Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.465
Filter
1.
Physiol Plant ; 176(3): e14374, 2024.
Article in English | MEDLINE | ID: mdl-38837422

ABSTRACT

Heat stress substantially reduces tomato (Solanum lycopersicum) growth and yield globally, thereby jeopardizing food security. DnaJ proteins, constituents of the heat shock protein system, protect cells from diverse environmental stresses as HSP-70 molecular co-chaperones. In this study, we demonstrated that AdDjSKI, a serine-rich DnaJ III protein induced by pathogens, plays an important role in stabilizing photosystem II (PSII) in response to heat stress. Our results revealed that transplastomic tomato plants expressing the AdDjSKI gene exhibited increased levels of total soluble proteins, improved growth and chlorophyll content, reduced malondialdehyde (MDA) accumulation, and diminished PSII photoinhibition under elevated temperatures when compared with wild-type (WT) plants. Intriguingly, these transplastomic plants maintained higher levels of D1 protein under elevated temperatures compared with the WT plants, suggesting that overexpression of AdDjSKI in plastids is crucial for PSII protection, likely due to its chaperone activity. Furthermore, the transplastomic plants displayed lower accumulation of superoxide radical (O2 •─) and H2O2, in comparison with the WT plants, plausibly attributed to higher superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities. This also coincides with an enhanced expression of corresponding genes, including SlCuZnSOD, SlFeSOD, SlAPX2, and SltAPX, under heat stress. Taken together, our findings reveal that chloroplastic expression of AdDjSKI in tomatoes plays a critical role in fruit yield, primarily through a combination of delayed senescence and stabilizing PSII under heat stress.


Subject(s)
Fruit , Heat-Shock Response , Photosystem II Protein Complex , Plant Leaves , Plant Proteins , Plastids , Solanum lycopersicum , Solanum lycopersicum/genetics , Solanum lycopersicum/physiology , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/genetics , Heat-Shock Response/genetics , Fruit/genetics , Fruit/growth & development , Fruit/physiology , Fruit/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Leaves/genetics , Plant Leaves/physiology , Plant Leaves/metabolism , Plastids/metabolism , Plastids/genetics , Chlorophyll/metabolism , HSP40 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/genetics , Plants, Genetically Modified , Plant Senescence/genetics , Gene Expression Regulation, Plant , Malondialdehyde/metabolism
2.
BMC Plant Biol ; 24(1): 513, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849759

ABSTRACT

BACKGROUND: The phosphorylation of the Light-Harvesting Complex of photosystem II (LHCII) driven by STATE TRANSITION 7 (STN7) kinase is a part of one of the crucial regulatory mechanisms of photosynthetic light reactions operating in fluctuating environmental conditions, light in particular. There are evidenced that STN7 can also be activated without light as well as in dark-chilling conditions. However, the biochemical mechanism standing behind this complex metabolic pathway has not been deciphered yet. RESULTS: In this work, we showed that dark-chilling induces light-independent LHCII phosphorylation in runner bean (Phaseolus coccineus L.). In dark-chilling conditions, we registered an increased reduction of the PQ pool which led to activation of STN7 kinase, subsequent LHCII phosphorylation, and possible LHCII relocation inside the thylakoid membrane. We also presented the formation of a complex composed of phosphorylated LHCII and photosystem I typically formed upon light-induced phosphorylation. Moreover, we indicated that the observed steps were preceded by the activation of the oxidative pentose phosphate pathway (OPPP) enzymes and starch accumulation. CONCLUSIONS: Our results suggest a direct connection between photosynthetic complexes reorganization and dark-chilling-induced activation of the thioredoxin system. The proposed possible pathway starts from the activation of OPPP enzymes and further NADPH-dependent thioredoxin reductase C (NTRC) activation. In the next steps, NTRC simultaneously activates ADP-glucose pyrophosphorylase and thylakoid membrane-located NAD(P)H dehydrogenase-like complex. These results in starch synthesis and electron transfer to the plastoquinone (PQ) pool, respectively. Reduced PQ pool activates STN7 kinase which phosphorylates LHCII. In this work, we present a new perspective on the mechanisms involving photosynthetic complexes while efficiently operating in the darkness. Although we describe the studied pathway in detail, taking into account also the time course of the following steps, the biological significance of this phenomenon remains puzzling.


