Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23.272
Filter
1.
Artif Cells Nanomed Biotechnol ; 52(1): 270-277, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38696132

ABSTRACT

Spherical gold/polyacrylic acid (Au/PAA) polymer-inorganic Janus nanoparticles (JNPs) with simultaneous therapeutic and targeting functions were fabricated. The obtained Au/PAA JNPs were further selectively functionalized with folic acid (FA) and thiol PEG amine (SH-PEG-NH2) on Au sides to provide superior biocompatibility and active targeting, while the other PAA sides were loaded with 5-aminolevulinic acid (5-ALA) to serve as a photosensitizer (PS) for photodynamic therapeutic (PDT) effects on MCF-7 cancer cells. The PS loading of 5-ALA was found to be 83% with an average hydrodynamic size and z-potential of 146 ± 0.8 nm and -6.40 mV respectively for FA-Au/PAA-ALA JNPs. The in vitro PDT study of the JNPs on MCF-7 breast cancer cells under 636 nm laser irradiation indicated the cell viability of 24.7% ± 0.5 for FA-Au/PAA-ALA JNPs at the IC50 value of 0.125 mM. In this regard, the actively targeted FA-Au/PAA-ALA JNPs treatment holds great potential for tumour therapy with high cancer cell-killing efficacy.


Subject(s)
Aminolevulinic Acid , Breast Neoplasms , Gold , Photochemotherapy , Photosensitizing Agents , Humans , MCF-7 Cells , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Aminolevulinic Acid/chemistry , Aminolevulinic Acid/pharmacology , Gold/chemistry , Gold/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Nanoparticles/chemistry , Acrylic Resins/chemistry , Female , Folic Acid/chemistry , Cell Survival/drug effects
2.
Int J Nanomedicine ; 19: 3737-3751, 2024.
Article in English | MEDLINE | ID: mdl-38699684

ABSTRACT

Background: Chemo-photodynamic combination therapy has demonstrated significant potential in the treatment of cancer. Triptolide (TPL), a naturally derived anticancer agent, when combined with the photosensitizer Chlorin e6 (Ce6), has shown to provide enhanced anti-tumor benefits. However, the development of stimuli-responsive nanovehicles for the co-delivery of TPL and Ce6 could further enhance the efficacy of this combination therapy. Methods: In this study, we synthesized a pH/ROS dual-responsive mPEG-TK-PBAE copolymer, which contains a pH-sensitive PBAE moiety and a ROS-sensitive thioketal (TK) linkage. Through a self-assembly process, TPL and Ce6 were successfully co-loaded into mPEG-TK-PBAE nanoparticles, hereafter referred to as TPL/Ce6 NPs. We evaluated the pH- and ROS-sensitive drug release and particle size changes. Furthermore, we investigated both the in vitro suppression of cellular proliferation and induction of apoptosis in HepG2 cells, as well as the in vivo anti-tumor efficacy of TPL/Ce6 NPs in H22 xenograft nude mice. Results: The mPEG-TK-PBAE copolymer was synthesized through a one-pot Michael-addition reaction and successfully co-encapsulated both TPL and Ce6 by self-assembly. Upon exposure to acid pH values and high ROS levels, the payloads in TPL/Ce6 NPs were rapidly released. Notably, the abundant ROS generated by the released Ce6 under laser irradiation further accelerated the degradation of the nanosystem, thereby amplifying the tumor microenvironment-responsive drug release and enhancing anticancer efficacy. Consequently, TPL/Ce6 NPs significantly increased PDT-induced oxidative stress and augmented TPL-induced apoptosis in HepG2 cells, leading to synergistic anticancer effects in vitro. Moreover, administering TPL/Ce6 NPs (containing 0.3 mg/kg of TPL and 4 mg/kg of Ce6) seven times, accompanied by 650 nm laser irradiation, efficiently inhibited tumor growth in H22 tumor-bearing mice, while exhibiting lower systemic toxicity. Conclusion: Overall, we have developed a tumor microenvironment-responsive nanosystem for the co-delivery of TPL and Ce6, demonstrating amplified synergistic effects of chemo-photodynamic therapy (chemo-PDT) for hepatocellular carcinoma (HCC) treatment.


