Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 516
Filter
1.
FASEB J ; 38(10): e23671, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38752538

ABSTRACT

NLRP3 inflammasome activation has emerged as a critical initiator of inflammatory response in ischemic retinopathy. Here, we identified the effect of a potent, selective NLRP3 inhibitor, MCC950, on autophagy and apoptosis under hypoxia. Neonatal mice were exposed to hyperoxia for 5 days to establish oxygen-induced retinopathy (OIR) model. Intravitreal injection of MCC950 was given, and then autophagy and apoptosis markers were assessed. Retinal autophagy, apoptosis, and related pathways were evaluated by western blot, immunofluorescent labeling, transmission electron microscopy, and TUNEL assay. Autophagic activity in Müller glia after NLRP3 inflammasome inhibition, together with its influence on photoreceptor death, was studied using western blot, immunofluorescence staining, mRFP-GFP-LC3 adenovirus transfection, cell viability, proliferation, and apoptosis assays. Results showed that activation of NLRP3 inflammasome in Müller glia was detected in OIR model. MCC950 could improve impaired retinal autophagic flux and attenuate retinal apoptosis while it regulated the retinal AMPK/mTOR/ULK-1 pathway. Suppressed autophagy and depressed proliferation capacity resulting from hypoxia was promoted after MCC950 treatment in Müller glia. Inhibition of AMPK and ULK-1 pathway significantly interfered with the MCC950-induced autophagy activity, indicating MCC950 positively modulated autophagy through AMPK/mTOR/ULK-1 pathway in Müller cells. Furthermore, blockage of autophagy in Müller glia significantly induced apoptosis in the cocultured 661W photoreceptor cells, whereas MCC950 markedly preserved the density of photoreceptor cells. These findings substantiated the therapeutic potential of MCC950 against impaired autophagy and subsequent apoptosis under hypoxia. Such protective effect might involve the modulation of AMPK/mTOR/ULK-1 pathway. Targeting NLRP3 inflammasome in Müller glia could be beneficial for photoreceptor survival under hypoxic conditions.


Subject(s)
Apoptosis , Autophagy , Ependymoglial Cells , Furans , Indenes , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Sulfonamides , Animals , Autophagy/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Mice , Apoptosis/drug effects , Sulfonamides/pharmacology , Inflammasomes/metabolism , Furans/pharmacology , Ependymoglial Cells/metabolism , Ependymoglial Cells/drug effects , Indenes/pharmacology , Mice, Inbred C57BL , Hypoxia/metabolism , Cyclic S-Oxides/pharmacology , Sulfones/pharmacology , Photoreceptor Cells, Vertebrate/metabolism , Photoreceptor Cells, Vertebrate/drug effects , Photoreceptor Cells, Vertebrate/pathology , Heterocyclic Compounds, 4 or More Rings/pharmacology , Photoreceptor Cells/metabolism , Photoreceptor Cells/drug effects , Signal Transduction/drug effects
2.
PLoS One ; 19(5): e0302742, 2024.
Article in English | MEDLINE | ID: mdl-38768144

ABSTRACT

Zeaxanthin dipalmitate (ZD) is a chemical extracted from wolfberry that protects degenerated photoreceptors in mouse retina. However, the pure ZD is expensive and hard to produce. In this study, we developed a method to enrich ZD from wolfberry on a production line and examined whether it may also protect the degenerated mouse retina. The ZD-enriched wolfberry extract (ZDE) was extracted from wolfberry by organic solvent method, and the concentration of ZD was identified by HPLC. The adult C57BL/6 mice were treated with ZDE or solvent by daily gavage for 2 weeks, at the end of the first week the animals were intraperitoneally injected with N-methyl-N-nitrosourea to induce photoreceptor degeneration. Then optomotor, electroretinogram, and immunostaining were used to test the visual behavior, retinal light responses, and structure. The final ZDE product contained ~30mg/g ZD, which was over 9 times higher than that from the dry fruit of wolfberry. Feeding degenerated mice with ZDE significantly improved the survival of photoreceptors, enhanced the retinal light responses and the visual acuity. Therefore, our ZDE product successfully alleviated retinal morphological and functional degeneration in mouse retina, which may provide a basis for further animal studies for possible applying ZDE as a supplement to treat degenerated photoreceptor in the clinic.


Subject(s)
Disease Models, Animal , Lycium , Mice, Inbred C57BL , Photoreceptor Cells, Vertebrate , Plant Extracts , Retinal Degeneration , Zeaxanthins , Animals , Lycium/chemistry , Retinal Degeneration/drug therapy , Retinal Degeneration/pathology , Mice , Plant Extracts/pharmacology , Plant Extracts/chemistry , Zeaxanthins/pharmacology , Photoreceptor Cells, Vertebrate/drug effects , Photoreceptor Cells, Vertebrate/pathology , Electroretinography , Retina/drug effects , Retina/pathology , Retina/metabolism , Vision, Ocular/drug effects , Male , Xanthophylls/pharmacology
3.
Acta Biomater ; 181: 117-132, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705224

ABSTRACT

Human stem cell-derived organoids enable both disease modeling and serve as a source of cells for transplantation. Human retinal organoids are particularly important as a source of human photoreceptors; however, the long differentiation period required and lack of vascularization in the organoid often results in a necrotic core and death of inner retinal cells before photoreceptors are fully mature. Manipulating the in vitro environment of differentiating retinal organoids through the incorporation of extracellular matrix components could influence retinal development. We investigated the addition of hyaluronan (HA), a component of the interphotoreceptor matrix, as an additive to promote long-term organoid survival and enhance retinal maturation. HA treatment had a significant reduction in the proportion of proliferating (Ki67+) cells and increase in the proportion of photoreceptors (CRX+), suggesting that HA accelerated photoreceptor commitment in vitro. HA significantly upregulated genes specific to photoreceptor maturation and outer segment development. Interestingly, prolonged HA-treatment significantly decreased the length of the brush border layer compared to those in control retinal organoids, where the photoreceptor outer segments reside; however, HA-treated organoids also had more mature outer segments with organized discs structures, as revealed by transmission electron microscopy. The brush border layer length was inversely proportional to the molar mass and viscosity of the hyaluronan added. This is the first study to investigate the role of exogenous HA, viscosity, and polymer molar mass on photoreceptor maturation, emphasizing the importance of material properties on organoid culture. STATEMENT OF SIGNIFICANCE: Retinal organoids are a powerful tool to study retinal development in vitro, though like many other organoid systems, can be highly variable. In this work, Shoichet and colleagues investigated the use of hyaluronan (HA), a native component of the interphotoreceptor matrix, to improve photoreceptor maturation in developing human retinal organoids. HA promoted human photoreceptor differentiation leading to mature outer segments with disc formation and more uniform and healthy retinal organoids. These findings highlight the importance of adding components native to the developing retina to generate more physiologically relevant photoreceptors for cell therapy and in vitro models to drive drug discovery and uncover novel disease mechanisms.


