Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.627
Filter
1.
Sci Total Environ ; 931: 172903, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38697526

ABSTRACT

Biodegradable plastics have gained popularity as environmentally friendly alternatives to conventional petroleum-based plastics, which face recycling and degradation challenges. Although the biodegradability of these plastics has been established, research on their ecotoxicity remains limited. Biodegradable plastics may still contain conventional additives, including toxic and non-degradable substances, to maintain their functionality during production and processing. Despite degrading the polymer matrix, these additives can persist in the environment and potentially harm ecosystems and humans. Therefore, this study aimed to assess the potential ecotoxicity of biodegradable plastics by analyzing the phthalate esters (PAEs) leaching out from biodegradable plastics through soil leachate. Sixteen commercial biodegradable plastic products were qualitatively and quantitatively analyzed using gas chromatography-mass spectrometry to determine the types and amounts of PAE used in the products and evaluate their ecotoxicity. Among the various PAEs analyzed, non-regulated dioctyl isophthalate (DOIP) was the most frequently detected (ranging from 40 to 212 µg g-1). Although the DOIP is considered one of PAE alternatives, the detected amount of it revealed evident ecotoxicity, especially in the aquatic environment. Other additives, including antioxidants, lubricants, surfactants, slip agents, and adhesives, were also qualitatively detected in commercial products. This is the first study to quantify the amounts of PAEs leached from biodegradable plastics through water mimicking PAE leaching out from biodegradable plastics to soil leachate when landfilled and evaluate their potential ecotoxicity. Despite their potential toxicity, commercial biodegradable plastics are currently marketed and promoted as environmentally friendly materials, which could lead to indiscriminate public consumption. Therefore, in addition to improving biodegradable plastics, developing eco-friendly additives is significant. Future studies should investigate the leaching kinetics in soil leachate over time and toxicity of biodegradable plastics after landfill disposal.


Subject(s)
Biodegradable Plastics , Phthalic Acids , Phthalic Acids/analysis , Risk Assessment , Environmental Monitoring/methods , Soil Pollutants/analysis , Soil Pollutants/toxicity
2.
Sci Total Environ ; 932: 172984, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38710392

ABSTRACT

The ubiquitous application of phthalate esters (PAEs) as plasticizers contributes to high levels of marine pollution, yet the contamination patterns of PAEs in various shellfish species remain unknown. The objective of this research is to provide the first information on the pollution characteristics of 16 PAEs in different shellfish species from the Pearl River Delta (PRD), South China, and associated health risks. Among the 16 analyzed PAEs, 13 were identified in the shellfish, with total PAE concentrations ranging from 23.07 to 3794.08 ng/g dw (mean = 514.35 ng/g dw). The PAE pollution levels in the five shellfish species were as follows: Ostreidae (mean = 1064.12 ng/g dw) > Mytilus edulis (mean = 509.88 ng/g dw) > Babylonia areolate (mean = 458.14 ng/g dw) > Mactra chinensis (mean = 378.90 ng/g dw) > Haliotis diversicolor (mean = 335.28 ng/g dw). Dimethyl phthalate (DMP, mean = 69.85 ng/g dw), diisobutyl phthalate (DIBP, mean = 41.39 ng/g dw), dibutyl phthalate (DBP, mean = 130.91 ng/g dw), and di(2-ethylhexyl) phthalate (DEHP, mean = 226.23 ng/g dw) were the most abundant congeners. Notably, DEHP constituted the most predominant fraction (43.98 %) of the 13 PAEs detected in all shellfish from the PRD. Principal component analysis indicated that industrial and domestic emissions served as main sources for the PAE pollution in shellfish from the PRD. It was estimated that the daily intake of PAEs via shellfish consumption among adults and children ranged from 0.004 to 1.27 µg/kgbw/day, without obvious non-cancer risks (< 0.034), but the cancer risks raised some alarm (2.0 × 10-9-1.4 × 10-5). These findings highlight the necessity of focusing on marine environmental pollutants and emphasize the importance of ongoing monitoring of PAE contamination in seafood.


Subject(s)
Phthalic Acids , Plasticizers , Shellfish , Water Pollutants, Chemical , Phthalic Acids/analysis , Plasticizers/analysis , Shellfish/analysis , China , Animals , Humans , Water Pollutants, Chemical/analysis , Risk Assessment , Environmental Monitoring , Esters/analysis , Food Contamination/analysis
3.
Chemosphere ; 359: 142366, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38768782

ABSTRACT

A multi-target aptamer assay was developed as a phthalic acid ester (PAE) panel to screen selected PAEs in plastic leachate samples. The panel comprises 13 PAEs (PAE-13), namely dimethyl phthalate, diethyl phthalate, di-n-butyl phthalate, di-n-hexyl phthalate, diisobutyl phthalate, diisononyl phthalate, diisodecyl phthalate, mono-2-ethylhexyl phthalate, di-2-ethylhexyl phthalate, diphenyl phthalate, butyl benzyl phthalate, dicyclohexyl phthalate, and phthalic acid. Herein, we proposed an aptamer assay using a newly truncated aptamer (20-mer) and the 7-aminoactinomycin D fluorophore, which selectively binds to guanine in single-stranded DNA, resulting in increased fluorescence intensity. The assay is highly selective for PAE-13 clusters. The selectivity of the assay was evaluated using 13 different PAEs and mixtures depending on the side chain structure. The quantitative detection of PAEs was demonstrated by adopting mixed PAE-13 simulants and achieved a limit of detection of ∼1.4 pg/mL. The repeatability and reproducibility of the assay were also evaluated by presenting acceptable coefficients of variation (%CV less than 10% and 15%, respectively). The performance of the assay was demonstrated by analyzing the plastic leachate samples, and the positive correlation (correlation coefficient, r = 0.985) was confirmed by comparing them with the total sum of individual PAE peak areas obtained by gas chromatography mass spectrometry analysis.