Subject(s)
Apoptosis , Chlorophyllides , Diterpenes , Liver Neoplasms , Mice, Nude , Phenanthrenes , Photochemotherapy , Photosensitizing Agents , Porphyrins , Reactive Oxygen Species , Animals , Humans , Photochemotherapy/methods , Reactive Oxygen Species/metabolism , Hep G2 Cells , Liver Neoplasms/drug therapy , Porphyrins/chemistry , Porphyrins/pharmacology , Porphyrins/administration & dosage , Porphyrins/pharmacokinetics , Diterpenes/chemistry , Diterpenes/pharmacology , Diterpenes/pharmacokinetics , Diterpenes/administration & dosage , Hydrogen-Ion Concentration , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/administration & dosage , Apoptosis/drug effects , Mice , Carcinoma, Hepatocellular/drug therapy , Epoxy Compounds/chemistry , Epoxy Compounds/pharmacology , Epoxy Compounds/administration & dosage , Nanoparticles/chemistry , Xenograft Model Antitumor Assays , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Drug Liberation , Cell Proliferation/drug effects , Polyethylene Glycols/chemistry , Combined Modality Therapy
3.
BMC Ophthalmol ; 24(1): 201, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38698363

ABSTRACT

BACKGROUND: We aimed to employ Optical Coherence Tomography Angiography (OCTA) to comprehensively assess changes in the optic nerve head (ONH) and macular perfusion before and after the Corneal Collagen Cross-Linking (CCL) procedure in patients with keratoconus. METHODS: A total of 22 keratoconus patient's candidate for CCL procedures were included based on specific criteria, with meticulous exclusion criteria in place to minimize potential confounders. Participants underwent OCTA assessments of the ONH and macula using the Spectralis OCT (Heidelberg) before CCL, as well as at 1- and 3-months post-CCL. MATLAB software was utilized for image analysis. RESULTS: The mean age of the participants was 20.09 ± 6.11, including 59% male, and the mean intraocular pressure (IOP) before the surgery was 13.59 ± 2.85 mmHg. Peripapillary Retinal nerve fiber layer (ppRNFL) thickness and overall retinal thickness remained stable post-CCL. However, significant alterations were observed in macular vessel density, emphasizing regional variations in vascular response. For macular large vessel density (LVD), both superficial and deep vascular complex (SVC and DVC) demonstrated significant differences between before surgery and the 3 months post-surgery follow-up (p < 0.001 and p = 0.002, respectively). Optic nerve head markers demonstrated relative stability, except for changes in avascular complex density, which was 49.2 ± 2.2% before the surgery and decrease to 47.6 ± 1.7% three months after the operation (P-value = 0.005). CONCLUSION: While CCL appears to maintain the integrity of certain ocular structures, alterations in macular perfusion post-CCL suggest potential effects on retinal blood supply. Long-term monitoring is crucial to understand the implications of these changes, particularly in the context of conditions such as diabetes.


Subject(s)
Collagen , Cross-Linking Reagents , Fluorescein Angiography , Keratoconus , Optic Disk , Retinal Vessels , Tomography, Optical Coherence , Humans , Tomography, Optical Coherence/methods , Keratoconus/physiopathology , Keratoconus/diagnosis , Male , Female , Collagen/metabolism , Young Adult , Adult , Fluorescein Angiography/methods , Retinal Vessels/diagnostic imaging , Retinal Vessels/physiopathology , Optic Disk/blood supply , Adolescent , Prospective Studies , Photosensitizing Agents/therapeutic use , Photochemotherapy/methods , Macula Lutea/diagnostic imaging , Macula Lutea/blood supply
4.
Biomed Mater ; 19(4)2024 May 10.
Article in English | MEDLINE | ID: mdl-38697132