Subject(s)
Cell Differentiation , Hyaluronic Acid , Organoids , Retina , Hyaluronic Acid/pharmacology , Hyaluronic Acid/chemistry , Humans , Organoids/drug effects , Organoids/cytology , Organoids/metabolism , Cell Differentiation/drug effects , Retina/drug effects , Retina/cytology , Retina/growth & development , Photoreceptor Cells, Vertebrate/drug effects , Photoreceptor Cells, Vertebrate/cytology , Photoreceptor Cells, Vertebrate/metabolism
4.
Acta Neuropathol Commun ; 12(1): 76, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755736

ABSTRACT

Activated microglia play an important role in driving photoreceptor degeneration-associated neuroinflammation in the retina. Controlling pro-inflammatory activation of microglia holds promise for mitigating the progression of photoreceptor degeneration. Our previous study has demonstrated that pre-light damage treatment of hyperoside, a naturally occurring flavonol glycoside with antioxidant and anti-inflammatory activities, prevents photooxidative stress-induced photoreceptor degeneration and neuroinflammatory responses in the retina. However, the direct impact of hyperoside on microglia-mediated neuroinflammation during photoreceptor degeneration remains unknown. Upon verifying the anti-inflammatory effects of hyperoside in LPS-stimulated BV-2 cells, our results here further demonstrated that post-light damage hyperoside treatment mitigated the loss of photoreceptors and attenuated the functional decline of the retina. Meanwhile, post-light damage hyperoside treatment lowered neuroinflammatory responses and dampened microglial activation in the illuminated retinas. With respect to microglial activation, hyperoside mitigated the pro-inflammatory responses in DNA-stimulated BV-2 cells and lowered DNA-stimulated production of 2'3'-cGAMP in BV-2 cells. Moreover, hyperoside was shown to directly interact with cGAS and suppress the enzymatic activity of cGAS in a cell-free system. In conclusion, the current study suggests for the first time that the DNA sensor cGAS is a direct target of hyperoside. Hyperoside is effective at mitigating DNA-stimulated cGAS-mediated pro-inflammatory activation of microglia, which likely contributes to the therapeutic effects of hyperoside at curtailing neuroinflammation and alleviating neuroinflammation-instigated photoreceptor degeneration.


Subject(s)
Microglia , Nucleotidyltransferases , Quercetin , Retinal Degeneration , Animals , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , Quercetin/pharmacology , Quercetin/analogs & derivatives , Retinal Degeneration/pathology , Retinal Degeneration/metabolism , Retinal Degeneration/drug therapy , Retinal Degeneration/prevention & control , Mice , Nucleotidyltransferases/metabolism , Mice, Inbred C57BL , DNA/metabolism , Cell Line , Photoreceptor Cells, Vertebrate/drug effects , Photoreceptor Cells, Vertebrate/pathology , Photoreceptor Cells, Vertebrate/metabolism , Male
5.
Bioorg Chem ; 147: 107405, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38696843

ABSTRACT

The prolonged intravitreal administration of anti-vascular endothelial growth factor (VEGF) drugs is prone to inducing aberrant retinal vascular development and causing damage to retinal neurons. Hence, we have taken an alternative approach by designing and synthesizing a series of cyclic peptides targeting CC motif chemokine receptor 3 (CCR3). Based on the binding mode of the N-terminal region in CCR3 protein to CCL11, we used computer-aided identification of key amino acid sequence, conformational restriction through different cyclization methods, designed and synthesized a series of target cyclic peptides, and screened the preferred compound IB-2 through affinity. IB-2 exhibits excellent anti-angiogenic activity in HRECs. The apoptosis level of 661W cells demonstrated a significant decrease with the escalating concentration of IB-2. This suggests that IB-2 may have a protective effect on photoreceptor cells. In vivo experiments have shown that IB-2 significantly reduces retinal vascular leakage and choroidal neovascularization (CNV) area in a laser-induced mouse model of CNV. These findings indicate the potential of IB-2 as a safe and effective therapeutic agent for AMD, warranting further development.


Subject(s)
Macular Degeneration , Peptides, Cyclic , Receptors, CCR3 , Animals , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemical synthesis , Macular Degeneration/drug therapy , Macular Degeneration/pathology , Mice , Receptors, CCR3/antagonists & inhibitors , Receptors, CCR3/metabolism , Humans , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/chemical synthesis , Angiogenesis Inhibitors/chemistry , Molecular Structure , Structure-Activity Relationship , Mice, Inbred C57BL , Dose-Response Relationship, Drug , Apoptosis/drug effects , Choroidal Neovascularization/drug therapy , Choroidal Neovascularization/pathology , Choroidal Neovascularization/metabolism , Photoreceptor Cells, Vertebrate/drug effects , Photoreceptor Cells, Vertebrate/pathology , Angiogenesis
6.
Exp Eye Res ; 242: 109879, 2024 May.
Article in English | MEDLINE | ID: mdl-38570182