Subject(s)
Light , Phaseolus , Phaseolus/physiology , Phaseolus/metabolism , Phaseolus/enzymology , Phosphorylation , Thylakoids/metabolism , Photosystem I Protein Complex/metabolism , Cold Temperature , Light-Harvesting Protein Complexes/metabolism , Photosystem II Protein Complex/metabolism , Plant Proteins/metabolism , Starch/metabolism , Pentose Phosphate Pathway/physiology , Enzyme Activation , Photosynthesis/physiology , Stress, Physiological , Protein Serine-Threonine Kinases/metabolism
3.
Physiol Plant ; 176(3): e14379, 2024.
Article in English | MEDLINE | ID: mdl-38853306

ABSTRACT

Drought stress threatens the productivity of numerous crops, including chilli pepper (Capsicum annuum). DnaJ proteins are known to play a protective role against a wide range of abiotic stresses. This study investigates the regulatory mechanism of the chloroplast-targeted chaperone protein AdDjSKI, derived from wild peanut (Arachis diogoi), in enhancing drought tolerance in chilli peppers. Overexpressing AdDjSKI in chilli plants increased chlorophyll content, reflected in the maximal photochemical efficiency of photosystem II (PSII) (Fv/Fm) compared with untransformed control (UC) plants. This enhancement coincided with the upregulated expression of PSII-related genes. Our subsequent investigations revealed that transgenic chilli pepper plants expressing AdDjSKI showed reduced accumulation of superoxide and hydrogen peroxide and, consequently, lower malondialdehyde levels and decreased relative electrolyte leakage percentage compared with UC plants. The mitigation of ROS-mediated oxidative damage was facilitated by heightened activities of antioxidant enzymes, including superoxide dismutase, catalase, ascorbate peroxidase, and peroxidase, coinciding with the upregulation of the expression of associated antioxidant genes. Additionally, our observations revealed that the ectopic expression of the AdDjSKI protein in chilli pepper plants resulted in diminished ABA sensitivity, consequently promoting seed germination in comparison with UC plants under different concentrations of ABA. All of these collectively contributed to enhancing drought tolerance in transgenic chilli plants with improved root systems when compared with UC plants. Overall, our study highlights AdDjSKI as a promising biotechnological solution for enhancing drought tolerance in chilli peppers, addressing the growing global demand for this economically valuable crop.


Subject(s)
Abscisic Acid , Capsicum , Droughts , Photosynthesis , Plants, Genetically Modified , Reactive Oxygen Species , Capsicum/physiology , Capsicum/genetics , Capsicum/metabolism , Photosynthesis/physiology , Reactive Oxygen Species/metabolism , Abscisic Acid/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Arachis/genetics , Arachis/physiology , Arachis/metabolism , Gene Expression Regulation, Plant , Photosystem II Protein Complex/metabolism , Chlorophyll/metabolism , Antioxidants/metabolism , Molecular Chaperones/metabolism , Molecular Chaperones/genetics , Drought Resistance
4.
J Am Chem Soc ; 146(23): 15986-15999, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38833517

ABSTRACT

Understanding how water ligands regulate the conformational changes and functionality of the oxygen-evolving complex (OEC) in photosystem II (PSII) throughout the catalytic cycle of oxygen evolution remains a highly intriguing and unresolved challenge. In this study, we investigate the effect of water insertion (WI) on the redox state of the OEC by using the molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) hybrid methods. We find that water binding significantly reduces the free energy change for proton-coupled electron transfer (PCET) from Mn to YZ•, underscoring the important regulatory role of water binding, which is essential for enabling the OEC redox-leveling mechanism along the catalytic cycle. We propose a water binding mechanism in which WI is thermodynamically favored by the closed-cubane form of the OEC, with water delivery mediated by Ca2+ ligand exchange. Isomerization from the closed- to open-cubane conformation at three post-WI states highlights the importance of the location of the MnIII center in the OEC and the orientation of its Jahn-Teller axis to conformational changes of the OEC, which might be critical for the formation of the O-O bond. These findings reveal a complex interplay between conformational changes in the OEC and the ligand environment during the activation of the OEC by YZ•. Analogous regulatory effects due to water ligand binding are expected to be important for a wide range of catalysts activated by redox state transitions in aqueous environments.


Subject(s)
Oxidation-Reduction , Oxygen , Photosystem II Protein Complex , Water , Photosystem II Protein Complex/chemistry , Photosystem II Protein Complex/metabolism , Water/chemistry , Ligands , Oxygen/chemistry , Oxygen/metabolism , Molecular Dynamics Simulation , Thermodynamics , Quantum Theory
5.
Sci Rep ; 14(1): 13192, 2024 06 08.
Article in English | MEDLINE | ID: mdl-38851826

ABSTRACT

Water eutrophication has emerged as a pressing concern for massive algal blooms, and these harmful blooms can potentially generate harmful toxins, which can detrimentally impact the aquatic environment and human health. Consequently, it is imperative to identify a safe and efficient approach to combat algal blooms to safeguard the ecological safety of water. This study aimed to investigate the procedure for extracting total flavonoids from Z. bungeanum residue and assess its antioxidant properties. The most favorable parameters for extracting total flavonoids from Z. bungeanum residue were a liquid-solid ratio (LSR) of 20 mL/g, a solvent concentration of 60%, an extraction period of 55 min, and an ultrasonic temperature of 80 °C. Meanwhile, the photosynthetic inhibitory mechanism of Z. bungeanum residue extracts against M. aeruginosa was assessed with a particular focus on the concentration-dependent toxicity effect. Z. bungeanum residue extracts damaged the oxygen-evolving complex structure, influenced energy capture and distribution, and inhibited the electron transport of PSII in M. aeruginosa. Furthermore, the enhanced capacity for ROS detoxification enables treated cells to sustain their photosynthetic activity. The findings of this study hold considerable relevance for the ecological management community and offer potential avenues for the practical utilization of resources in controlling algal blooms.