ABSTRACT

During the process of malignant tumor treatment, photodynamic therapy (PDT) exerts poor efficacy due to the hypoxic environment of the tumor cells, and long-time chemotherapy reduces the sensitivity of tumor cells to chemotherapy drugs due to the presence of drug-resistant proteins on the cell membranes for drug outward transportation. Therefore, we reported a nano platform based on mesoporous silica coated with polydopamine (MSN@PDA) loading PDT enhancer MnO2, photosensitizer indocyanine green (ICG) and chemotherapeutic drug doxorubicin (DOX) (designated as DMPIM) to achieve a sequential release of different drugs to enhance treatment of malignant tumors. MSN was first synthesized by a template method, then DOX was loaded into the mesoporous channels of MSN, and locked by the PDA coating. Next, ICG was modified by π-π stacking on PDA, and finally, MnO2layer was accumulated on the surface of DOX@MSN@PDA- ICG@MnO2, achieving orthogonal loading and sequential release of different drugs. DMPIM first generated oxygen (O2) through the reaction between MnO2and H2O2after entering tumor cells, alleviating the hypoxic environment of tumors and enhancing the PDT effect of sequentially released ICG. Afterwards, ICG reacted with O2in tumor tissue to produce reactive oxygen species, promoting lysosomal escape of drugs and inactivation of p-glycoprotein (p-gp) on tumor cell membranes. DOX loaded in the MSN channels exhibited a delay of approximately 8 h after ICG release to exert the enhanced chemotherapy effect. The drug delivery system achieved effective sequential release and multimodal combination therapy, which achieved ideal therapeutic effects on malignant tumors. This work offers a route to a sequential drug release for advancing the treatment of malignant tumors.


Subject(s)
Doxorubicin , Drug Liberation , Indocyanine Green , Indoles , Manganese Compounds , Oxides , Photochemotherapy , Photosensitizing Agents , Polymers , Photochemotherapy/methods , Doxorubicin/chemistry , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Indocyanine Green/chemistry , Indoles/chemistry , Animals , Manganese Compounds/chemistry , Humans , Polymers/chemistry , Cell Line, Tumor , Oxides/chemistry , Photosensitizing Agents/chemistry , Silicon Dioxide/chemistry , Mice , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Neoplasms/drug therapy , Reactive Oxygen Species/metabolism , Drug Delivery Systems , Nanoparticles/chemistry , Drug Carriers/chemistry , Porosity
5.
J Photochem Photobiol B ; 255: 112923, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692166

ABSTRACT

Accurately visualizing the intracellular trafficking of upconversion nanoparticles (UCNPs) loaded with phthalocyanines and achieving precise photodynamic therapy (PDT) using near-infrared (NIR) laser irradiation still present challenges. In this study, a novel NIR laser-triggered upconversion luminescence (UCL) imaging-guided nanoparticle called FA@TPA-NH-ZnPc@UCNPs (FTU) was developed for PDT. FTU consisted of UCNPs, folic acid (FA), and triphenylamino-phenylaniline zinc phthalocyanine (TPA-NH-ZnPc). Notably, TPA-NH-ZnPc showcases aggregation-induced emission (AIE) characteristic and NIR absorption properties at 741 nm, synthesized initially via molybdenum-catalyzed condensation reaction. The UCL emitted by FTU enable real-time visualization of their subcellular localization and intracellular trafficking within ovarian cancer HO-8910 cells. Fluorescence images revealed that FTU managed to escape from lysosomes due to the "proton sponge" effect of TPA-NH-ZnPc. The FA ligands on the surface of FTU further directed their transport and accumulation within mitochondria. When excited by a 980 nm laser, FTU exhibited UCL and activated TPA-NH-ZnPc, consequently generating cytotoxic singlet oxygen (1O2), disrupted mitochondrial function and induced apoptosis in cancer cells, which demonstrated great potential for tumor ablation.


Subject(s)
Indoles , Infrared Rays , Isoindoles , Lysosomes , Mitochondria , Nanoparticles , Organometallic Compounds , Photochemotherapy , Zinc Compounds , Zinc Compounds/chemistry , Mitochondria/metabolism , Mitochondria/drug effects , Indoles/chemistry , Indoles/pharmacology , Lysosomes/metabolism , Humans , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Nanoparticles/chemistry , Cell Line, Tumor , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Singlet Oxygen/metabolism , Female , Folic Acid/chemistry
6.
J Photochem Photobiol B ; 255: 112905, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703452