ABSTRACT

Because the selective estrogen receptor modulator tamoxifen was shown to be retina-protective in the light damage and rd10 models of retinal degeneration, the purpose of this study was to test whether tamoxifen is retina-protective in a model where retinal pigment epithelium (RPE) toxicity appears to be the primary insult: the sodium iodate (NaIO3) model. C57Bl/6J mice were given oral tamoxifen (in the diet) or the same diet lacking tamoxifen, then given an intraperitoneal injection of NaIO3 at 25 mg/kg. The mice were imaged a week later using optical coherence tomography (OCT). ImageJ with a custom macro was utilized to measure retinal thicknesses in OCT images. Electroretinography (ERG) was used to measure retinal function one week post-injection. After euthanasia, quantitative real-time PCR (qRT-PCR) was performed. Tamoxifen administration partially protected photoreceptors. There was less photoreceptor layer thinning in OCT images of tamoxifen-treated mice. qRT-PCR revealed, in the tamoxifen-treated group, less upregulation of antioxidant and complement factor 3 mRNAs, and less reduction in the rhodopsin and short-wave cone opsin mRNAs. Furthermore, ERG results demonstrated preservation of photoreceptor function for the tamoxifen-treated group. Cone function was better protected than rods. These results indicate that tamoxifen provided structural and functional protection to photoreceptors against NaIO3. RPE cells were not protected. These neuroprotective effects suggest that estrogen-receptor modulation may be retina-protective. The fact that cones are particularly protected is intriguing given their importance for human visual function and their survival until the late stages of retinitis pigmentosa. Further investigation of this protective pathway could lead to new photoreceptor-protective therapeutics.


Subject(s)
Disease Models, Animal , Electroretinography , Iodates , Mice, Inbred C57BL , Retinal Degeneration , Tamoxifen , Tomography, Optical Coherence , Animals , Iodates/toxicity , Mice , Tomography, Optical Coherence/methods , Tamoxifen/pharmacology , Retinal Degeneration/prevention & control , Retinal Degeneration/chemically induced , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Real-Time Polymerase Chain Reaction , Photoreceptor Cells, Vertebrate/drug effects , Photoreceptor Cells, Vertebrate/pathology , Rhodopsin/metabolism , Rhodopsin/genetics , Selective Estrogen Receptor Modulators/pharmacology , RNA, Messenger/genetics , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/pathology , Retinal Pigment Epithelium/metabolism , Rod Opsins/metabolism
7.
Exp Eye Res ; 242: 109852, 2024 May.
Article in English | MEDLINE | ID: mdl-38460719

ABSTRACT

Oxidative stress plays a pivotal role in the pathogenesis of several neurodegenerative diseases. Retinal degeneration causes irreversible death of photoreceptor cells, ultimately leading to vision loss. Under oxidative stress, the synthesis of bioactive sphingolipid ceramide increases, triggering apoptosis in photoreceptor cells and leading to their death. This study investigates the effect of L-Cycloserine, a small molecule inhibitor of ceramide biosynthesis, on sphingolipid metabolism and the protection of photoreceptor-derived 661W cells from oxidative stress. The results demonstrate that treatment with L-Cycloserine, an inhibitor of Serine palmitoyl transferase (SPT), markedly decreases bioactive ceramide and associated sphingolipids in 661W cells. A nontoxic dose of L-Cycloserine can provide substantial protection of 661W cells against H2O2-induced oxidative stress by reversing the increase in ceramide level observed under oxidative stress conditions. Analysis of various antioxidant, apoptotic and sphingolipid pathway genes and proteins also confirms the ability of L-Cycloserine to modulate these pathways. Our findings elucidate the generation of sphingolipid mediators of cell death in retinal cells under oxidative stress and the potential of L-Cycloserine as a therapeutic candidate for targeting ceramide-induced degenerative diseases by inhibiting SPT. The promising therapeutic prospect identified in our findings lays the groundwork for further validation in in-vivo and preclinical models of retinal degeneration.


Subject(s)
Apoptosis , Ceramides , Cycloserine , Oxidative Stress , Sphingolipids , Oxidative Stress/drug effects , Cycloserine/pharmacology , Animals , Ceramides/metabolism , Ceramides/pharmacology , Mice , Sphingolipids/metabolism , Apoptosis/drug effects , Photoreceptor Cells, Vertebrate/drug effects , Photoreceptor Cells, Vertebrate/metabolism , Photoreceptor Cells, Vertebrate/pathology , Serine C-Palmitoyltransferase/metabolism , Serine C-Palmitoyltransferase/antagonists & inhibitors , Hydrogen Peroxide/toxicity , Hydrogen Peroxide/pharmacology , Cell Line , Retinal Degeneration/metabolism , Retinal Degeneration/prevention & control , Retinal Degeneration/pathology , Retinal Degeneration/drug therapy , Blotting, Western , Enzyme Inhibitors/pharmacology , Cell Survival/drug effects
8.
Arch Toxicol ; 96(2): 613-624, 2022 02.
Article in English | MEDLINE | ID: mdl-34973110

ABSTRACT

The receptor tyrosine kinase, MERTK, plays an essential role in homeostasis of the retina via efferocytosis of shed outer nuclear segments of photoreceptors. The Royal College of Surgeons rat model of retinal degeneration has been linked to loss-of-function of MERTK, and together with the MERTK knock-out mouse, phenocopy retinitis pigmentosa in humans with MERTK mutations. Given recent efforts and interest in MERTK as a potential immuno-oncology target, development of a strategy to assess ocular safety at an early pre-clinical stage is critical. We have applied a state-of-the-art, multi-modal imaging platform to assess the in vivo effects of pharmacological inhibition of MERTK in mice. This involved the application of mass spectrometry imaging (MSI) to characterize the ocular spatial distribution of our highly selective MERTK inhibitor; AZ14145845, together with histopathology and transmission electron microscopy to characterize pathological and ultra-structural change in response to MERTK inhibition. In addition, we assessed the utility of a human retinal in vitro cell model to identify perturbation of phagocytosis post MERTK inhibition. We identified high localized total compound concentrations in the retinal pigment epithelium (RPE) and retinal lesions following 28 days of treatment with AZ14145845. These lesions were present in 4 of 8 treated animals, and were characterized by a thinning of the outer nuclear layer, loss of photoreceptors (PR) and accumulation of photoreceptor outer segments at the interface of the RPE and PRs. Furthermore, the lesions were very similar to that shown in the RCS rat and MERTK knock-out mouse, suggesting a MERTK-induced mechanism of PR cell death. This was further supported by the observation of reduced phagocytosis in the human retinal cell model following treatment with AZ14145845. Our study provides a viable, translational strategy to investigate the pre-clinical toxicity of MERTK inhibitors but is equally transferrable to novel chemotypes.


