Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.535
Filter
1.
Cells ; 13(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38786089

ABSTRACT

Resistance to olaparib is the major obstacle in targeted therapy for ovarian cancer (OC) with poly(ADP-ribose) polymerase inhibitors (PARPis), prompting studies on novel combination therapies to enhance olaparib efficacy. Despite identifying various mechanisms, understanding how OC cells acquire PARPi resistance remains incomplete. This study investigated microRNA (miRNA) expression in olaparib-sensitive (PEO1, PEO4) and previously established olaparib-resistant OC cell lines (PEO1-OR) using high-throughput RT-qPCR and bioinformatic analyses. The role of miRNAs was explored regarding acquired resistance and resensitization with the ATR/CHK1 pathway inhibitors. Differentially expressed miRNAs were used to construct miRNA-mRNA regulatory networks and perform functional enrichment analyses for target genes with miRNet 2.0. TCGA-OV dataset was analyzed to explore the prognostic value of selected miRNAs and target genes in clinical samples. We identified potential processes associated with olaparib resistance, including cell proliferation, migration, cell cycle, and growth factor signaling. Resensitized PEO1-OR cells were enriched in growth factor signaling via PDGF, EGFR, FGFR1, VEGFR2, and TGFßR, regulation of the cell cycle via the G2/M checkpoint, and caspase-mediated apoptosis. Antibody microarray analysis confirmed dysregulated growth factor expression. The addition of the ATR/CHK1 pathway inhibitors to olaparib downregulated FGF4, FGF6, NT-4, PLGF, and TGFß1 exclusively in PEO1-OR cells. Survival and differential expression analyses for serous OC patients revealed prognostic miRNAs likely associated with olaparib resistance (miR-99b-5p, miR-424-3p, and miR-505-5p) and resensitization to olaparib (miR-324-5p and miR-424-3p). Essential miRNA-mRNA interactions were reconstructed based on prognostic miRNAs and target genes. In conclusion, our data highlight distinct miRNA profiles in olaparib-sensitive and olaparib-resistant cells, offering molecular insights into overcoming resistance with the ATR/CHK1 inhibitors in OC. Moreover, some miRNAs might serve as potential predictive signature molecules of resistance and therapeutic response.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , BRCA2 Protein , Checkpoint Kinase 1 , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , MicroRNAs , Ovarian Neoplasms , Phthalazines , Piperazines , RNA, Messenger , Humans , Phthalazines/pharmacology , Phthalazines/therapeutic use , MicroRNAs/genetics , MicroRNAs/metabolism , Female , Piperazines/pharmacology , Piperazines/therapeutic use , Ovarian Neoplasms/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Checkpoint Kinase 1/metabolism , Checkpoint Kinase 1/genetics , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Cell Line, Tumor , Gene Regulatory Networks/drug effects , Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , BRCA2 Protein/genetics , BRCA2 Protein/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Signal Transduction/drug effects
2.
Oncol Rep ; 52(1)2024 Jul.
Article in English | MEDLINE | ID: mdl-38785163

ABSTRACT

Inotuzumab ozogamicin (IO), a novel therapeutic drug for relapsed or refractory acute lymphoblastic leukemia (RR)­(ALL), is a humanized anti­cluster of differentiation (CD) 22 monoclonal antibody conjugated with calicheamicin that causes DNA single­ and double­strand breaks. Although the efficacy of IO is significantly improved compared with that of conventional chemotherapies, the prognosis for RR­ALL remains poor, highlighting the need for more effective treatment strategies. The present study examined the role of DNA damage repair inhibition using the poly (ADP­ribose) polymerase (PARP) inhibitors olaparib or talazoparib on the enhancement of the antitumor effects of IO on B­ALL cells in vitro. The Reh, Philadelphia (Ph)­B­ALL and the SUP­B15 Ph+ B­ALL cell lines were used for experiments. Both cell lines were ~90% CD22+. The half­maximal inhibitory concentration (IC50) values of IO were 5.3 and 49.7 ng/ml for Reh and SUP­B15 cells, respectively. The IC50 values of IO combined with minimally toxic concentrations of olaparib or talazoparib were 0.8 and 2.9 ng/ml for Reh cells, respectively, and 36.1 and 39.6 ng/ml for SUP­B15 cells, respectively. The combination index of IO with olaparib and talazoparib were 0.19 and 0.56 for Reh cells and 0.76 and 0.89 for SUP­B15 cells, demonstrating synergistic effects in all combinations. Moreover, the addition of minimally toxic concentrations of PARP inhibitors augmented IO­induced apoptosis. The alkaline comet assay, which quantitates the amount of DNA strand breaks, was used to investigate the degree to which DNA damage observed 1 h after IO administration was repaired 6 h later, reflecting successful repair of DNA strand breaks. However, DNA strand breaks persisted 6 h after IO administration combined with olaparib or talazoparib, suggesting inhibition of the repair processes by PARP inhibitors. Adding olaparib or talazoparib thus synergized the antitumor effects of IO by inhibiting DNA strand break repair via the inhibition of PARP.


