Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Plant Physiol ; 170(5): 534-8, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23317936

ABSTRACT

Chromium (Cr), as a mutagenic agent in plants, has received less attention than other metal pollutants. To understand if Cr induces microsatellite instability (MSI), Pisum sativum seedlings were exposed for 28 days to different concentrations of Cr(VI) up to 2000mgL(-1), and the genetic instability of ten microsatellites (SSRs) was analyzed. In plants exposed to Cr(VI) up to 1000mg L(-1), MSI was never observed. However, roots exposed to 2000mgL(-1) displayed MSI in two of the loci analyzed, corresponding to a mutation rate of 8.3%. SSR2 (inserted in the locus for plastid photosystem I 24kDa light harvesting protein) and SSR6 (inserted in the locus for P. sativum glutamine synthetase) from Cr(VI)-treated roots presented alleles with, respectively, less 6bp and more 3bp than the corresponding controls. This report demonstrates that: (a) SSRs technique is sensitive to detect Cr-induced mutagenicity in plants, being Cr-induced-MSI dose and organ dependent (roots are more sensitive); (b) two Cr-sensitive loci are related with thylakoid photophosphorylation and with glutamine synthetase, respectively; (c) despite MSI is induced by Cr(VI), it only occurs in plants exposed to concentrations higher than 1000mgL(-1) (values rarely found in real scenarios). Considering these data, we also discuss the known functional changes induced by Cr(VI) in photosynthesis and in glutamine synthetase activity.


Subject(s)
Chromium/toxicity , Genetic Loci/genetics , Glutamine/metabolism , Microsatellite Instability/drug effects , Organ Specificity/genetics , Photophosphorylation/drug effects , Alleles , Chromium/metabolism , Microsatellite Repeats/genetics , Organ Specificity/drug effects , Photophosphorylation/genetics , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/metabolism , Plant Shoots/drug effects , Plant Shoots/genetics , Plant Shoots/metabolism
2.
Microbiol Mol Biol Rev ; 73(1): 71-133, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19258534

ABSTRACT

Aromatic compounds belong to one of the most widely distributed classes of organic compounds in nature, and a significant number of xenobiotics belong to this family of compounds. Since many habitats containing large amounts of aromatic compounds are often anoxic, the anaerobic catabolism of aromatic compounds by microorganisms becomes crucial in biogeochemical cycles and in the sustainable development of the biosphere. The mineralization of aromatic compounds by facultative or obligate anaerobic bacteria can be coupled to anaerobic respiration with a variety of electron acceptors as well as to fermentation and anoxygenic photosynthesis. Since the redox potential of the electron-accepting system dictates the degradative strategy, there is wide biochemical diversity among anaerobic aromatic degraders. However, the genetic determinants of all these processes and the mechanisms involved in their regulation are much less studied. This review focuses on the recent findings that standard molecular biology approaches together with new high-throughput technologies (e.g., genome sequencing, transcriptomics, proteomics, and metagenomics) have provided regarding the genetics, regulation, ecophysiology, and evolution of anaerobic aromatic degradation pathways. These studies revealed that the anaerobic catabolism of aromatic compounds is more diverse and widespread than previously thought, and the complex metabolic and stress programs associated with the use of aromatic compounds under anaerobic conditions are starting to be unraveled. Anaerobic biotransformation processes based on unprecedented enzymes and pathways with novel metabolic capabilities, as well as the design of novel regulatory circuits and catabolic networks of great biotechnological potential in synthetic biology, are now feasible to approach.


Subject(s)
Amino Acids, Aromatic/metabolism , Bacteria, Anaerobic/genetics , Environmental Pollutants/metabolism , Genomics , Hydrocarbons, Aromatic/metabolism , Multigene Family , Anaerobiosis , Bacteria, Anaerobic/metabolism , Biodegradation, Environmental , Ecosystem , Fermentation/genetics , Photophosphorylation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...