ABSTRACT

Bacterial antibiotic resistance is one of the most significant challenges for public health. The increase in bacterial resistance, mainly due to microorganisms harmful to health, and the need to search for alternative treatments to contain infections that cannot be treated by conventional antibiotic therapy has been aroused. An alternative widely studied in recent decades is antimicrobial photodynamic therapy (aPDT), a treatment that can eliminate microorganisms through oxidative stress. Although this therapy has shown satisfactory results in infection control, it is still controversial in the scientific community whether bacteria manage to develop resistance after successive applications of aPDT. Thus, this work provides an overview of the articles that performed successive aPDT applications in models using bacteria published since 2010, focusing on sublethal dose cycles, highlighting the main PSs tested, and addressing the possible mechanisms for developing tolerance or resistance to aPDT, such as efflux pumps, biofilm formation, OxyR and SoxRS systems, catalase and superoxide dismutase enzymes and quorum sensing.


Subject(s)
Biofilms , Drug Resistance, Bacterial , Photochemotherapy , Photosensitizing Agents , Drug Resistance, Bacterial/drug effects , Photosensitizing Agents/therapeutic use , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Biofilms/drug effects , Bacteria/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/chemistry , Quorum Sensing/drug effects , Humans , Catalase/metabolism , Oxidative Stress/drug effects
7.
ACS Nano ; 18(21): 13910-13923, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38752679

ABSTRACT

Thanks to their excellent photoelectric characteristics to generate cytotoxic reactive oxygen species (ROS) under the light-activation process, TiO2 nanomaterials have shown significant potential in photodynamic therapy (PDT) for solid tumors. Nevertheless, the limited penetration depth of TiO2-based photosensitizers and excitation sources (UV/visible light) for PDT remains a formidable challenge when confronted with complex tumor microenvironments (TMEs). Here, we present a H2O2-driven black TiO2 mesoporous nanomotor with near-infrared (NIR) light absorption capability and autonomous navigation ability, which effectively enhances solid tumor penetration in NIR light-triggered PDT. The nanomotor was rationally designed and fabricated based on the Janus mesoporous nanostructure, which consists of a NIR light-responsive black TiO2 nanosphere and an enzyme-modified periodic mesoporous organosilica (PMO) nanorod that wraps around the TiO2 nanosphere. The overexpressed H2O2 can drive the nanomotor in the TME under catalysis of catalase in the PMO domain. By precisely controlling the ratio of TiO2 and PMO compartments in the Janus nanostructure, TiO2&PMO nanomotors can achieve optimal self-propulsive directionality and velocity, enhancing cellular uptake and facilitating deep tumor penetration. Additionally, by the decomposition of endogenous H2O2 within solid tumors, these nanomotors can continuously supply oxygen to enable highly efficient ROS production under the NIR photocatalysis of black TiO2, leading to intensified PDT effects and effective tumor inhibition.


Subject(s)
Infrared Rays , Photochemotherapy , Photosensitizing Agents , Titanium , Titanium/chemistry , Titanium/pharmacology , Humans , Porosity , Animals , Mice , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Nanostructures/chemistry , Reactive Oxygen Species/metabolism , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Tumor Microenvironment/drug effects , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Mice, Inbred BALB C , Cell Proliferation/drug effects , Neoplasms/drug therapy , Neoplasms/pathology , Particle Size
8.
J Drugs Dermatol ; 23(5): 332-337, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38709699

ABSTRACT

BACKGROUND: Peer-reviewed, clinical studies measuring the efficacy and usability of skin care products enhance their integrity and may guide experts in the field in providing recommendations. A single-blind, prospective clinical study was designed to assess the subject satisfaction, clinical benefit, and safety of three photodynamic topical formulations referred to as MMSRepose (MMSRep), MMSRevive (MMSRev), and MMSBalance (MMSB).  Methods: Thirteen male and female patients (mean age 49 +/- 17.8 years) applied one of the three topical serums twice daily over a period of 12 weeks. Subjects returned for photography, and blinded investigator evaluation of rhytides (fine lines) and dyspigmentation were measured on a 6- and 4-point scale, respectively. Patient-perceived efficacy of multiple clinical outcomes was measured on a 5-point scale.  Results: 100% of subjects reported at least a 1-grade improvement in global aesthetic at the conclusion of the study. Investigator assessment revealed an overall 53.3% decrease in rhytides, correlating to a mean point reduction from 1.65 +/- 0.77 to 0.77 +/- 0.53 (P<0.001) from baseline to week 12. Investigator assessment of dyspigmentation revealed a 62.7% decrease, correlating to a mean point reduction of 1.85 +/- 0.68 from week 1 to 0.69 +/- 0.48 at week 12 (P<0.001). CONCLUSION: Photodynamic serums demonstrate clinical efficacy in skin rejuvenation and high user satisfaction. There were no serious adverse events. This study is limited by the inability to randomize to placebo due to the small sample size, as subject retention was heavily impacted by the SARS-CoV-2 pandemic. Future studies may be indicated to undergo comparison with a larger cohort.  J Drugs Dermatol. 2024;23(5):332-337. doi:10.36849/JDD.7167.