Subject(s)
DNA Repair , Drug Synergism , Inotuzumab Ozogamicin , Phthalazines , Piperazines , Poly(ADP-ribose) Polymerase Inhibitors , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Phthalazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Piperazines/pharmacology , Piperazines/administration & dosage , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Cell Line, Tumor , DNA Repair/drug effects , Inotuzumab Ozogamicin/pharmacology , Apoptosis/drug effects , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cell Proliferation/drug effects , Indoles/pharmacology
3.
J Cell Mol Med ; 28(9): e18342, 2024 May.
Article in English | MEDLINE | ID: mdl-38693852

ABSTRACT

Urothelial carcinoma (UC) urgently requires new therapeutic options. Histone deacetylases (HDAC) are frequently dysregulated in UC and constitute interesting targets for the development of alternative therapy options. Thus, we investigated the effect of the second generation HDAC inhibitor (HDACi) quisinostat in five UC cell lines (UCC) and two normal control cell lines in comparison to romidepsin, a well characterized HDACi which was previously shown to induce cell death and cell cycle arrest. In UCC, quisinostat led to cell cycle alterations, cell death induction and DNA damage, but was well tolerated by normal cells. Combinations of quisinostat with cisplatin or the PARP inhibitor talazoparib led to decrease in cell viability and significant synergistic effect in five UCCs and platinum-resistant sublines allowing dose reduction. Further analyses in UM-UC-3 and J82 at low dose ratio revealed that the mechanisms included cell cycle disturbance, apoptosis induction and DNA damage. These combinations appeared to be well tolerated in normal cells. In conclusion, our results suggest new promising combination regimes for treatment of UC, also in the cisplatin-resistant setting.


Subject(s)
Apoptosis , Histone Deacetylase Inhibitors , Poly(ADP-ribose) Polymerase Inhibitors , Urinary Bladder Neoplasms , Humans , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Cisplatin/pharmacology , DNA Damage/drug effects , Drug Synergism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Hydroxamic Acids/pharmacology , Hydroxamic Acids/therapeutic use , Phthalazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/metabolism , Urologic Neoplasms/drug therapy , Urologic Neoplasms/pathology
4.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731844

ABSTRACT

More than 20% of metastatic prostate cancer carries genomic defects involving DNA damage repair pathways, mainly in homologous recombination repair-related genes. The recent approval of olaparib has paved the way to precision medicine for the treatment of metastatic prostate cancer with PARP inhibitors in this subset of patients, especially in the case of BRCA1 or BRCA2 pathogenic/likely pathogenic variants. In face of this new therapeutic opportunity, many issues remain unsolved. This narrative review aims to describe the relationship between homologous recombination repair deficiency and prostate cancer, the techniques used to determine homologous recombination repair status in prostate cancer, the crosstalk between homologous recombination repair and the androgen receptor pathway, the current evidence on PARP inhibitors activity in metastatic prostate cancer also in homologous recombination repair-proficient tumors, as well as emerging mechanisms of resistance to PARP inhibitors. The possibility of combination therapies including a PARP inhibitor is an attractive option, and more robust data are awaited from ongoing phase II and phase III trials outlined in this manuscript.


Subject(s)
Poly(ADP-ribose) Polymerase Inhibitors , Prostatic Neoplasms , Recombinational DNA Repair , Humans , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , BRCA2 Protein/genetics , BRCA2 Protein/deficiency , Neoplasm Metastasis , BRCA1 Protein/genetics , BRCA1 Protein/deficiency , Phthalazines/therapeutic use , Phthalazines/pharmacology , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Piperazines
5.
Epigenetics ; 19(1): 2357518, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38796857

ABSTRACT

Drug resistance is the primary contributor to the high mortality rate of ovarian cancer (OC). The loss of BRCA1/2 function is linked to drug sensitivity in OC cells. The aim of this study is to enhance the drug sensitivity of OC cells by inducing BRCA1 dysfunction through promoter epigenetic editing. Epigenetic regulatory regions within the BRCA1 promoter, affecting gene expression, were initially discerned through analysis of clinical samples. Subsequently, we designed and rigorously validated epigenetic editing tools. Ultimately, we evaluated the cisplatin and olaparib sensitivity of the OC cells after editing. The BRCA1 promoter contains two CpG-rich regions, with methylation of the region covering the transcription start site (TSS) strongly correlating with transcription and influencing OC development, prognosis, and homologous recombination (HR) defects. Targeting this region in OC cells using our designed epigenetic editing tools led to substantial and persistent DNA methylation changes, accompanied by significant reductions in H3K27ac histone modifications. This resulted in a notable suppression of BRCA1 expression and a decrease in HR repair capacity. Consequently, edited OC cells exhibited heightened sensitivity to cisplatin and olaparib, leading to increased apoptosis rates. Epigenetic inactivation of the BRCA1 promoter can enhance cisplatin and olaparib sensitivity of OC cells through a reduction in HR repair capacity, indicating the potential utility of epigenetic editing technology in sensitization therapy for OC.


