.
Ultrasonics ; 103: 106098, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32105781

ABSTRACT

We present a proof-of-concept of an automatic integration of photoacoustic (PA) imaging on clinical ultrasound (US) imaging platforms. Here we tackle two critical challenges: the laser synchronization and the inaccessibility to the beamformer core embedded in commercial US imaging platform. In particular, the line trigger frequency (LTF) estimation and the asynchronous synthetic aperture inverse beamforming (ASAIB) were developed and evaluated in both k-Wave simulation and phantom experiment. The proposed method is an economical solution to enable PA imaging on a greater number of US equipment to further thrive the PA imaging research community.


Subject(s)
Lasers , Photoacoustic Techniques/economics , Photoacoustic Techniques/instrumentation , Algorithms , Computer Simulation , Equipment Design , Image Processing, Computer-Assisted , Proof of Concept Study
4.
Opt Lett ; 44(1): 81-84, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30645563

ABSTRACT

Bulky, expensive Nd:YAG lasers are used in conventional photoacoustic tomography (PAT) systems, making them difficult to translate into clinics. Moreover, real-time imaging is not feasible when a single-element ultrasound transducer is used with these low-pulse-repetition-rate lasers (10-100 Hz). Low-cost pulsed laser diodes (PLDs) can be used instead for photoacoustic imaging due to their high-pulse-repetition rates and compact size. Together with acoustic-reflector-based multiple single-element ultrasound transducers, a portable desktop PAT system was developed. This second-generation PLD-based PAT achieved 0.5 s cross-sectional imaging time with high spatial resolution of ∼165 µm and an imaging depth of 3 cm. The performance of this system was characterized using phantom and in vivo studies. Dynamic in vivo imaging was also demonstrated by monitoring the fast uptake and clearance of indocyanine green in small animal (rat) brain vasculature.


Subject(s)
Costs and Cost Analysis , Lasers , Photoacoustic Techniques/economics , Photoacoustic Techniques/instrumentation , Tomography/economics , Tomography/instrumentation , Animals , Brain/metabolism , Mammary Glands, Animal/diagnostic imaging , Rats , Semiconductors , Time Factors
5.
J Biomed Opt ; 23(12): 1-10, 2018 09.
Article in English | MEDLINE | ID: mdl-30251485

ABSTRACT

The optimal photoacoustic probe design is the key to obtain highest imaging sensitivity in photoacoustic computed tomography. Two commonly used probe design types are dark- and bright-field designs. We proposed a design for photoacoustic probe called quasibright-field illumination and compared the performance of all three kinds of probes theoretically and experimentally. Our conclusion is that the proposed quasibright-field illumination photoacoustic probe is superior compared to the existing probe designs as demonstrated. However, each type of illumination should still have its own advantages under certain circumstances. The dark-field illumination is capable of minimizing surface interference signals and reducing their contributions to the background of deeper signals. Hence, it should perform better when imaging samples with high optical absorbance at the surface layer. The bright field may perform better under circumstance when phase distortion is less. We also designed and fabricated three kinds of probes using a single multimode optical fiber for laser energy delivery instead of fiber bundle. Single fiber probes are low cost, transmit laser energy efficiently, and are compact for easy handling. Thus, our study not only provides a method for probe design but also a guidance for cost-effective transducer array-based photoacoustic probe design and manufacturing in the future.


Subject(s)
Photoacoustic Techniques/methods , Prostate/diagnostic imaging , Tomography, X-Ray Computed/methods , Transducers , Animals , Dogs , Equipment Design , Humans , Lasers , Male , Phantoms, Imaging , Photoacoustic Techniques/economics , Signal-To-Noise Ratio , Spectrum Analysis , Tomography, X-Ray Computed/economics , Ultrasonography
6.
J Biomed Opt ; 22(7): 75001, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28697234

ABSTRACT

With the growing application of photoacoustic imaging (PAI) in medical fields, there is a need to make them more compact, portable, and affordable. Therefore, we designed very low-cost PAI systems by replacing the expensive and sophisticated laser with a very low-energy laser diode. We implemented photoacoustic (PA) microscopy, both reflection and transmission modes, as well as PA computed tomography systems. The images obtained from tissue-mimicking phantoms and biological samples determine the feasibility of using a very low-energy laser diode in these configurations.


Subject(s)
Lasers, Semiconductor , Photoacoustic Techniques/instrumentation , Microscopy , Phantoms, Imaging , Photoacoustic Techniques/economics
7.
Opt Lett ; 41(5): 1006-9, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26974102

ABSTRACT

The idea of a method of cost-effective upgrades from an acoustic resolution photoacoustic microscope to a triple-modality imaging system is validated using phantoms. The newly developed experimental setup is based on a diode pumped solid state laser coupled to a fiber bundle with a spherically focused polyvinylidene fluoride detector integrated into the center of a ring shaped optical illuminator. Each laser pulse illuminating the sample performs two functions. While the photons absorbed by the sample provide a measurable optoacoustic (OA) signal, the photons absorbed by the detector provide the measurable diffuse reflectometry (DR) signal from the sample and the probing ultrasonic (US) pulse. At a 3 mm imaging depth, the axial resolution of the OA/US modalities is 38 µm/26 µm, while the lateral resolution of the DR/OA/US modalities is 3.5 mm/50 µm/35 µm. The maximum acquisition rate of the trimodal DR/OA/US A-scans is 2 kHz.


Subject(s)
Cost-Benefit Analysis , Optical Phenomena , Photoacoustic Techniques/economics , Pressure , Ultrasonic Waves , Algorithms , Phantoms, Imaging
8.
PLoS One ; 7(10): e45337, 2012.
Article in English | MEDLINE | ID: mdl-23071512

ABSTRACT

The emerging field of photoacoustic tomography is rapidly evolving with many new system designs and reconstruction algorithms being published. Many systems use water as a coupling medium between the scanned object and the ultrasound transducers. Prior to a scan, the water is heated to body temperature to enable small animal imaging. During the scan, the water heating system of some systems is switched off to minimize the risk of bubble formation, which leads to a gradual decrease in water temperature and hence the speed of sound. In this work, we use a commercially available scanner that follows this procedure, and show that a failure to model intra-scan temperature decreases as small as 1.5°C leads to image artifacts that may be difficult to distinguish from true structures, particularly in complex scenes. We then improve image quality by continuously monitoring the water temperature during the scan and applying variable speed of sound corrections in the image reconstruction algorithm. While upgrading to an air bubble-free heating pump and keeping it running during the scan could also solve the changing temperature problem, we show that a software correction for the temperature changes provides a cost-effective alternative to a hardware upgrade. The efficacy of the software corrections was shown to be consistent across objects of widely varying appearances, namely physical phantoms, ex vivo tissue, and in vivo mouse imaging. To the best of our knowledge, this is the first study to demonstrate the efficacy of modeling temporal variations in the speed of sound during photoacoustic scans, as opposed to spatial variations as focused on by previous studies. Since air bubbles pose a common problem in ultrasonic and photoacoustic imaging systems, our results will be useful to future small animal imaging studies that use scanners with similarly limited heating units.


Subject(s)
Photoacoustic Techniques/methods , Tomography, X-Ray Computed/methods , Algorithms , Animals , Artifacts , Image Processing, Computer-Assisted/methods , Mice , Phantoms, Imaging , Photoacoustic Techniques/economics , Temperature , Tomography, X-Ray Computed/economics , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...