Subject(s)
Flavonoids , Microcystis , Photosynthesis , Zanthoxylum , Flavonoids/chemistry , Flavonoids/isolation & purification , Flavonoids/pharmacology , Zanthoxylum/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Allelopathy , Harmful Algal Bloom , Reactive Oxygen Species/metabolism , Photosystem II Protein Complex/metabolism
6.
Nat Commun ; 15(1): 4999, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866834

ABSTRACT

Cryptophytes are ancestral photosynthetic organisms evolved from red algae through secondary endosymbiosis. They have developed alloxanthin-chlorophyll a/c2-binding proteins (ACPs) as light-harvesting complexes (LHCs). The distinctive properties of cryptophytes contribute to efficient oxygenic photosynthesis and underscore the evolutionary relationships of red-lineage plastids. Here we present the cryo-electron microscopy structure of the Photosystem II (PSII)-ACPII supercomplex from the cryptophyte Chroomonas placoidea. The structure includes a PSII dimer and twelve ACPII monomers forming four linear trimers. These trimers structurally resemble red algae LHCs and cryptophyte ACPI trimers that associate with Photosystem I (PSI), suggesting their close evolutionary links. We also determine a Chl a-binding subunit, Psb-γ, essential for stabilizing PSII-ACPII association. Furthermore, computational calculation provides insights into the excitation energy transfer pathways. Our study lays a solid structural foundation for understanding the light-energy capture and transfer in cryptophyte PSII-ACPII, evolutionary variations in PSII-LHCII, and the origin of red-lineage LHCIIs.


Subject(s)
Cryoelectron Microscopy , Cryptophyta , Light-Harvesting Protein Complexes , Photosystem II Protein Complex , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/chemistry , Light-Harvesting Protein Complexes/metabolism , Light-Harvesting Protein Complexes/chemistry , Cryptophyta/metabolism , Photosynthesis , Models, Molecular , Energy Transfer , Photosystem I Protein Complex/metabolism , Photosystem I Protein Complex/chemistry , Chlorophyll A/metabolism , Chlorophyll A/chemistry
7.
Physiol Plant ; 176(3): e14383, 2024.
Article in English | MEDLINE | ID: mdl-38859677

ABSTRACT

The effects of transient increases in UVB radiation on plants are not well known; whether cumulative damage dominates or, alternately, an increase in photoprotection and recovery periods ameliorates any negative effects. We investigated photosynthetic capacity and metabolite accumulation of grapevines (Vitis vinifera Cabernet Sauvignon) in response to UVB fluctuations under four treatments: fluctuating UVB (FUV) and steady UVB radiation (SUV) at similar total biologically effective UVB dose (2.12 and 2.23 kJ m-2 day-1), and their two respective no UVB controls. We found a greater decrease in stomatal conductance under SUV than FUV. There was no decrease in maximum yield of photosystem II (Fv/Fm) or its operational efficiency (ɸPSII) under the two UVB treatments, and Fv/Fm was higher under SUV than FUV. Photosynthetic capacity was enhanced under FUV in the light-limited region of rapid light-response curves but enhanced by SUV in the light-saturated region. Flavonol content was similarly increased by both UVB treatments. We conclude that, while both FUV and SUV effectively stimulate acclimation to UVB radiation at realistic doses, FUV confers weaker acclimation than SUV. This implies that recovery periods between transient increases in UVB radiation reduce UVB acclimation, compared to an equivalent dose of UVB provided continuously. Thus, caution is needed in interpreting the findings of experiments using steady UVB radiation treatments to infer effects in natural environments, as the stimulatory effect of steady UVB is greater than that of the equivalent fluctuating UVB.


Subject(s)
Acclimatization , Photosynthesis , Photosystem II Protein Complex , Ultraviolet Rays , Vitis , Photosynthesis/radiation effects , Photosynthesis/physiology , Acclimatization/radiation effects , Acclimatization/physiology , Vitis/radiation effects , Vitis/physiology , Vitis/metabolism , Photosystem II Protein Complex/metabolism , Chlorophyll/metabolism , Plant Stomata/physiology , Plant Stomata/radiation effects , Flavonols/metabolism
8.
Biochim Biophys Acta Bioenerg ; 1865(3): 149049, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38801856