Subject(s)
Phagocytosis/drug effects , Photoreceptor Cells, Vertebrate/drug effects , c-Mer Tyrosine Kinase/antagonists & inhibitors , Animals , Cell Line , Female , Humans , Male , Mass Spectrometry , Mice , Mice, Inbred C57BL , Mice, Knockout , Multimodal Imaging , Photoreceptor Cells, Vertebrate/pathology , Rats , Rats, Long-Evans , Rats, Wistar , Retinal Degeneration/chemically induced , Retinal Pigment Epithelium/metabolism , Tissue Distribution , c-Mer Tyrosine Kinase/genetics
9.
Cell Death Dis ; 12(10): 926, 2021 10 09.
Article in English | MEDLINE | ID: mdl-34628463

ABSTRACT

Photoreceptor death and neurodegeneration is the leading cause of irreversible vision loss. The inflammatory response of microglia plays an important role in the process of neurodegeneration. In this study, we chose retinal detachment as the model of photoreceptor degeneration. We found Myosin 1f was upregulated after retinal detachment, and it was specifically expressed in microglia. Deficiency of myosin 1f protected against photoreceptor apoptosis by inhibiting microglia activation. The elimination of microglia can abolish the protective effect of myosin 1f deficiency. After stimulation by LPS, microglia with myosin 1f deficiency showed downregulation of the MAPK and AKT pathways. Our results demonstrated that myosin 1f plays a crucial role in microglia-induced neuroinflammation after retinal injury and photoreceptor degeneration by regulating two classic inflammatory pathways and thereby decreasing the expression of inflammatory cytokines. Knockout of myosin 1f reduces the intensity of the immune response and prevents cell death of photoreceptor, suggesting that myosin 1f can be inhibited to prevent a decline in visual acuity after retinal detachment.


Subject(s)
Microglia/metabolism , Microglia/pathology , Myosin Type I/metabolism , Myosins/metabolism , Photoreceptor Cells, Vertebrate/metabolism , Retinal Degeneration/metabolism , Retinal Detachment/metabolism , Aminopyridines/pharmacology , Animals , Calcium-Binding Proteins/metabolism , Cell Death/drug effects , Cell Death/genetics , Cell Line , Disease Models, Animal , Gene Expression Profiling , Light , MAP Kinase Signaling System/drug effects , Mice, Knockout , Microfilament Proteins/metabolism , Microglia/drug effects , Models, Biological , Photoreceptor Cells, Vertebrate/drug effects , Photoreceptor Cells, Vertebrate/pathology , Proto-Oncogene Proteins c-akt/metabolism , Pyrroles/pharmacology , Retinal Degeneration/genetics , Retinal Degeneration/pathology , Retinal Detachment/genetics , Retinal Detachment/pathology , Up-Regulation/drug effects , Up-Regulation/genetics
10.
Biomolecules ; 11(10)2021 10 16.
Article in English | MEDLINE | ID: mdl-34680161

ABSTRACT

Rhodopsin (RHO) misfolding mutations are a common cause of the blinding disease autosomal dominant retinitis pigmentosa (adRP). The most prevalent mutation, RHOP23H, results in its misfolding and retention in the endoplasmic reticulum (ER). Under homeostatic conditions, misfolded proteins are selectively identified, retained at the ER, and cleared via ER-associated degradation (ERAD). Overload of these degradation processes for a prolonged period leads to imbalanced proteostasis and may eventually result in cell death. ERAD of misfolded proteins, such as RHOP23H, includes the subsequent steps of protein recognition, targeting for ERAD, retrotranslocation, and proteasomal degradation. In the present study, we investigated and compared pharmacological modulation of ERAD at these four different major steps. We show that inhibition of the VCP/proteasome activity favors cell survival and suppresses P23H-mediated retinal degeneration in RHOP23H rat retinal explants. We suggest targeting this activity as a therapeutic approach for patients with currently untreatable adRP.


Subject(s)
Endoplasmic Reticulum/drug effects , Retinal Degeneration/genetics , Retinitis Pigmentosa/genetics , Rhodopsin/genetics , Alkaloids/pharmacology , Animals , Animals, Genetically Modified , Benzoquinones/pharmacology , Disease Models, Animal , Endoplasmic Reticulum/genetics , Humans , Lactams, Macrocyclic/pharmacology , Mutation/genetics , Photoreceptor Cells, Vertebrate/drug effects , Photoreceptor Cells, Vertebrate/pathology , Proteasome Endopeptidase Complex/drug effects , Proteasome Endopeptidase Complex/genetics , Protein Folding/drug effects , Proteolysis/drug effects , Rats , Retina/drug effects , Retina/growth & development , Retina/pathology , Retinal Degeneration/pathology , Retinitis Pigmentosa/pathology , Rhodopsin/ultrastructure
11.
BMC Infect Dis ; 21(1): 676, 2021 Jul 12.
Article in English | MEDLINE | ID: mdl-34247579

ABSTRACT

BACKGROUND: The objective of this study is to report a case of acute retinal necrosis in which abnormalities in visual function did not correspond to retinal anatomical outcomes. CASE PRESENTATION: A 39-year-old female diagnosed with acute retinal necrosis underwent repeated (nine rounds) intravitreal ganciclovir injection (3 mg/0.1 ml) into the left eye, one injection every 2 weeks. During the therapy, the patient noticed her visual acuity declining gradually. The best corrected visual acuity in the left eye was 20/33. The visual field showed massive visual damage. There was no posterior necrotizing involvement, no macular edema or exudation, and only slight abnormity of the interdigitation zone in the fovea area was visible on OCT. Angio-OCT revealed normal capillary density of three retinal capillary and choriocapillaris layers. The visually evoked potential was normal. The photopic single-flash response showed a declined amplitude of a-wave and b-wave. The amplitudes of photopic 30 Hz flicker were decreased. Multifocal electroretinography revealed macular dysfunction. CONCLUSION: Ganciclovir-associated photoreceptor damage may induce abnormalities in retinal function in response to multiple continuous intravitreal ganciclovir injections at a relatively high dosage (3 mg/0.1 ml).