Subject(s)
Patient Satisfaction , Photochemotherapy , Skin Aging , Humans , Prospective Studies , Female , Male , Middle Aged , Photochemotherapy/methods , Photochemotherapy/adverse effects , Skin Aging/drug effects , Single-Blind Method , Adult , Aged , Treatment Outcome , Photosensitizing Agents/administration & dosage , Photosensitizing Agents/adverse effects , Skin Care/methods , Administration, Cutaneous , Rejuvenation
9.
Carbohydr Polym ; 337: 122160, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710575

ABSTRACT

Sterilisation technologies are essential to eliminate foodborne pathogens from food contact surfaces. However, most of the current sterilisation methods involve high energy and chemical consumption. In this study, a photodynamic inactivation coating featuring excellent antibacterial activity was prepared by dispersing curcumin as a plant-based photosensitiser in a chitosan solution. The coating generated abundant reactive oxygen species (ROS) after light irradiation at 420 nm, which eradicated ≥99.999 % of Escherichia coli O157:H7. It was also found that ROS damaged the cell membrane, leading to the leakage of cell contents and cell shrinkage on the basis of chitosan. In addition, the production of ROS first excited the bacterial antioxidant defence system resulting in the increase of peroxidase (POD) and superoxide dismutase (SOD). ROS levels exceed its capacity, causing damage to the defence system and further oxidative decomposition of large molecules, such as DNA and proteins, eventually leading to the death of E. coli O157:H7. We also found the curcumin/chitosan coating could effectively remove E. coli O157:H7 biofilms by oxidative of extracellular polysaccharides and proteins. All the contributors made the chitosan/curcumin coating an efficient detergent comparable with HClO.


Subject(s)
Anti-Bacterial Agents , Biofilms , Chitosan , Curcumin , Escherichia coli O157 , Photosensitizing Agents , Reactive Oxygen Species , Chitosan/chemistry , Chitosan/pharmacology , Curcumin/pharmacology , Curcumin/chemistry , Escherichia coli O157/drug effects , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Reactive Oxygen Species/metabolism , Biofilms/drug effects , Food Microbiology , Light
10.
J Med Life ; 17(1): 28-34, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38737667

ABSTRACT

This study assessed the efficacy of antimicrobial photodynamic therapy (PDT) using a 650 nm diode laser combined with methylene blue (MB) as a photosensitizer to inhibit the growth of Candida albicans (C. albicans). Oral samples were collected from 75 patients diagnosed with oral thrush. C. albicans was isolated and identified using traditional methods and the VITEK 2 YST system. Samples (n = 25) were divided into five groups: Group 1 (control, n = 5) consisted of C. albicans suspensions in saline; Group 2 (n = 5) treated with nystatin; Group 3 (n = 5) exposed to a 650 nm diode laser in continuous mode at 200 mW for 300 seconds; Group 4 (n = 5) treated with 650 nm laser and MB as a photosensitizer; Group 5 (n = 5) exposed to the laser in combination with nystatin. Statistical analysis using ANOVA, Dunnett's t-test (P = 0.05), and LSD (P = 0.001) revealed significant differences in C. albicans counts pre- and post-treatment. Group 5 showed the most significant reduction in C. albicans, followed by Group 4, while Groups 2 and 3 showed the least variation. The findings suggest that PDT using a 650 nm diode laser with methylene blue (in continuous mode at 200 mW for 300 seconds) effectively reduced the prevalence of C. albicans.