Subject(s)
BRCA1 Protein , Cisplatin , DNA Methylation , Drug Resistance, Neoplasm , Epigenesis, Genetic , Ovarian Neoplasms , Phthalazines , Piperazines , Promoter Regions, Genetic , Humans , Cisplatin/pharmacology , Phthalazines/pharmacology , Female , Ovarian Neoplasms/genetics , Ovarian Neoplasms/drug therapy , BRCA1 Protein/genetics , Piperazines/pharmacology , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Gene Editing , Antineoplastic Agents/pharmacology , Gene Expression Regulation, Neoplastic/drug effects
6.
Nat Commun ; 15(1): 4292, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769345

ABSTRACT

Deficiencies in the BRCA1 tumor suppressor gene are the main cause of hereditary breast and ovarian cancer. BRCA1 is involved in the Homologous Recombination DNA repair pathway and, together with BARD1, forms a heterodimer with ubiquitin E3 activity. The relevance of the BRCA1/BARD1 ubiquitin E3 activity for tumor suppression and DNA repair remains controversial. Here, we observe that the BRCA1/BARD1 ubiquitin E3 activity is not required for Homologous Recombination or resistance to Olaparib. Using TULIP2 methodology, which enables the direct identification of E3-specific ubiquitination substrates, we identify substrates for BRCA1/BARD1. We find that PCNA is ubiquitinated by BRCA1/BARD1 in unperturbed conditions independently of RAD18. PCNA ubiquitination by BRCA1/BARD1 avoids the formation of ssDNA gaps during DNA replication and promotes continuous DNA synthesis. These results provide additional insight about the importance of BRCA1/BARD1 E3 activity in Homologous Recombination.


Subject(s)
BRCA1 Protein , DNA Replication , Phthalazines , Piperazines , Proliferating Cell Nuclear Antigen , Tumor Suppressor Proteins , Ubiquitin-Protein Ligases , Ubiquitination , Humans , BRCA1 Protein/metabolism , BRCA1 Protein/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Proliferating Cell Nuclear Antigen/metabolism , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Phthalazines/pharmacology , Piperazines/pharmacology , Homologous Recombination , Female , HEK293 Cells , Cell Line, Tumor , DNA/metabolism
7.
Cell Death Dis ; 15(5): 370, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806454

ABSTRACT

In ovarian tumors, the omental microenvironment profoundly influences the behavior of cancer cells and sustains the acquisition of stem-like traits, with major impacts on tumor aggressiveness and relapse. Here, we leverage a patient-derived platform of organotypic cultures to study the crosstalk between the tumor microenvironment and ovarian cancer stem cells. We discovered that the pro-tumorigenic transcription factor FOXM1 is specifically induced by the microenvironment in ovarian cancer stem cells, through activation of FAK/YAP signaling. The microenvironment-induced FOXM1 sustains stemness, and its inactivation reduces cancer stem cells survival in the omental niche and enhances their response to the PARP inhibitor Olaparib. By unveiling the novel role of FOXM1 in ovarian cancer stemness, our findings highlight patient-derived organotypic co-cultures as a powerful tool to capture clinically relevant mechanisms of the microenvironment/cancer stem cells crosstalk, contributing to the identification of tumor vulnerabilities.


Subject(s)
Forkhead Box Protein M1 , Neoplastic Stem Cells , Ovarian Neoplasms , Tumor Microenvironment , Humans , Tumor Microenvironment/drug effects , Forkhead Box Protein M1/metabolism , Forkhead Box Protein M1/genetics , Female , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/genetics , Ovarian Neoplasms/drug therapy , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/drug effects , Cell Line, Tumor , Signal Transduction/drug effects , YAP-Signaling Proteins/metabolism , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , Mice , Gene Expression Regulation, Neoplastic/drug effects , Animals , Phthalazines/pharmacology , Piperazines/pharmacology
8.
Sci Rep ; 14(1): 7519, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38589490

ABSTRACT

Homologous recombination (HR) repairs DNA damage including DNA double-stranded breaks and alterations in HR-related genes results in HR deficiency. Germline alteration of HR-related genes, such as BRCA1 and BRCA2, causes hereditary breast and ovarian cancer (HBOC). Cancer cells with HR deficiency are sensitive to poly (ADP-ribose) polymerase (PARP) inhibitors and DNA-damaging agents. Thus, accurately evaluating HR activity is useful for diagnosing HBOC and predicting the therapeutic effects of anti-cancer agents. Previously, we developed an assay for site-specific HR activity (ASHRA) that can quantitatively evaluate HR activity and detect moderate HR deficiency. HR activity in cells measured by ASHRA correlates with sensitivity to the PARP inhibitor, olaparib. In this study, we applied ASHRA to lymphoblastoid cells and xenograft tumor tissues, which simulate peripheral blood lymphocytes and tumor tissues, respectively, as clinically available samples. We showed that ASHRA could be used to detect HR deficiency in lymphoblastoid cells derived from a BRCA1 pathogenic variant carrier. Furthermore, ASHRA could quantitatively measure the HR activity in xenograft tumor tissues with HR activity that was gradually suppressed by inducible BRCA1 knockdown. The HR activity of xenograft tumor tissues quantitatively correlated with the effect of olaparib. Our data suggest that ASHRA could be a useful assay for diagnosing HBOC and predicting the efficacy of PARP inhibitors.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Ovarian Neoplasms , Piperazines , Humans , Female , Homologous Recombination , BRCA1 Protein/genetics , Phthalazines/pharmacology , Phthalazines/therapeutic use , Antineoplastic Agents/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Poly(ADP-ribose) Polymerases/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , DNA/therapeutic use
9.
PLoS One ; 19(4): e0302130, 2024.
Article in English | MEDLINE | ID: mdl-38625917