Subject(s)
Ganciclovir/adverse effects , Retina/drug effects , Adult , Dose-Response Relationship, Drug , Electroretinography , Female , Ganciclovir/administration & dosage , Ganciclovir/therapeutic use , Humans , Intravitreal Injections , Photoreceptor Cells, Vertebrate/drug effects , Retina/physiopathology , Visual Acuity/drug effects
12.
J Neurochem ; 159(5): 840-856, 2021 12.
Article in English | MEDLINE | ID: mdl-34133756

ABSTRACT

Pigment epithelium-derived factor (PEDF) is a cytoprotective protein for the retina. We hypothesize that this protein acts on neuronal survival and differentiation of photoreceptor cells in culture. The purpose of the present study was to evaluate the neurotrophic effects of PEDF and its fragments in an in vitro model of cultured primary retinal neurons that die spontaneously in the absence of trophic factors. We used Wistar albino rats. Cell death was assayed by immunofluorescence and flow cytometry through TUNEL assay, propidium iodide, mitotracker, and annexin V. Immunofluorescence of cells for visualizing rhodopsin, CRX, and antisyntaxin under confocal microscopy was performed. Neurite outgrowth was also quantified. Results show that PEDF protected photoreceptor precursors from apoptosis, preserved mitochondrial function and promoted polarization of opsin enhancing their developmental process, as well as induced neurite outgrowth in amacrine neurons. These effects were abolished by an inhibitor of the PEDF receptor or receptor-derived peptides that block ligand/receptor interactions. While all the activities were specifically conferred by short peptide fragments (17 amino acid residues) derived from the PEDF neurotrophic domain, no effects were triggered by peptides from the PEDF antiangiogenic region. The observed effects on retinal neurons imply a specific activation of the PEDF receptor by a small neurotrophic region of PEDF. Our findings support the neurotrophic PEDF peptides as neuronal guardians for the retina, highlighting their potential as promoters of retinal differentiation, and inhibitors of retinal cell death and its blinding consequences. Cover Image for this issue: https://doi.org/10.1111/jnc.15089.


Subject(s)
Amacrine Cells/drug effects , Cell Differentiation/drug effects , Eye Proteins/pharmacology , Nerve Growth Factors/pharmacology , Neuronal Outgrowth/drug effects , Neurons/drug effects , Photoreceptor Cells, Vertebrate/drug effects , Serpins/pharmacology , Amacrine Cells/physiology , Amino Acid Sequence , Animals , Cell Differentiation/physiology , Cell Survival/drug effects , Cell Survival/physiology , Cells, Cultured , Eye Proteins/genetics , Female , Male , Nerve Growth Factors/genetics , Neuronal Outgrowth/physiology , Neurons/physiology , Peptide Fragments/genetics , Peptide Fragments/pharmacology , Photoreceptor Cells, Vertebrate/physiology , Rats , Rats, Wistar , Serpins/genetics
13.
Lipids ; 56(4): 437-448, 2021 07.
Article in English | MEDLINE | ID: mdl-34058794

ABSTRACT

To investigate alterations of lipidomes in the progress of photoreceptor degeneration induced by N-methyl-N-nitrosourea (MNU) in a rat model, retinal lipid molecular species in adult Sprague-Dawley (SD) rats at 1, 3, and 7 days after MNU administration and age-matched controls were analyzed by the shotgun lipidomics technology. Moreover, total fatty acid levels in retinal, liver, and plasma samples of different groups were determined with gas chromatography. Generally, at day 1, the levels of ethanolamine plasmalogen species in retinas were markedly elevated after treatment with MNU, while the contents of other phospholipids and sphingolipids in the retina were not significantly changed than those of the control group. The compositions of almost all of unsaturated fatty acids in the retina increased significantly at day 1 after MNU administration. At day 7, the MNU treatment group has significant increases in lipid species in the retina. However, the majority of lipids containing docosahexaenoic acid (DHA, 22:6n-3) and docosapentaenoic acid (22:5n-6) declined, especially di-DHA phospholipids were dramatically reduced in the retina. In contrast, similar alterations did not occur in plasma or the liver after MNU treatment. These results suggested that at the early stage of photoreceptor degeneration, lipidome remodeling in the retina might involve protection of photoreceptor from apoptosis and continue their transduction of light. However, at the late stage of photoreceptor apoptosis, increases in comprehensive lipid species occurred, likely due to the myelination of the retina. Finally, the deficiency of DHA in photoreceptor degeneration could exacerbate the influence of myelination on retinal function. We further investigated the effects of unsaturated fatty acids on neuronal apoptosis. The preliminary experiments confirmed our observation from lipidomics analysis that unsaturated fatty acids can protect neurons from apoptosis. Collectively, our study suggests that increased levels of DHA should be protective from photoreceptor degeneration.