ABSTRACT

Phycobilisome (PBS) is a large pigment-protein complex in cyanobacteria and red algae responsible for capturing sunlight and transferring its energy to photosystems (PS). Spectroscopic and structural properties of various PBSs have been widely studied, however, the nature of so-called complex-complex interactions between PBS and PSs remains much less explored. In this work, we have investigated the function of a newly identified PBS linker protein, ApcG, some domain of which, together with a loop region (PB-loop in ApcE), is possibly located near the PBS-PS interface. Using Synechocystis sp. PCC 6803, we generated an ApcG deletion mutant and probed its deletion effect on the energetic coupling between PBS and photosystems. Steady-state and time-resolved spectroscopic characterization of the purified ΔApcG-PBS demonstrated that ApcG removal weakly affects the photophysical properties of PBS for which the spectroscopic properties of terminal energy emitters are comparable to those of PBS from wild-type strain. However, analysis of fluorescence decay imaging datasets reveals that ApcG deletion induces disruptions within the allophycocyanin (APC) core, resulting in the emergence (splitting) of two spectrally diverse subgroups with some short-lived APC. Profound spectroscopic changes of the whole ΔApcG mutant cell, however, emerge during state transition, a dynamic process of light scheme adaptation. The mutant cells in State I show a substantial increase in PBS-related fluorescence. On the other hand, global analysis of time-resolved fluorescence demonstrates that in general ApcG deletion does not alter or inhibit state transitions interpreted in terms of the changes of the PSII and PSI fluorescence emission intensity. The results revealed yet-to-be discovered mechanism of ApcG-docking induced excitation energy transfer regulation within PBS or to Photosystems.


Subject(s)
Bacterial Proteins , Energy Transfer , Phycobilisomes , Synechocystis , Phycobilisomes/metabolism , Phycobilisomes/chemistry , Synechocystis/metabolism , Synechocystis/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Photosystem I Protein Complex/metabolism , Photosystem I Protein Complex/chemistry , Photosystem I Protein Complex/genetics , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/chemistry , Photosystem II Protein Complex/genetics , Peptides/metabolism , Peptides/chemistry
9.
Int J Mol Sci ; 25(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38791109

ABSTRACT

Defoliation is an inevitable abiotic stress for forage and turf grasses because harvesting, grazing, and mowing are general processes for their production and management. Vegetative regrowth occurs upon defoliation, a crucial trait determining the productivity and persistence of these grasses. However, the information about the molecular regulation of this trait is limited because it is still challenging to perform molecular analyses in forage and turf grasses. Here, we used rice as a model to investigate vegetative regrowth upon defoliation at physiological and molecular levels. This study analyzed stubble and regrown leaves following periodic defoliation using two rice varieties with contrasting regrowth vigor. Vigorous regrowth was associated with maintained chlorophyll content and photosystem II performance; a restricted and promoted mRNA accumulation of sucrose synthase (SUS) I and III subfamilies, respectively; and reduced enzymatic activity of SUS. These results suggest that critical factors affecting vegetative regrowth upon defoliation are de novo carbohydrate synthesis by newly emerged leaves and proper carbohydrate management in leaves and stubble. Physiological and genetic analyses have demonstrated that the reduced sensitivity to and inhibited biosynthesis of cytokinin enhance regrowth vigor. Proper regulation of these metabolic and hormonal pathways identified in this study can lead to the development of new grass varieties with enhanced regrowth vigor following defoliation.


Subject(s)
Carbohydrate Metabolism , Cytokinins , Gene Expression Regulation, Plant , Glucosyltransferases , Oryza , Plant Leaves , Plant Proteins , Oryza/growth & development , Oryza/metabolism , Oryza/genetics , Plant Leaves/metabolism , Plant Leaves/growth & development , Plant Leaves/genetics , Cytokinins/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Glucosyltransferases/metabolism , Glucosyltransferases/genetics , Chlorophyll/metabolism , Photosystem II Protein Complex/metabolism
10.
J Phys Chem Lett ; 15(22): 5838-5847, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38788163

ABSTRACT

The light-harvesting complexes (LHCs) of diatoms, specifically fucoxanthin-Chl a/c binding proteins (FCPs), exhibit structural and functional diversity, as highlighted by recent structural studies of photosystem II-FCP (PSII-FCPII) supercomplexes from different diatom species. The excitation dynamics of PSII-FCPII supercomplexes isolated from the diatom Thalassiosira pseudonana was explored using time-resolved fluorescence spectroscopy and two-dimensional electronic spectroscopy at room temperature and 77 K. Energy transfer between FCPII and PSII occurred remarkably fast (<5 ps), emphasizing the efficiency of FCPII as a light-harvesting antenna. The presence of long-wavelength chlorophylls may further help concentrate excitations in the core complex and increase the efficiency of light harvesting. Structure-based calculations reveal remarkably strong excitonic couplings between chlorophylls in the FCP antenna and between FCP and the PSII core antenna that are the basis for the rapid energy transfer.