ABSTRACT

PARP inhibitors have been developed as anti-cancer agents based on synthetic lethality in homologous recombination deficient cancer cells. However, resistance to PARP inhibitors such as olaparib remains a problem in clinical use, and the mechanisms of resistance are not fully understood. To investigate mechanisms of PARP inhibitor resistance, we established a BRCA1 knockout clone derived from the pancreatic cancer MIA PaCa-2 cells, which we termed C1 cells, and subsequently isolated an olaparib-resistant C1/OLA cells. We then performed RNA-sequencing and pathway analysis on olaparib-treated C1 and C1/OLA cells. Our results revealed activation of cell signaling pathway related to NAD+ metabolism in the olaparib-resistant C1/OLA cells, with increased expression of genes encoding the NAD+ biosynthetic enzymes NAMPT and NMNAT2. Moreover, intracellular NAD+ levels were significantly higher in C1/OLA cells than in the non-olaparib-resistant C1 cells. Upregulation of intracellular NAD+ levels by the addition of nicotinamide also induced resistance to olaparib and talazoparib in C1 cells. Taken together, our findings suggest that upregulation of intracellular NAD+ is one of the factors underlying the acquisition of PARP inhibitor resistance.


Subject(s)
Antineoplastic Agents , Pancreatic Neoplasms , Piperazines , Humans , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , NAD , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Phthalazines/pharmacology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , BRCA1 Protein
10.
Cancer Lett ; 589: 216820, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38574883

ABSTRACT

One in three Triple Negative Breast Cancer (TNBC) is Homologous Recombination Deficient (HRD) and susceptible to respond to PARP inhibitor (PARPi), however, resistance resulting from functional HR restoration is frequent. Thus, pharmacologic approaches that induce HRD are of interest. We investigated the effectiveness of CDK-inhibition to induce HRD and increase PARPi sensitivity of TNBC cell lines and PDX models. Two CDK-inhibitors (CDKi), the broad range dinaciclib and the CDK12-specific SR-4835, strongly reduced the expression of key HR genes and impaired HR functionality, as illustrated by BRCA1 and RAD51 nuclear foci obliteration. Consequently, both CDKis showed synergism with olaparib, as well as with cisplatin and gemcitabine, in a range of TNBC cell lines and particularly in olaparib-resistant models. In vivo assays on PDX validated the efficacy of dinaciclib which increased the sensitivity to olaparib of 5/6 models, including two olaparib-resistant and one BRCA1-WT model. However, no olaparib response improvement was observed in vivo with SR-4835. These data support that the implementation of CDK-inhibitors could be effective to sensitize TNBC to olaparib as well as possibly to cisplatin or gemcitabine.


Subject(s)
Antineoplastic Agents , Piperazines , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Drug Resistance, Neoplasm , Cisplatin/pharmacology , Cisplatin/therapeutic use , Gemcitabine , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Phthalazines/pharmacology , Phthalazines/therapeutic use , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Cell Line, Tumor
11.
Sci Rep ; 14(1): 9598, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38671063

ABSTRACT

Allergic conjunctivitis (AC) is the most common form of allergic eye disease and an increasingly prevalent condition. Topical eye drop treatments are the usual approach for managing AC, although their impact on the ocular surface is not frequently investigated. The aim of this study was to perform a comparative physicochemical characterization, and in vitro biological evaluations in primary conjunctival and corneal epithelial cells of the new multidose preservative-free bilastine 0.6% and main commercially available eye drops. MTT assay was used to measure cell viability; oxidative stress was analyzed with a ROS-sensitive probe; and apoptosis was evaluated monitoring caspase 3/7 activation. Differences in pH value, osmolarity, viscosity and phosphate levels were identified. Among all formulations, bilastine exhibited pH, osmolarity and viscosity values closer to tear film (7.4, 300 mOsm/l and ~ 1.5-10 mPa·s, respectively), and was the only phosphates-free solution. Single-dose ketotifen did not induce ROS production, and single-dose azelastine and bilastine only induced a mild increase. Bilastine and single-dose ketotifen and azelastine showed high survival rates attributable to the absence of preservative in its formulation, not inducing caspase-3/7-mediated apoptosis after 24 h. Our findings support the use of the new bilastine 0.6% for treating patients with AC to preserve and maintain the integrity of the ocular surface.