Subject(s)
Lipid Metabolism/drug effects , Methylnitrosourea/toxicity , Photoreceptor Cells, Vertebrate/drug effects , Photoreceptor Cells, Vertebrate/metabolism , Retinal Degeneration/chemically induced , Animals , Apoptosis/drug effects , Cell Line , Disease Models, Animal , Docosahexaenoic Acids/metabolism , Docosahexaenoic Acids/pharmacology , Fatty Acids/analysis , Fatty Acids/blood , Fatty Acids/metabolism , Lipidomics/methods , Lipids/analysis , Lipids/chemistry , Liver/drug effects , Liver/metabolism , Male , Mice , Neurons/drug effects , Neurons/pathology , Rats, Sprague-Dawley , Retinal Degeneration/metabolism
14.
Sci Rep ; 11(1): 10962, 2021 05 26.
Article in English | MEDLINE | ID: mdl-34040115

ABSTRACT

Neuropeptides have been reported to regulate progenitor proliferation and neurogenesis in the central nervous system. However, these studies have typically been conducted using pharmacological agents in ex vivo preparations, and in vivo evidence for their developmental function is generally lacking. Recent scRNA-Seq studies have identified multiple neuropeptides and their receptors as being selectively expressed in neurogenic progenitors of the embryonic mouse and human retina. This includes Sstr2, whose ligand somatostatin is transiently expressed by immature retinal ganglion cells. By analyzing retinal explants treated with selective ligands that target these receptors, we found that Sstr2-dependent somatostatin signaling induces a modest, dose-dependent inhibition of photoreceptor generation, while correspondingly increasing the relative fraction of primary progenitor cells. These effects were confirmed by scRNA-Seq analysis of retinal explants but abolished in Sstr2-deficient retinas. Although no changes in the relative fraction of primary progenitors or photoreceptor precursors were observed in Sstr2-deficient retinas in vivo, scRNA-Seq analysis demonstrated accelerated differentiation of neurogenic progenitors. We conclude that, while Sstr2 signaling may act to negatively regulate retinal neurogenesis in combination with other retinal ganglion cell-derived secreted factors such as Shh, it is dispensable for normal retinal development.


Subject(s)
Eye Proteins/physiology , Neurogenesis/physiology , Neuropeptides/physiology , Receptors, Somatostatin/physiology , Retina/cytology , Animals , Dose-Response Relationship, Drug , Eye Proteins/drug effects , Gene Expression Regulation, Developmental , Gene Knockout Techniques , Gestational Age , Humans , Ligands , Mice , Mice, Knockout , Neuropeptides/agonists , Neuropeptides/antagonists & inhibitors , Neuropeptides/pharmacology , Phenotype , Photoreceptor Cells, Vertebrate/drug effects , Photoreceptor Cells, Vertebrate/metabolism , Receptors, Somatostatin/deficiency , Receptors, Somatostatin/drug effects , Retina/embryology , Signal Transduction/physiology , Single-Cell Analysis
15.
Mol Vis ; 27: 151-160, 2021.
Article in English | MEDLINE | ID: mdl-33907370

ABSTRACT

PURPOSE: Recent reports linking HDAC6 to mitochondrial turnover and neurodegeneration led us to hypothesize that an inhibitor such as Vorinostat (suberoylanilide hydroxamic acid, SAHA) may reduce mitochondrial damage found in retinitis pigmentosa (RP), a progressive neurodegenerative disease of the eye. Here we tested the efficacy of SAHA for its ability to protect photoreceptors in in-vitro and in-situ models of RP. As the stressor, we focused on calcium overload. Calcium is one of the main drivers of cell death, and is associated with rod loss in the rd1 mouse retina, which harbors a mutation in the Pde6b gene similar to that found in human patients suffering from autosomal recessive RP. METHOD: Murine photoreceptor cell line (661W) were exposed to agents that led to calcium stress. Cell survival and redox capacity were measured using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, real-time changes in cellular metabolism were assessed using the Seahorse Biosciences XF24 analyzer, and mitochondrial fission-fusion using imaging. In-situ, neuroprotection was assessed in RPE/retina organ cultures of the rd1 mouse. SAHA effects on cell survival were compared in 661W cells with those of the specific HDAC6 inhibitor tubastatin A, and those on protein acetylation by Western blotting. RESULTS: In stressed 661W cells, SAHA was found to increase cell survival that was associated with improved mitochondrial respiration and reduced mitochondrial fission. The protective effects of SAHA were also observed on photoreceptor cell survival in whole retinal organ explants of the rd1 mouse. Even though tubastatin A was ineffective in increasing cell survival in 661W cells, HDAC6 activity was confirmed in 661W cells after SAHA treatment with protein acetylation specific for HDAC6, defined by an increase in tubulin, but not histone acetylation. CONCLUSIONS: SAHA was found to protect mitochondria from damage, and concomitantly reduced photoreceptor cell death in cell and organ cultures. The lack of activity of tubastatin A suggests that there must be an additional mechanism of action involved in the protective mechanism of SAHA that is responsible for its neuroprotection. Overall, SAHA may be a useful treatment for the prevention of photoreceptor degeneration associated with human RP. The results are discussed in the context of the effects of inhibitors that target different classes and members of the HDAC family and their effects on rod versus cone survival.


Subject(s)
Disease Models, Animal , Histone Deacetylase Inhibitors/therapeutic use , Neuroprotective Agents/therapeutic use , Retinitis Pigmentosa/drug therapy , Vorinostat/therapeutic use , Animals , Blotting, Western , Cell Line , Cell Survival/drug effects , Mice , Mitochondria/drug effects , Mitochondrial Diseases/prevention & control , NADH, NADPH Oxidoreductases/metabolism , Organ Culture Techniques , Photoreceptor Cells, Vertebrate/drug effects , Retinitis Pigmentosa/metabolism , Retinitis Pigmentosa/pathology
16.
PLoS One ; 16(4): e0239108, 2021.
Article in English | MEDLINE | ID: mdl-33886548