Subject(s)
Diatoms , Energy Transfer , Light-Harvesting Protein Complexes , Photosystem II Protein Complex , Photosystem II Protein Complex/chemistry , Photosystem II Protein Complex/metabolism , Diatoms/chemistry , Diatoms/metabolism , Light-Harvesting Protein Complexes/chemistry , Light-Harvesting Protein Complexes/metabolism , Spectrometry, Fluorescence , Chlorophyll/chemistry
11.
Plant Physiol Biochem ; 212: 108739, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38772168

ABSTRACT

Zostera marina, a critical keystone marine angiosperm species in coastal seagrass meadows, possesses a photosensitive oxygen evolving complex (OEC). In harsh environments, the photoinactivation of the Z. marina OEC may lead to population declines. However, the factors underlying this photosensitivity remain unclear. Therefore, this study was undertaken to elucidate the elements contributing to Z. marina OEC photosensitivity. Our results demonstrated a gradual decrease in photosystem II performance towards shorter wavelengths, especially blue light and ultraviolet radiation. This phenomenon was characterized by a reduction in Fv/Fm and the rate of O2 evolution, as well as increased fluorescence at 0.3 ms on the OJIP curve. Furthermore, exposure to shorter light wavelengths and longer exposure durations significantly reduced the relative abundance of the OEC peripheral proteins, indicating OEC inactivation. Analyses of light-screening substances revealed that carotenoids, which increased most notably under 420 nm light, might primarily serve as thermal dissipators instead of efficient light filters. In contrast, anthocyanins reacted least to short-wavelength light, in terms of changes to both their content and the expression of genes related to their biosynthesis. Additionally, the levels of aromatically acylated anthocyanins remained consistent across blue-, white-, and red-light treatments. These findings suggest that OEC photoinactivation in Z. marina may be linked to inadequate protection against short-wavelength light, a consequence of insufficient synthesis and aromatic acylation modification of anthocyanins.


Subject(s)
Light , Oxygen , Photosystem II Protein Complex , Zosteraceae , Zosteraceae/metabolism , Photosystem II Protein Complex/metabolism , Oxygen/metabolism , Anthocyanins/metabolism , Carotenoids/metabolism
12.
J Biosci ; 492024.
Article in English | MEDLINE | ID: mdl-38817160

ABSTRACT

ATP-uncoupling alternative oxidase (AOX) in the plant respiratory chain is often induced under stress conditions such as low temperature (LT). The importance of AOX in photosynthesis has been examined, and leaves having larger amounts of AOX tended to show larger decrease in photosynthetic electron transport rate (ETR) by AOX inhibition. However, the details were not clarified. Here, we used three ecotypes of Arabidopsis thaliana which differed in AOX amounts and their responses to LT, and examined whether AOX amount was related to the degree of decrease in ETR by AOX inhibition. In Tiv-0, which originates from a warmer site, grown at high temperature (HT), AOX inhibition decreased ETR, but not in the other ecotypes. LT treatment significantly increased ETR and AOX, especially in Bur-0, but AOX inhibition did not decrease ETR in LT plants of any ecotype. AOX inhibition significantly increased the non-regulated energy dissipation in photosystem II (PSII), Y(NO), and decreased the maximal quantum yield of PSII, Fv/Fm, especially in LT plants. Since AOX inhibition did not affect the parameters of PSI, AOX inhibition may directly affect the reaction center of PSII in LT plants.


Subject(s)
Arabidopsis , Mitochondrial Proteins , Oxidoreductases , Photosynthesis , Photosystem II Protein Complex , Plant Leaves , Plant Proteins , Arabidopsis/metabolism , Arabidopsis/enzymology , Oxidoreductases/metabolism , Oxidoreductases/antagonists & inhibitors , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Electron Transport , Plant Leaves/metabolism , Photosystem II Protein Complex/metabolism , Plant Proteins/metabolism , Cold Temperature , Mitochondria/metabolism
13.
J Am Chem Soc ; 146(21): 14905-14914, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38759103

ABSTRACT

The ability to harvest light effectively in a changing environment is necessary to ensure efficient photosynthesis and crop growth. One mechanism, known as qE, protects photosystem II (PSII) and regulates electron transfer through the harmless dissipation of excess absorbed photons as heat. This process involves reversible clustering of the major light-harvesting complexes of PSII (LHCII) in the thylakoid membrane and relies upon the ΔpH gradient and the allosteric modulator protein PsbS. To date, the exact role of PsbS in the qE mechanism has remained elusive. Here, we show that PsbS induces hydrophobic mismatch in the thylakoid membrane through dynamic rearrangement of lipids around LHCII leading to observed membrane thinning. We found that upon illumination, the thylakoid membrane reversibly shrinks from around 4.3 to 3.2 nm, without PsbS, this response is eliminated. Furthermore, we show that the lipid digalactosyldiacylglycerol (DGDG) is repelled from the LHCII-PsbS complex due to an increase in both the pKa of lumenal residues and in the dipole moment of LHCII, which allows for further conformational change and clustering in the membrane. Our results suggest a mechanistic role for PsbS as a facilitator of a hydrophobic mismatch-mediated phase transition between LHCII-PsbS and its environment. This could act as the driving force to sort LHCII into photoprotective nanodomains in the thylakoid membrane. This work shows an example of the key role of the hydrophobic mismatch process in regulating membrane protein function in plants.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Light-Harvesting Protein Complexes , Photosynthesis , Photosystem II Protein Complex , Thylakoids , Thylakoids/metabolism , Thylakoids/chemistry , Light-Harvesting Protein Complexes/metabolism , Light-Harvesting Protein Complexes/chemistry , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/chemistry , Galactolipids/metabolism , Galactolipids/chemistry , Light
14.
Nat Commun ; 15(1): 4535, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806516