Subject(s)
Apoptosis , Benzimidazoles , Caspase 3 , Cell Survival , Ophthalmic Solutions , Preservatives, Pharmaceutical , Ophthalmic Solutions/pharmacology , Humans , Preservatives, Pharmaceutical/pharmacology , Cell Survival/drug effects , Benzimidazoles/pharmacology , Benzimidazoles/chemistry , Caspase 3/metabolism , Apoptosis/drug effects , Piperidines/pharmacology , Oxidative Stress/drug effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Conjunctiva/drug effects , Conjunctiva/metabolism , Conjunctiva/pathology , Caspase 7/metabolism , Reactive Oxygen Species/metabolism , Conjunctivitis, Allergic/drug therapy , Conjunctivitis, Allergic/pathology , Conjunctivitis, Allergic/metabolism , Phthalazines/pharmacology , Osmolar Concentration , Epithelium, Corneal/drug effects , Epithelium, Corneal/metabolism , Cells, Cultured , Viscosity
12.
Exp Cell Res ; 438(1): 114036, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38614421

ABSTRACT

Ovarian cancer is the leading cause of gynecologic cancer death. Among the most innovative anti-cancer approaches, the genetic concept of synthetic lethality is that mutations in multiple genes work synergistically to effect cell death. Previous studies found that although vaccinia-related kinase-1 (VRK1) associates with DNA damage repair proteins, its underlying mechanisms remain unclear. Here, we found high VRK1 expression in ovarian tumors, and that VRK1 depletion can significantly promote apoptosis and cell cycle arrest. The effect of VRK1 knockdown on apoptosis was manifested by increased DNA damage, genomic instability, and apoptosis, and also blocked non-homologous end joining (NHEJ) by destabilizing DNA-PK. Further, we verified that VRK1 depletion enhanced sensitivity to a PARP inhibitor (PARPi), olaparib, promoting apoptosis through DNA damage, especially in ovarian cancer cell lines with high VRK1 expression. Proteins implicated in DNA damage responses are suitable targets for the development of new anti-cancer therapeutic strategies, and their combination could represent an alternative form of synthetic lethality. Therefore, normal protective DNA damage responses are impaired by combining olaparib with elimination of VRK1 and could be used to reduce drug dose and its associated toxicity. In summary, VRK1 represents both a potential biomarker for PARPi sensitivity, and a new DDR-associated therapeutic target, in ovarian cancer.


Subject(s)
DNA Damage , DNA-Activated Protein Kinase , Intracellular Signaling Peptides and Proteins , Ovarian Neoplasms , Protein Serine-Threonine Kinases , Female , Humans , Apoptosis/drug effects , Cell Line, Tumor , DNA Damage/drug effects , DNA-Activated Protein Kinase/metabolism , DNA-Activated Protein Kinase/genetics , Gene Expression Regulation, Neoplastic/drug effects , Genomic Instability/drug effects , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Phthalazines/pharmacology , Piperazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics
13.
Cells ; 13(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38667288

ABSTRACT

As the treatment landscape for prostate cancer gradually evolves, the frequency of treatment-induced neuroendocrine prostate cancer (NEPC) and double-negative prostate cancer (DNPC) that is deficient for androgen receptor (AR) and neuroendocrine (NE) markers has increased. These prostate cancer subtypes are typically refractory to AR-directed therapies and exhibit poor clinical outcomes. Only a small range of NEPC/DNPC models exist, limiting our molecular understanding of this disease and hindering our ability to perform preclinical trials exploring novel therapies to treat NEPC/DNPC that are urgently needed in the clinic. Here, we report the development of the CU-PC01 PDX model that represents AR-negative mCRPC with PTEN/RB/PSMA loss and CTNN1B/TP53/BRCA2 genetic variants. The CU-PC01 model lacks classic NE markers, with only focal and/or weak expression of chromogranin A, INSM1 and CD56. Collectively, these findings are most consistent with a DNPC phenotype. Ex vivo and in vivo preclinical studies revealed that CU-PC01 PDX tumours are resistant to mCRPC standard-of-care treatments enzalutamide and docetaxel, mirroring the donor patient's treatment response. Furthermore, short-term CU-PC01 tumour explant cultures indicate this model is initially sensitive to PARP inhibition with olaparib. Thus, the CU-PC01 PDX model provides a valuable opportunity to study AR-negative mCRPC biology and to discover new treatment avenues for this hard-to-treat disease.