ABSTRACT

Retinal inflammation accelerates photoreceptor cell death caused by retinal degeneration. Minocycline, a semisynthetic broad-spectrum tetracycline antibiotic, has been previously reported to rescue photoreceptor cell death in retinal degeneration. We examined the effect of minocycline on retinal photoreceptor degeneration using c-mer proto-oncogene tyrosine kinase (Mertk)-/-Cx3cr1GFP/+Ccr2RFP/+ mice, which enabled the observation of CX3CR1-green fluorescent protein (GFP)- and CCR2-red fluorescent protein (RFP)-positive macrophages by fluorescence. Retinas of Mertk-/-Cx3cr1GFP/+Ccr2RFP/+ mice showed photoreceptor degeneration and accumulation of GFP- and RFP-positive macrophages in the outer retina and subretinal space at 6 weeks of age. Mertk-/-Cx3cr1GFP/+Ccr2RFP/+ mice were intraperitoneally administered minocycline. The number of CCR2-RFP positive cells significantly decreased after minocycline treatment. Furthermore, minocycline administration resulted in partial reversal of the thinning of the outer nuclear layer and decreased the number of apoptotic cells, as assessed by the TUNEL assay, in Mertk-/-Cx3cr1GFP/+Ccr2RFP/+ mice. In conclusion, we found that minocycline ameliorated photoreceptor cell death in an inherited photoreceptor degeneration model due to Mertk gene deficiency and has an inhibitory effect on CCR2 positive macrophages, which is likely to be a neuroprotective mechanism of minocycline.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Minocycline/therapeutic use , Monocytes/drug effects , Photoreceptor Cells, Vertebrate/drug effects , Retina/drug effects , Retinitis Pigmentosa/drug therapy , Animals , Cell Death/drug effects , Disease Models, Animal , Female , Male , Mice , Monocytes/pathology , Neuroprotective Agents/therapeutic use , Photoreceptor Cells, Vertebrate/pathology , Receptors, CCR2/analysis , Retina/pathology , Retinitis Pigmentosa/pathology
17.
Neurotherapeutics ; 18(2): 1325-1338, 2021 04.
Article in English | MEDLINE | ID: mdl-33537951

ABSTRACT

Rhegmatogenous retinal detachment (RD) is a threatening visual condition and a human disease model for retinal degenerations. Despite successful reattachment surgery, vision does not fully recover, due to subretinal fluid accumulation and subsequent photoreceptor cell death, through mechanisms that recapitulate those of retinal degenerative diseases. Hydrophilic bile acids are neuroprotective in animal models, but whether they can be used orally for retinal diseases is unknown. Ursodeoxycholic acid (UDCA) being approved for clinical use (e.g., in cholestasis), we have evaluated the ocular bioavailability of oral UDCA, administered to patients before RD surgery. The level of UDCA in ocular media correlated with the extent of blood retinal barrier disruption, evaluated by the extent of detachment and the albumin concentration in subretinal fluid. UDCA, at levels measured in ocular media, protected photoreceptors from apoptosis and necrosis in rat retinal explants, an ex vivo model of RD. The subretinal fluid from UDCA-treated patients, collected during surgery, significantly protected rat retinal explants from cell death, when compared to subretinal fluid from control patients. Pan-transcriptomic analysis of the retina showed that UDCA upregulated anti-apoptotic, anti-oxidant, and anti-inflammatory genes. Oral UDCA is a potential neuroprotective adjuvant therapy in RD and other retinal degenerative diseases and should be further evaluated in a clinical trial.


Subject(s)
Apoptosis/drug effects , Blood-Retinal Barrier/metabolism , Cholagogues and Choleretics/pharmacology , Retina/drug effects , Retinal Cone Photoreceptor Cells/drug effects , Retinal Degeneration/therapy , Retinal Detachment/therapy , Ursodeoxycholic Acid/pharmacology , Administration, Oral , Albumins/metabolism , Animals , Biological Availability , Cell Line , Cholagogues and Choleretics/metabolism , Cryosurgery , Female , Humans , In Vitro Techniques , Laser Therapy , Male , Middle Aged , Necrosis , Photoreceptor Cells, Vertebrate/drug effects , Photoreceptor Cells, Vertebrate/pathology , Rats , Retina/pathology , Retina/surgery , Retinal Cone Photoreceptor Cells/pathology , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Retinal Detachment/metabolism , Retinal Detachment/pathology , Subretinal Fluid/chemistry , Ursodeoxycholic Acid/metabolism , Vitrectomy
18.
Exp Eye Res ; 204: 108448, 2021 03.
Article in English | MEDLINE | ID: mdl-33484702

ABSTRACT

Photoreceptor (PR) dysfunction or death is the key pathological change in retinal degeneration (RD). The death of PRs might be due to a primary change in PRs themselves or secondary to the dysfunction of the retinal pigment epithelium (RPE). Poly(ADP-ribose) polymerase (PARP) was reported to be involved in primary PR death, but whether it plays a role in PR death secondary to RPE dysfunction has not been determined. To clarify this question and develop a new therapeutic approach, we studied the changes in PAR/PARP in the RCS rat, a RD model, and tested the effect of PARP intervention when given alone or in combination with RPE cell transplantation. The results showed that poly(ADP-ribosyl)ation of proteins was increased in PRs undergoing secondary death in RCS rats, and this result was confirmed by the observation of similar changes in sodium iodate (SI)-induced secondary RD in SD rats. The increase in PAR/PARP was highly associated with increased apoptotic PRs and decreased visual function, as represented by lowered b-wave amplitudes on electroretinogram (ERG). Then, as we expected, when the RCS rats were treated with subretinal injection of the PARP inhibitor PJ34, the RD process was delayed. Furthermore, when PJ34 was given simultaneously with subretinal ARPE-19 cell transplantation, the therapeutic effects were significantly improved and lasted longer than those of ARPE-19 or PJ34 treatment alone. These results provide a potential new approach for treating RD.