ABSTRACT

Cryptophyte algae are an evolutionarily distinct and ecologically important group of photosynthetic unicellular eukaryotes. Photosystem II (PSII) of cryptophyte algae associates with alloxanthin chlorophyll a/c-binding proteins (ACPs) to act as the peripheral light-harvesting system, whose supramolecular organization is unknown. Here, we purify the PSII-ACPII supercomplex from a cryptophyte alga Chroomonas placoidea (C. placoidea), and analyze its structure at a resolution of 2.47 Å using cryo-electron microscopy. This structure reveals a dimeric organization of PSII-ACPII containing two PSII core monomers flanked by six symmetrically arranged ACPII subunits. The PSII core is conserved whereas the organization of ACPII subunits exhibits a distinct pattern, different from those observed so far in PSII of other algae and higher plants. Furthermore, we find a Chl a-binding antenna subunit, CCPII-S, which mediates interaction of ACPII with the PSII core. These results provide a structural basis for the assembly of antennas within the supercomplex and possible excitation energy transfer pathways in cryptophyte algal PSII, shedding light on the diversity of supramolecular organization of photosynthetic machinery.


Subject(s)
Cryoelectron Microscopy , Cryptophyta , Photosystem II Protein Complex , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/chemistry , Cryptophyta/metabolism , Chlorophyll/metabolism , Chlorophyll Binding Proteins/metabolism , Chlorophyll Binding Proteins/chemistry , Protein Multimerization , Chlorophyll A/metabolism , Chlorophyll A/chemistry , Models, Molecular , Light-Harvesting Protein Complexes/metabolism , Light-Harvesting Protein Complexes/chemistry
15.
J Bacteriol ; 206(5): e0045423, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38695523

ABSTRACT

The stoichiometry of photosystem II (PSII) and photosystem I (PSI) varies between photoautotrophic organisms. The cyanobacterium Synechocystis sp. PCC 6803 maintains two- to fivefold more PSI than PSII reaction center complexes, and we sought to modify this stoichiometry by changing the promoter region of the psaAB operon. We thus generated mutants with varied psaAB expression, ranging from ~3% to almost 200% of the wild-type transcript level, but all showing a reduction in PSI levels, relative to wild type, suggesting a role of the psaAB promoter region in translational regulation. Mutants with 25%-70% of wild-type PSI levels were photoautotrophic, with whole-chain oxygen evolution rates on a per-cell basis comparable to that of wild type. In contrast, mutant strains with <10% of the wild-type level of PSI were obligate photoheterotrophs. Variable fluorescence yields of all mutants were much higher than those of wild type, indicating that the PSI content is localized differently than in wild type, with less transfer of PSII-absorbed energy to PSI. Strains with less PSI saturate at a higher light intensity, enhancing productivity at higher light intensities. This is similar to what is found in mutants with reduced antennae. With 3-(3,4-dichlorophenyl)-1,1-dimethylurea present, P700+ re-reduction kinetics in the mutants were slower than in wild type, consistent with the notion that there is less cyclic electron transport if less PSI is present. Overall, strains with a reduction in PSI content displayed surprisingly vigorous growth and linear electron transport. IMPORTANCE: Consequences of reduction in photosystem I content were investigated in the cyanobacterium Synechocystis sp. PCC 6803 where photosystem I far exceeds the number of photosystem II complexes. Strains with less photosystem I displayed less cyclic electron transport, grew more slowly at lower light intensity and needed more light for saturation but were surprisingly normal in their whole-chain electron transport rates, implying that a significant fraction of photosystem I is dispensable for linear electron transport in cyanobacteria. These strains with reduced photosystem I levels may have biotechnological relevance as they grow well at higher light intensities.