Subject(s)
Piperazines , Prostatic Neoplasms, Castration-Resistant , Receptors, Androgen , Male , Humans , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/drug therapy , Animals , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Mice , Xenograft Model Antitumor Assays , Phenylthiohydantoin/pharmacology , Phenylthiohydantoin/analogs & derivatives , Phenylthiohydantoin/therapeutic use , Neoplasm Metastasis , Nitriles/pharmacology , Disease Models, Animal , Benzamides/pharmacology , Phthalazines/pharmacology , Phthalazines/therapeutic use
14.
Br J Cancer ; 130(9): 1529-1541, 2024 May.
Article in English | MEDLINE | ID: mdl-38461169

ABSTRACT

BACKGROUND: Several studies have described a potential anti-tumour effect of cannabinoids (CNB). CNB receptor 2 (CB2) is mostly present in hematopoietic stem cells (HSC). The present study evaluates the anti-leukaemic effect of CNB. METHODS: Cell lines and primary cells from acute myeloid leukaemia (AML) patients were used and the effect of the CNB derivative WIN-55 was evaluated in vitro, ex vivo and in vivo. RESULTS: We demonstrate a potent antileukemic effect of WIN-55 which is abolished with CB antagonists. WIN-treated mice, xenografted with AML cells, had better survival as compared to vehicle or cytarabine. DNA damage-related genes were affected upon exposure to WIN. Co-incubation with the PARP inhibitor Olaparib prevented WIN-induced cell death, suggesting PARP-mediated apoptosis which was further confirmed with the translocation of AIF to the nucleus observed in WIN-treated cells. Nicotinamide prevented WIN-related apoptosis, indicating NAD+ depletion. Finally, WIN altered glycolytic enzymes levels as well as the activity of G6PDH. These effects are reversed through PARP1 inhibition. CONCLUSIONS: WIN-55 exerts an antileukemic effect through Parthanatos, leading to translocation of AIF to the nucleus and depletion of NAD+, which are reversed through PARP1 inhibition. It also induces metabolic disruptions. These effects are not observed in normal HSC.


Subject(s)
Leukemia, Myeloid, Acute , Parthanatos , Humans , Animals , Mice , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Parthanatos/drug effects , Cell Line, Tumor , Xenograft Model Antitumor Assays , Apoptosis/drug effects , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Piperazines/pharmacology , Poly (ADP-Ribose) Polymerase-1/metabolism , Cannabinoids/pharmacology , Phthalazines/pharmacology , Poly(ADP-ribose) Polymerases/metabolism , DNA Damage/drug effects , Cell Death/drug effects , Antineoplastic Agents/pharmacology
15.
Biomed Pharmacother ; 174: 116474, 2024 May.
Article in English | MEDLINE | ID: mdl-38518604

ABSTRACT

Chemotherapy and targeted drugs-induced senescent ovarian cancer cells that accumulate in peritoneal adipose tissue contribute significantly to chronic inflammation, disrupt homeostasis, and may fuel various aspects of cancer progression. However, the pro-senescence effects of chemotherapy and targeted drugs on adipose derived stem cells (ADSCs) within peritoneal adipose tissue remain poorly understood. In this study, we show that the first-line chemotherapy and targeted drugs can induce the cellular senescence of ADSCs in vitro and increase the aging of peritoneal adipose tissue in vivo. These treatments significantly promoted the dysregulation of glucose and lipid metabolism, including insulin resistance and liver lipid accumulation. Our study shows that dasatinib and quercetin, as senolytics, effectively restore glucose homeostasis in mice with ovarian cancer and significantly reduce adipose tissue aging. Importantly, combining these drugs with Carboplatin or Olaparib results in a marked decrease in both peritoneal and adipose tissue metastasis of ovarian cancer cells. Mechanistically, we revealed that there is crosstalk between ovarian cancer cells and senescent ADSCs. The crosstalk increases inflammatory cytokines and chemokines production in ADSCs and notably upregulates chemokine receptors on cancer cells. Collectively, these data indicate that senescent ADSCs induced by chemotherapy and targeted therapy drugs impair adipose tissue function. However, the senolytic drugs dasatinib and quercetin, can significantly ameliorate organ aging and damage induced by these treatments. Notably, dasatinib and quercetin combined with Carboplatin or Olaparib reduced the peritoneal and adipose tissue metastasis of ovarian cancer, ultimately benefiting the mice undergoing chemotherapy and targeted therapy.


Subject(s)
Adipose Tissue , Carboplatin , Cellular Senescence , Dasatinib , Ovarian Neoplasms , Peritoneal Neoplasms , Phthalazines , Piperazines , Quercetin , Dasatinib/pharmacology , Dasatinib/administration & dosage , Female , Animals , Quercetin/pharmacology , Quercetin/administration & dosage , Ovarian Neoplasms/pathology , Ovarian Neoplasms/drug therapy , Phthalazines/pharmacology , Phthalazines/administration & dosage , Carboplatin/pharmacology , Carboplatin/administration & dosage , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Adipose Tissue/pathology , Piperazines/pharmacology , Piperazines/administration & dosage , Cellular Senescence/drug effects , Mice , Humans , Peritoneal Neoplasms/secondary , Peritoneal Neoplasms/drug therapy , Peritoneal Neoplasms/pathology , Senotherapeutics/pharmacology , Cell Line, Tumor , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Mice, Inbred C57BL
16.
Chem Biol Interact ; 393: 110958, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38493911