Subject(s)
Candida albicans , Methylene Blue , Photochemotherapy , Photosensitizing Agents , Candida albicans/drug effects , Photochemotherapy/methods , Humans , Methylene Blue/pharmacology , Photosensitizing Agents/pharmacology , Lasers, Semiconductor/therapeutic use , Candidiasis, Oral/drug therapy , Candidiasis, Oral/microbiology , Nystatin/pharmacology , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use
11.
Nano Lett ; 24(19): 5690-5698, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38700237

ABSTRACT

Long-term tumor starvation may be a potential strategy to elevate the antitumor immune response by depriving nutrients. However, combining long-term starvation therapy with immunotherapy often yields limited efficacy due to the blockage of immune cell migration pathways. Herein, an intelligent blood flow regulator (BFR) is first established through photoactivated in situ formation of the extravascular dynamic hydrogel to compress blood vessels, which can induce long-term tumor starvation to elicit metabolic stress in tumor cells without affecting immune cell migration pathways. By leveraging methacrylate-modified nanophotosensitizers (HMMAN) and biodegradable gelatin methacrylate (GelMA), the developed extravascular hydrogel dynamically regulates blood flow via enzymatic degradation. Additionally, aPD-L1 loaded into HMMAN continuously blocks immune checkpoints. Systematic in vivo experiments demonstrate that the combination of immune checkpoint blockade (ICB) and BFR-induced metabolic stress (BIMS) significantly delays the progression of Lewis lung and breast cancers by reshaping the tumor immunogenic landscape and enhancing antitumor immune responses.


Subject(s)
Hydrogels , Hydrogels/chemistry , Animals , Mice , Humans , Cell Line, Tumor , Female , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Immunotherapy , Gelatin/chemistry , Methacrylates/chemistry , Methacrylates/pharmacology , Breast Neoplasms/immunology
13.
Lasers Med Sci ; 39(1): 131, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38750381

ABSTRACT

Photodynamic therapy (PDT) is a targeted treatment method that utilizes a photosensitizer (PS) to induce cytotoxicity in malignant and non-malignant tumors. Optimization of PDT requires investigation of the selectivity of PS for the target tissues, irradiating light source, irradiation wavelengths, fluence rate, fluence, illumination mode, and overall treatment plan. In this study, we developed the Multi-mode Automatized Well-plate PDT LED Laboratory Irradiation System (MAWPLIS), an innovative device that automates time-consuming well plate light dosage/PS dose measurement experiment. The careful control of LED current and temperature stabilization in the LED module allowed the system to achieve high optical output stability. The MAWPLIS was designed by integrating a 3-axis moving system and motion controller, a quick-switching LED controller unit equipped with interchangeable LED modules capable of employing multiple wavelengths, and a TEC system. The proposed system achieved high optical output stability (1 mW) within the range of 0-500 mW, high wavelength stability (5 nm) at 635 nm, and high temperature stability (0.2 °C) across all radiation modes. The system's validation involved in vitro analysis using 5-ALA across varying concentrations, incubation periods, light exposures, and wavelengths in HT-29 colon cancer and WI-38 human lung fibroblast cell lines. Specifically, a combination of 405 nm and 635 nm wavelengths was selected to demonstrate enhanced strategies for colon cancer cell eradication and system validation. The MAWPLIS system represents a significant advancement in photodynamic therapy (PDT) research, offering automation and standardization of time-intensive experiments, high stability and precision, and improved PDT efficacy through dual-wavelength integration.


Subject(s)
Photochemotherapy , Photosensitizing Agents , Photochemotherapy/methods , Photochemotherapy/instrumentation , Humans , HT29 Cells , Aminolevulinic Acid/administration & dosage
14.
Photobiomodul Photomed Laser Surg ; 42(5): 366-374, 2024 May.
Article in English | MEDLINE | ID: mdl-38776543