Subject(s)
Gene Expression Regulation, Bacterial , Photosystem I Protein Complex , Photosystem II Protein Complex , Synechocystis , Photosystem I Protein Complex/metabolism , Photosystem I Protein Complex/genetics , Synechocystis/genetics , Synechocystis/metabolism , Synechocystis/growth & development , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Mutation , Photosynthesis , Electron Transport , Light , Promoter Regions, Genetic , Oxygen/metabolism
16.
Ecotoxicol Environ Saf ; 278: 116441, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38733805

ABSTRACT

Oxybenzone (OBZ; benzophenone-3, CAS# 131-57-7), as a new pollutant and ultraviolet absorbent, shows a significant threat to the survival of phytoplankton. This study aims to explore the acute toxic effects of OBZ on the growth of the microalga Selenastrum capricornutum, as well as the mechanisms for its damage to the primary metabolic pathways of photosynthesis and respiration. The results demonstrated that the concentrations for 50 % of maximal effect (EC50) of OBZ for S. capricornutum were 9.07 mg L-1 and 8.54 mg L-1 at 72 h and 96 h, respectively. A dosage of 4.56 mg L-1 OBZ significantly lowered the photosynthetic oxygen evolution rate of S. capricornutum in both light and dark conditions for a duration of 2 h, while it had no effect on the respiratory oxygen consumption rate under darkness. OBZ caused a significant decline in the efficiency of photosynthetic electron transport due to its damage to photosystem II (PSII), thereby decreasing the photosynthetic oxygen evolution rate. Over-accumulated H2O2 was produced under light due to the damage caused by OBZ to the donor and acceptor sides of PSII, resulting in increased peroxidation of cytomembranes and inhibition of algal respiration. OBZ's damage to photosynthesis and respiration will hinder the conversion and reuse of energy in algal cells, which is an important reason that OBZ has toxic effects on S. capricornutum. The present study indicated that OBZ has an acute toxic effect on the microalga S. capricornutum. In the two most important primary metabolic pathways in algae, photosynthesis is more sensitive to the toxicity of OBZ than respiration, especially in the dark.


Subject(s)
Benzophenones , Microalgae , Photosynthesis , Sunscreening Agents , Photosynthesis/drug effects , Benzophenones/toxicity , Microalgae/drug effects , Sunscreening Agents/toxicity , Water Pollutants, Chemical/toxicity , Hydrogen Peroxide/metabolism , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/drug effects , Ultraviolet Rays , Electron Transport/drug effects
17.
New Phytol ; 243(1): 72-81, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38703003

ABSTRACT

Woody plants display some photosynthetic activity in stems, but the biological role of stem photosynthesis and the specific contributions of bark and wood to carbon uptake and oxygen evolution remain poorly understood. We aimed to elucidate the functional characteristics of chloroplasts in stems of different ages in Fraxinus ornus. Our investigation employed diverse experimental approaches, including microsensor technology to assess oxygen production rates in whole stem, bark, and wood separately. Additionally, we utilized fluorescence lifetime imaging microscopy (FLIM) to characterize the relative abundance of photosystems I and II (PSI : PSII chlorophyll ratio) in bark and wood. Our findings revealed light-induced increases in O2 production in whole stem, bark, and wood. We present the radial profile of O2 production in F. ornus stems, demonstrating the capability of stem chloroplasts to perform light-dependent electron transport. Younger stems exhibited higher light-induced O2 production and dark respiration rates than older ones. While bark emerged as the primary contributor to net O2 production under light conditions, our data underscored that wood chloroplasts are also photosynthetically active. The FLIM analysis unveiled a lower PSI abundance in wood than in bark, suggesting stem chloroplasts are not only active but also acclimate to the spectral composition of light reaching inner compartments.


Subject(s)
Light , Oxygen , Plant Stems , Wood , Plant Stems/metabolism , Plant Stems/radiation effects , Oxygen/metabolism , Wood/metabolism , Darkness , Fraxinus/metabolism , Chloroplasts/metabolism , Chloroplasts/radiation effects , Plant Bark/metabolism , Photosynthesis/radiation effects , Photosystem II Protein Complex/metabolism
18.
New Phytol ; 243(1): 162-179, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38706429

ABSTRACT

Some cyanobacteria can grow photoautotrophically or photomixotrophically by using simultaneously CO2 and glucose. The switch between these trophic modes and the role of glycogen, their main carbon storage macromolecule, was investigated. We analysed the effect of glucose addition on the physiology, metabolic and photosynthetic state of Synechocystis sp. PCC 6803 and mutants lacking phosphoglucomutase and ADP-glucose pyrophosphorylase, with limitations in glycogen synthesis. Glycogen acted as a metabolic buffer: glucose addition increased growth and glycogen reserves in the wild-type (WT), but arrested growth in the glycogen synthesis mutants. Already 30 min after glucose addition, metabolites from the Calvin-Benson-Bassham cycle and the oxidative pentose phosphate shunt increased threefold more in the glycogen synthesis mutants than the WT. These alterations substantially affected the photosynthetic performance of the glycogen synthesis mutants, as O2 evolution and CO2 uptake were both impaired. We conclude that glycogen synthesis is essential during transitions to photomixotrophy to avoid metabolic imbalance that induces inhibition of electron transfer from PSII and subsequently accumulation of reactive oxygen species, loss of PSII core proteins, and cell death. Our study lays foundations for optimising photomixotrophy-based biotechnologies through understanding the coordination of the crosstalk between photosynthetic electron transport and metabolism.