ABSTRACT

Poly (adenosine diphosphate-ribose) polymerase (PARP) inhibitors, such as Olaparib, have been pivotal in treating BRCA-deficient ovarian cancer. However, their efficacy is limited in over 40% of BRCA-deficient patients, with acquired resistance posing new clinical challenges. To address this, we employed bioinformatics methods to identify key genes impacting Olaparib sensitivity in ovarian cancer. Through comprehensive analysis of public databases including GEO, CPTAC, Kaplan Meier Plotter, and CCLE, we identified CRABP2 as significantly upregulated at both mRNA and protein levels in ovarian cancer, correlating with poor prognosis and decreased Olaparib sensitivity. Using colony formation and CCK-8 assays, we confirmed that CRABP2 knockdown in OVCAR3 and TOV112D cells enhanced sensitivity to Olaparib. Additionally, 4D label-free quantitative proteomics analysis, GSEA, and GO/KEGG analysis revealed CRABP2's involvement in regulating oxidation signals. Flow cytometry, colony formation assays, and western blotting demonstrated that CRABP2 knockdown promoted ROS production by activating Caspase-8, thereby augmenting Olaparib sensitivity and inhibiting ovarian cancer cell proliferation. Moreover, in xenograft models, CRABP2 knockdown significantly suppressed tumorigenesis and enhanced Olaparib sensitivity, with the effect being reversed upon Caspase-8 knockdown. These findings suggest that CRABP2 may modulate Olaparib sensitivity in ovarian cancer through the Caspase-8/ROS axis, highlighting its potential as a target for Olaparib sensitization.


Subject(s)
Ovarian Neoplasms , Phthalazines , Piperazines , Female , Humans , Apoptosis , Caspase 8/genetics , Caspase 8/metabolism , Cell Line, Tumor , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Phthalazines/pharmacology , Phthalazines/therapeutic use , Piperazines/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerases/metabolism , Reactive Oxygen Species/metabolism
17.
Cell Death Differ ; 31(4): 497-510, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38374229

ABSTRACT

Poly ADP-ribose polymerase inhibitors (PARPis) exhibit promising efficacy in patients with BRCA mutations or homologous repair deficiency (HRD) in ovarian cancer (OC). However, less than 40% of patients have HRD, it is vital to expand the indications for PARPis in BRCA-proficient patients. Ferroptosis suppressor protein 1 (FSP1) is a key protein in a newly identified ferroptosis-protective mechanism that occurs in parallel with the GPX4-mediated pathway and is associated with chemoresistance in several cancers. Herein, FSP1 is reported to be negatively correlated with the prognosis in OC patients. Combination therapy comprising olaparib and iFSP1 (a FSP1 inhibitor) strongly inhibited tumour proliferation in BRCA-proficient OC cell lines, patient-derived organoids (PDOs) and xenograft mouse models. Surprisingly, the synergistic killing effect could not be reversed by ferroptosis inhibitors, indicating that mechanisms other than ferroptosis were responsible for the synergistic lethality. In addition, cotreatment was shown to induce increased γH2A.X foci and to impair nonhomologous end joining (NHEJ) activity to a greater extent than did any single drug. Mass spectrometry and immunoprecipitation analyses revealed that FSP1 interacted with Ku70, a classical component recruited to and occupying the end of double-strand breaks (DSBs) in the NHEJ process. FSP1 inhibition decreased Ku70 PARylation, impaired subsequent DNA-PKcs recruitment to the Ku complex at DSB sites and was rescued by restoring PARylation. These findings unprecedentedly reveal a novel role of FSP1 in DNA damage repair and provide new insights into how to sensitize OC patients to PARPi treatment.


Subject(s)
Ferroptosis , Ovarian Neoplasms , Phthalazines , Piperazines , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Female , Phthalazines/pharmacology , Phthalazines/therapeutic use , Piperazines/pharmacology , Piperazines/therapeutic use , Animals , Mice , Ferroptosis/drug effects , Cell Line, Tumor , BRCA1 Protein/metabolism , BRCA1 Protein/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Cell Proliferation/drug effects , S100 Calcium-Binding Protein A4/metabolism , S100 Calcium-Binding Protein A4/genetics
18.
J Nat Prod ; 87(4): 837-848, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38417401

ABSTRACT

Ovarian cancer (OVC) is one of the most aggressive gynecological malignancies worldwide. Although olaparib treatment has shown favorable outcomes against the treatment of OVC, its effectiveness remains limited in some OVC patients. Investigating new strategies to improve the therapeutic efficacy of olaparib against OVC is imperative. Our study identified tabersonine, a natural indole alkaloid, for its potential to increase the chemosensitivity of olaparib in OVC. The combined treatment of olaparib and tabersonine synergistically inhibited cell proliferation in OVC cells and suppressed tumor growth in A2780 xenografts. The combined treatment effectively suppressed epithelial-mesenchymal transition (EMT) by altering the expression of E-cadherin, N-cadherin, and vimentin and induced DNA damage responses. Integrating quantitative proteomics, FHL1 was identified as a potential regulator to modulate EMT after tabersonine treatment. Increased expression of FHL1 was induced by tabersonine treatment, while downregulation of FHL1 reversed the inhibitory effects of tabersonine on OVC cells by mediating EMT. In vivo findings further reflected that the combined treatment of tabersonine and olaparib significantly inhibited tumor growth and OVC metastasis through upregulation of FHL1. Our findings reveal the role of tabersonine in improving the sensitivity of olaparib in OVC through FHL1-mediated EMT, suggesting that tabersonine holds promise for future application in OVC treatment.