Subject(s)
Disease Models, Animal , Phenanthrenes/pharmacology , Photoreceptor Cells, Vertebrate/drug effects , Poly Adenosine Diphosphate Ribose/antagonists & inhibitors , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Retinal Degeneration/therapy , Retinal Pigment Epithelium/transplantation , Animals , Blotting, Western , Cell Survival/physiology , Cell Transplantation , Cells, Cultured , Electroretinography , In Situ Nick-End Labeling , Photoreceptor Cells, Vertebrate/physiology , Poly(ADP-ribose) Polymerases/metabolism , Rats , Rats, Mutant Strains , Real-Time Polymerase Chain Reaction , Retinal Degeneration/metabolism , Retinal Degeneration/physiopathology
19.
Stem Cells ; 39(4): 458-466, 2021 04.
Article in English | MEDLINE | ID: mdl-33442906

ABSTRACT

Development of the retina is regulated by growth factors, such as insulin-like growth factors 1 and 2 (IGF-1/2), which coordinate proliferation, differentiation, and maturation of the neuroepithelial precursors cells. In the circulation, IGF-1/2 are transported by the insulin growth factor binding proteins (IGFBPs) family members. IGFBPs can impact positively and negatively on IGF-1, by making it available or sequestering IGF-1 to or from its receptor. In this study, we investigated the expression of IGFBPs and their role in the generation of human retinal organoids from human pluripotent stem cells, showing a dynamic expression pattern suggestive of different IGFBPs being used in a stage-specific manner to mediate IGF-1 functions. Our data show that IGF-1 addition to culture media facilitated the generation of retinal organoids displaying the typical laminated structure and photoreceptor maturation. The organoids cultured in the absence of IGF-1, lacked the typical laminated structure at the early stages of differentiation and contained significantly less photoreceptors and more retinal ganglion cells at the later stages of differentiation, confirming the positive effects of IGF-1 on retinal lamination and photoreceptor development. The organoids cultured with the IGFBP inhibitor (NBI-31772) and IGF-1 showed lack of retinal lamination at the early stages of differentiation, an increased propensity to generate horizontal cells at mid-stages of differentiation and reduced photoreceptor development at the later stages of differentiation. Together these data suggest that IGFBPs enable IGF-1's role in retinal lamination and photoreceptor development in a stage-specific manner.


Subject(s)
Insulin-Like Growth Factor Binding Proteins/genetics , Insulin-Like Growth Factor II/genetics , Insulin-Like Growth Factor I/genetics , Organoids/metabolism , Photoreceptor Cells, Vertebrate/metabolism , Pluripotent Stem Cells/metabolism , Catechols/pharmacology , Cell Differentiation/drug effects , ELAV-Like Protein 3/genetics , ELAV-Like Protein 3/metabolism , ELAV-Like Protein 4/genetics , ELAV-Like Protein 4/metabolism , Gene Expression Regulation , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Insulin-Like Growth Factor Binding Proteins/antagonists & inhibitors , Insulin-Like Growth Factor Binding Proteins/metabolism , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor I/pharmacology , Insulin-Like Growth Factor II/metabolism , Isoquinolines/pharmacology , Ki-67 Antigen/genetics , Ki-67 Antigen/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Organoids/cytology , Organoids/drug effects , Photoreceptor Cells, Vertebrate/cytology , Photoreceptor Cells, Vertebrate/drug effects , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/drug effects , Recoverin/genetics , Recoverin/metabolism , Signal Transduction , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , gamma-Synuclein/genetics , gamma-Synuclein/metabolism
20.
J Neurosci ; 41(7): 1489-1504, 2021 02 17.
Article in English | MEDLINE | ID: mdl-33397711

ABSTRACT

Intrinsically photosensitive retinal ganglion cells (ipRGCs) exhibit melanopsin-dependent light responses that persist in the absence of rod and cone photoreceptor-mediated input. In addition to signaling anterogradely to the brain, ipRGCs signal retrogradely to intraretinal circuitry via gap junction-mediated electrical synapses with amacrine cells (ACs). However, the targets and functions of these intraretinal signals remain largely unknown. Here, in mice of both sexes, we identify circuitry that enables M5 ipRGCs to locally inhibit retinal neurons via electrical synapses with a nonspiking GABAergic AC. During pharmacological blockade of rod- and cone-mediated input, whole-cell recordings of corticotropin-releasing hormone-expressing (CRH+) ACs reveal persistent visual responses that require both melanopsin expression and gap junctions. In the developing retina, ipRGC-mediated input to CRH+ ACs is weak or absent before eye opening, indicating a primary role for this input in the mature retina (i.e., in parallel with rod- and cone-mediated input). Among several ipRGC types, only M5 ipRGCs exhibit consistent anatomical and physiological coupling to CRH+ ACs. Optogenetic stimulation of local CRH+ ACs directly drives IPSCs in M4 and M5, but not M1-M3, ipRGCs. CRH+ ACs also inhibit M2 ipRGC-coupled spiking ACs, demonstrating direct interaction between discrete networks of ipRGC-coupled interneurons. Together, these results demonstrate a functional role for electrical synapses in translating ipRGC activity into feedforward and feedback inhibition of local retinal circuits.SIGNIFICANCE STATEMENT Melanopsin directly generates light responses in intrinsically photosensitive retinal ganglion cells (ipRGCs). Through gap junction-mediated electrical synapses with retinal interneurons, these uniquely photoreceptive RGCs may also influence the activity and output of neuronal circuits within the retina. Here, we identified and studied an electrical synaptic circuit that, in principle, could couple ipRGC activity to the chemical output of an identified retinal interneuron. Specifically, we found that M5 ipRGCs form electrical synapses with corticotropin-releasing hormone-expressing amacrine cells, which locally release GABA to inhibit specific RGC types. Thus, ipRGCs are poised to influence the output of diverse retinal circuits via electrical synapses with interneurons.


Subject(s)
Neural Inhibition/physiology , Photoreceptor Cells, Vertebrate/physiology , Retina/physiology , Retinal Ganglion Cells/physiology , Amacrine Cells/physiology , Animals , Corticotropin-Releasing Hormone/physiology , Electrophysiological Phenomena , Excitatory Postsynaptic Potentials/physiology , Female , Gap Junctions/physiology , Male , Mice , Mice, Inbred C57BL , Neurons/physiology , Optogenetics , Photoreceptor Cells, Vertebrate/drug effects , Retinal Cone Photoreceptor Cells/drug effects , Retinal Rod Photoreceptor Cells/drug effects , Rod Opsins/metabolism , Synapses/physiology , gamma-Aminobutyric Acid/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...