Subject(s)
Glycogen , Photosynthesis , Photosystem II Protein Complex , Synechocystis , Synechocystis/metabolism , Synechocystis/drug effects , Synechocystis/growth & development , Synechocystis/genetics , Glycogen/metabolism , Electron Transport , Photosystem II Protein Complex/metabolism , Mutation/genetics , Glucose/metabolism , Carbon Dioxide/metabolism , Oxygen/metabolism , Glucose-1-Phosphate Adenylyltransferase/metabolism , Glucose-1-Phosphate Adenylyltransferase/genetics , Phosphoglucomutase/metabolism , Phosphoglucomutase/genetics
19.
J Photochem Photobiol B ; 256: 112941, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763078

ABSTRACT

Plants have a protective mechanism called non-photochemical quenching to prevent damage caused by excessive sunlight. A critical component of this mechanism is energy-dependent quenching (qE). In Chlamydomonas reinhardtii, the protein expression called light-harvesting complex stress-related protein 3 (LHCSR3) is crucial for the qE mechanism. LHCSR3 expression is observed in various conditions that result in photooxidation, such as exposure to high light or nutrient deprivation, where the amount of captured light surpasses the maximum photosynthetic capacity. Although the role of LHCSR3 has been extensively studied under high light (HL) conditions, its function during nutrient starvation remains unclear. In this study, we demonstrate that LHCSR3 expression can occur under light intensities below saturation without triggering qE, particularly when nutrients are limited. To investigate this, we cultivated C. reinhardtii cells under osmotic stress, which replicates conditions of nutrient scarcity. Furthermore, we examined the photosynthetic membrane complexes of wild-type (WT) and npq4 mutant strains grown under osmotic stress. Our analysis revealed that LHCSR3 expression might modify the interaction between the photosystem II core and its peripheral light-harvesting complex II antennae. This alteration could potentially impede the transfer of excitation energy from the antenna to the reaction center.


Subject(s)
Chlamydomonas reinhardtii , Light-Harvesting Protein Complexes , Osmotic Pressure , Photosystem II Protein Complex , Chlamydomonas reinhardtii/metabolism , Chlamydomonas reinhardtii/genetics , Light-Harvesting Protein Complexes/metabolism , Light-Harvesting Protein Complexes/genetics , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/genetics , Photosynthesis/radiation effects , Light , Chlorophyll/metabolism
20.
Physiol Plant ; 176(3): e14329, 2024.
Article in English | MEDLINE | ID: mdl-38695156

ABSTRACT

Although tetraploid wheat has rich genetic variability for cultivar improvement, its physiological mechanisms associated with photosynthetic productivity and resilience under nitrogen (N) deficit stress have not been investigated. In this study, we selected emmer wheat (Kronos, tetraploid), Yangmai 25 (YM25, hexaploid), and Chinese Spring (CS, hexaploid) as materials and investigated the differences in net photosynthetic rate (Pn), carboxylation capacity, electron transfer capacity, photosynthetic product output, and photosynthetic N allocation under normal N (CK) and low N (LN) through hydroponic experiments. Tetraploid emmer wheat (Kronos) had a stronger photosynthetic capacity than hexaploid wheat (YM25, CS) under low N stress, which mainly associated with the higher degree of PSII opening, electron transfer rate, Rubisco content and activity, ATP/ADP ratio, Rubisco activase (Rca) activity and Rubisco activation state, and more leaves N allocation to the photosynthetic apparatus, especially the proportion of N allocation to carboxylation under low N stress. Moreover, Kronos reduced the feedback inhibition of photosynthesis by sucrose accumulation through higher sucrose phosphate synthetase (SPS) activity and triose phosphate utilization rate (VTPU). Overall, Kronos could allocate more N to the photosynthetic components to improve Rubisco content and activity to maintain photosynthetic capacity under low N stress while enhancing triose phosphate output to reduce feedback inhibition of photosynthesis. This study reveals the physiological mechanisms of emmer wheat that maintain the photosynthetic capacity under low N stress, which will provide indispensable germplasm resources for elite low-N-tolerant wheat improvement and breeding.


Subject(s)
Nitrogen , Photosynthesis , Ribulose-Bisphosphate Carboxylase , Triticum , Photosynthesis/physiology , Triticum/physiology , Triticum/genetics , Triticum/metabolism , Nitrogen/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism , Stress, Physiological , Plant Leaves/physiology , Plant Leaves/metabolism , Adaptation, Physiological , Plant Proteins/metabolism , Plant Proteins/genetics , Chlorophyll/metabolism , Photosystem II Protein Complex/metabolism , Glucosyltransferases/metabolism , Glucosyltransferases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...