Subject(s)
Epithelial-Mesenchymal Transition , Intracellular Signaling Peptides and Proteins , LIM Domain Proteins , Muscle Proteins , Ovarian Neoplasms , Phthalazines , Piperazines , Animals , Female , Humans , Mice , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Epithelial-Mesenchymal Transition/drug effects , Indole Alkaloids/pharmacology , Intracellular Signaling Peptides and Proteins/metabolism , Muscle Proteins/metabolism , Muscle Proteins/drug effects , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Phthalazines/pharmacology , Piperazines/pharmacology , Quinolines/pharmacology
19.
Mol Carcinog ; 63(6): 1024-1037, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38411275

ABSTRACT

Homologous recombination (HR) and poly ADP-ribosylation are partially redundant pathways for the repair of DNA damage in normal and cancer cells. In cell lines that are deficient in HR, inhibition of poly (ADP-ribose) polymerase (poly (ADP-ribose) polymerase [PARP]1/2) is a proven target with several PARP inhibitors (PARPis) currently in clinical use. Resistance to PARPi often develops, usually involving genetic alterations in DNA repair signaling cascades, but also metabolic rewiring particularly in HR-proficient cells. We surmised that alterations in metabolic pathways by cancer drugs such as Olaparib might be involved in the development of resistance to drug therapy. To test this hypothesis, we conducted a metabolism-focused clustered regularly interspaced short palindromic repeats knockout screen to identify genes that undergo alterations during the treatment of tumor cells with PARPis. Of about 3000 genes in the screen, our data revealed that mitochondrial pyruvate carrier 1 (MPC1) is an essential factor in desensitizing nonsmall cell lung cancer (NSCLC) lung cancer lines to PARP inhibition. In contrast to NSCLC lung cancer cells, triple-negative breast cancer cells do not exhibit such desensitization following MPC1 loss and reprogram the tricarboxylic acid cycle and oxidative phosphorylation pathways to overcome PARPi treatment. Our findings unveil a previously unknown synergistic response between MPC1 loss and PARP inhibition in lung cancer cells.


Subject(s)
Drug Resistance, Neoplasm , Lung Neoplasms , Monocarboxylic Acid Transporters , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Drug Resistance, Neoplasm/genetics , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/metabolism , Cell Line, Tumor , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism , Phthalazines/pharmacology , Piperazines/pharmacology , Clustered Regularly Interspaced Short Palindromic Repeats , CRISPR-Cas Systems , Mitochondria/metabolism , Mitochondria/drug effects , Mitochondria/genetics
20.
Technol Cancer Res Treat ; 23: 15330338231212085, 2024.
Article in English | MEDLINE | ID: mdl-38192153

ABSTRACT

Background: Deficiencies in DNA damage repair responses promote chemotherapy sensitivity of tumor cells. The Nibrin homolog encoding gene Nijmegen Breakage Syndrome 1 (NBS1) is a crucial component of the MRE11-RAD50-NBN complex (MRN complex) and is involved in the response to DNA double-strand breaks (DSBs) repair that has emerged as an attractive strategy to overcome tumor drug resistance, but the functional relationship between NBS1 regulated DNA damage repair and cell cycle checkpoints has not been fully elucidated. Methods: In this study, lentivirus-mediated RNAi was used to construct NBS1-downregulated cells. Flow cytometry, qPCR, and immunohistochemistry were used to explore the regulatory relationship between NBS1 and CyclinB in vivo and in vitro. Results: Our findings suggest that NBS1 deficiency leads to defective homologous recombination repair. Inhibition of NBS1 expression activates CHK1 and CyclinB signaling pathways leading to cell cycle arrest and sensitizes ovarian cancer cells to Olaparib treatment in vitro and in vivo. NBS1-deficient ovarian cancer cells tend to maintain sensitivity to chemotherapeutic drugs through activation of cell cycle checkpoints. Conclusions: NBS1 may be a potential therapeutic target for epithelial ovarian cancer as it plays a role in the regulation of the DNA damage response and cell cycle checkpoints. Suppression of NBS1 upregulates CyclinB to induce Olaparib sensitivity in ovarian cancer.


Subject(s)
Ovarian Neoplasms , Female , Humans , Carcinoma, Ovarian Epithelial , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Phthalazines/pharmacology , Piperazines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...