ABSTRACT

Objective: The proposed study aims to compare the effectiveness of conventional endodontic treatment (ET) with that of ET associated with antimicrobial photodynamic therapy (aPDT) in patients with apical lesion. Methods: Controlled, double-blind, randomized clinical trial (RCT); superiority study with three parallel arms. Randomization will be conducted in exchange blocks of six, with allocation 1:1:1. The control group will receive conventional ET, while experimental group 1 (EG1) will receive conventional ET + aPDT with laser at 660 nm, fluence of 600 J/cm2; EG2 will receive conventional ET + aPDT with laser at 660 nm, fluence of 1200 J/cm2. The primary outcome will be canal disinfection before treatment, measured by analysis of colony formation (CFU/mL) and the success rate measured after 6 months on the clinical and radiographic evaluations. The mean and standard deviation will be calculated for continuous outcomes, and the CFU/mL mean between groups will be evaluated by ANOVA test. The Chi-squared test will be calculated for binary outcomes. A logistic regression analysis will be performed to assess differences in the success rate between groups, adjusted for the covariates. The Stata 18 software will be used, with a significance threshold of 5%. Conclusions: Few RCTs have evaluated the effectiveness of aPDT in root canal disinfection in patients with permanent dentition presenting apical lesion. New RCTs with larger numbers of participants are needed to support using aPDT as an adjuvant to conventional ET in root canal disinfection for routine use in clinical practice. The trial was registered prospectively in ClinicalTrials.gov (NCT05916859).


Subject(s)
Disinfection , Molar , Photochemotherapy , Humans , Photochemotherapy/methods , Double-Blind Method , Disinfection/methods , Root Canal Therapy/methods , Female , Male , Photosensitizing Agents/therapeutic use , Adult , Dental Pulp Cavity , Adolescent
17.
Artif Cells Nanomed Biotechnol ; 52(1): 309-320, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38781462

ABSTRACT

Photodynamic therapy (PDT) holds great potential to overcome limitations associated with common colorectal cancer (CRC) treatment approaches. Targeted photosensitiser (PS) delivery systems using nanoparticles (NPs) with targeting moieties are continually being designed, which are aimed at enhancing PS efficacy in CRC PDT. However, the optimisation of targeted PS delivery systems in most, in vitro PDT studies has been conducted on two dimensional (2D) monolayers cell cultures. In our present study, we developed a nano PS delivery system for in vitro cultured human colorectal three-dimensional multicellular spheroids (3D MCTS). PEGylated gold nanoparticles (PEG-AuNPs) were prepared and attached to ZnPcS4PS and further functionalised with specific CRC targeting anti-Guanylate Cyclase monoclonal antibodies(mAb). The ZnPcS4-AuNP-Anti-GCC Ab (BNC) nanoconjugates were successfully synthesised and their photodynamic effect investigated following exposure to laser irradiation and demonstrated enhanced anticancer effects in Caco-2 cells cultivated as 3D MCTS spheroids. Our findings suggest that targeted BNC nanoconjugates can improve the efficacy of PDT and highlight the potential of 3D MCTS tumour model for evaluating of targeted PDT.


Subject(s)
Colorectal Neoplasms , Gold , Metal Nanoparticles , Photochemotherapy , Spheroids, Cellular , Humans , Gold/chemistry , Gold/pharmacology , Spheroids, Cellular/drug effects , Spheroids, Cellular/pathology , Spheroids, Cellular/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Metal Nanoparticles/chemistry , Caco-2 Cells , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Polyethylene Glycols/chemistry
18.
J Biol Inorg Chem ; 29(3): 303-314, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38727821

ABSTRACT

This study demonstrates the potential of sono-photodynamic therapy as an effective approach for enhancing singlet oxygen generation using the synthesized Schiff-base diaxially substituted silicon phthalocyanines. In photochemical studies, the singlet oxygen quantum yields (Φ∆) were determined as 0.43 for Si1a, 0.94 for Q-Si1a, 0.58 for S-Si1a, and 0.49 for B-Sia1. In sono-photochemical studies, the Φ∆ values were reached to 0.67 for Si1a, 1.06 for Q-Si1a, 0.65 for S-Si1a, and 0.67 for B-Sia1. In addition, this study demonstrates the therapeutic efficacy of phthalocyanines synthesized as sensitizers on the PC3 prostate cancer cell line through in vitro experiments. The application of these treatment modalities exhibited notable outcomes, leading to a substantial decrease in cell viability within the PC3 prostate cancer cell line. These findings highlight the potential of utilizing these synthesized phthalocyanines as promising therapeutic agents for prostate cancer treatment.


Subject(s)
Cell Survival , Indoles , Organosilicon Compounds , Prostatic Neoplasms , Schiff Bases , Singlet Oxygen , Humans , Indoles/chemistry , Indoles/pharmacology , Schiff Bases/chemistry , Schiff Bases/pharmacology , Male , Singlet Oxygen/metabolism , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Organosilicon Compounds/chemistry , Organosilicon Compounds/pharmacology , Cell Survival/drug effects , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Drug Screening Assays, Antitumor , PC-3 Cells , Photochemotherapy , Photochemical Processes , Cell Line, Tumor , Molecular Structure
19.
Luminescence ; 39(5): e4770, 2024 May.
Article in English | MEDLINE | ID: mdl-38751216

ABSTRACT

The ultimate goal of nanoparticle-based phototherapy is to suppress tumor growth. Photothermal therapy (PTT) and photothermal photodynamic therapy (PDT) are two types of physicochemical therapy that use light radiation with multiple wavelength ranges in the near-infrared to treat cancer. When a laser is pointed at tissue, photons are taken in the intercellular and intracellular regions, converting photon energy to heat. It has attracted much interest and research in recent years. The advent of transition materials dichalcogenides (TMDCs) is a revolutionary step in PDT/PTT-based cancer therapy. The TMDCs is a multilayer 2D nano-composite. TMDCs contain three atomic layers in which two chalcogens squash in the transition metal. The chalcogen atoms are highly reactive, and the surface characteristics of TMDCs help them to target deep cancer cells. They absorb Near Infrared (NIR), which kills deep cancer cells. In this review, we have discussed the history and mechanism of PDT/PTT and the use of TMDCs and nanoparticle-based systems, which have been practiced for theranostics purposes. We have also discussed PDT/PTT combined with immunotherapy, in which the cancer cell apoptosis is done by activating the immune cells, such as CD8+.


Subject(s)
Neoplasms , Photochemotherapy , Photothermal Therapy , Transition Elements , Humans , Neoplasms/drug therapy , Neoplasms/therapy , Neoplasms/pathology , Transition Elements/chemistry , Transition Elements/pharmacology , Chalcogens/chemistry , Chalcogens/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Animals
20.
ACS Nano ; 18(20): 12933-12944, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38712906

ABSTRACT

Efficient tumor-targeted drug delivery is still a challenging and currently unbreakable bottleneck in chemotherapy for tumors. Nanomedicines based on passive or active targeting strategy have not yet achieved convincing chemotherapeutic benefits in the clinic due to the tumor heterogeneity. Inspired by the efficient inflammatory-cell recruitment to acute clots, we constructed a two-component nanosystem, which is composed of an RGD-modified pyropheophorbide-a (Ppa) micelle (PPRM) that mediates the tumor vascular-targeted photodynamic reaction to activate local coagulation and subsequently transmits the coagulation signals to the circulating clot-targeted CREKA peptide-modified camptothecin (CPT)-loaded nanodiscs (CCNDs) for amplifying tumor targeting. PPRM could effectively bind with the tumor vasculature and induce sufficient local thrombus by a photodynamic reaction. Local photodynamic reaction-induced tumor target amplification greatly increased the tumor accumulation of CCND by 4.2 times, thus significantly enhancing the chemotherapeutic efficacy in the 4T1 breast tumor model. In other words, this study provides a powerful platform to amplify tumor-specific drug delivery by taking advantage of the efficient crosstalk between the PPRM-activated coagulation cascade and clot-targeted CCND.


Subject(s)
Chlorophyll , Nanoparticles , Photochemotherapy , Animals , Nanoparticles/chemistry , Mice , Chlorophyll/analogs & derivatives , Chlorophyll/chemistry , Chlorophyll/pharmacology , Drug Delivery Systems , Female , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Camptothecin/chemistry , Camptothecin/pharmacology , Camptothecin/analogs & derivatives , Camptothecin/administration & dosage , Micelles , Mice, Inbred BALB C , Humans , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Oligopeptides/chemistry , Oligopeptides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...