Subject(s)
Aptamers, Nucleotide , Endocrine Disruptors , Esters , Phthalic Acids , Water Pollutants, Chemical , Phthalic Acids/analysis , Endocrine Disruptors/analysis , Water Pollutants, Chemical/analysis , Esters/analysis , Aptamers, Nucleotide/chemistry , Plastics/analysis , Plastics/chemistry , Reproducibility of Results
4.
Environ Res ; 252(Pt 4): 119077, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38714222

ABSTRACT

Household products, in response to regulations, increasingly incorporate phthalate (PAE) alternatives instead of traditional PAEs. However, limited information exists regarding the fate and exposure risk of these PAE alternatives and their monoesters in indoor environments. The contamination levels of PAE alternatives and their monoesters in indoor dust might vary across regions due to climate, population density, industrial activities, and interior decoration practices. By analyzing indoor dust samples from six geographical regions across China, this study aims to shed light on concentrations, profiles, and human exposure to 12 PAE alternatives and 9 their monoesters. Bis(2-ethylhexyl) benzene-1,4-dicarboxylate (DEHTP), tributyl 2-acetyloxypropane-1,2,3-tricarboxylate (ATBC), and tris(2-ethylhexyl) benzene-1,2,4-tricarboxylate (TOTM) were the main PAE alternatives in dust across all regions. The total concentrations of 12 PAE alternatives ranged from 0.125 to 4160 µg/g in indoor dust. High molecular weight PAE alternatives had significantly correlated concentrations (p < 0.05) based on Spearman analysis, suggesting their co-use in heat-resistant plastic products. A collective of nine monoesters were identified in most samples, with total concentrations ranging from 0.048 to 29.6 µg/g. The median concentrations of PAE alternatives were highest in North China (66.8 µg/g), while those of monoesters were highest in Southwest China (6.93 µg/g). A significant correlation (p < 0.05) between the concentrations of DEHTP and its monoester suggested that degradation could be a potential source of monoesters. Although hazard quotients (HQs) have been calculated to suggest that the current exposure is unlikely to pose a significant health risk, the lack of toxicity threshold data and the existence of additional exposure pathways necessitate a further confirmation.


Subject(s)
Air Pollution, Indoor , Dust , Phthalic Acids , Dust/analysis , China , Phthalic Acids/analysis , Humans , Air Pollution, Indoor/analysis , Environmental Exposure/analysis , Air Pollutants/analysis , Esters/analysis , Environmental Monitoring
5.
Ecotoxicol Environ Saf ; 279: 116517, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38805830

ABSTRACT

With increasing urbanization and rapid industrialization, more and more environmental problems have arisen. Phthalates (PAEs) are the foremost and most widespread plasticizers and are readily emitted from these manufactured products into the environment. PAEs act as endocrine-disrupting chemicals (EDCs) and can have serious impacts on aquatic organisms as well as human health. In this study, the water quality criteria (WQC) of five PAEs (dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), butyl benzyl phthalate (BBP) and di(2-ethylhexyl) phthalate (DEHP)) for freshwater aquatic organisms were developed using a species sensitivity distribution (SSD) and a toxicity percentage ranking (TPR) approach. The results showed that long-term water quality criteria (LWQC) of PAEs using the SSD method could be 13.7, 11.1, 2.8, 7.8, and 0.53 µg/L, respectively. Criteria continuous concentrations (CCC) of PAEs were derived using the TPR method and determined to be 28.4, 13.1, 1.3, 2.5, and 1.6 µg/L, respectively. The five PAEs are commonly measured in China surface waters at concentrations between ng/L and µg/L. DBP, DEHP, and di-n-octyl phthalate (DnOP) were the most frequently detected PAEs, with occurrence rates ranging from 67% to 100%. The ecological risk assessment results of PAEs showed a decreasing order of risk at the national level, DEHP, DBP, DMP, DEP, DnOP. The results of this study will be of great benefit to China and other countries in revising water quality standards for the conservation of aquatic species.


Subject(s)
Environmental Monitoring , Fresh Water , Phthalic Acids , Plasticizers , Water Pollutants, Chemical , Water Quality , Phthalic Acids/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Water Quality/standards , Fresh Water/chemistry , Environmental Monitoring/methods , Plasticizers/analysis , Plasticizers/toxicity , Endocrine Disruptors/analysis , Endocrine Disruptors/toxicity , Aquatic Organisms/drug effects , Esters , China , Animals , Dibutyl Phthalate/toxicity
6.
Environ Pollut ; 354: 124170, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38759748

ABSTRACT

A total of 138 samples including urban soil, surface dust, atmospheric dustfall, and commercial food were collected from the semi-arid industrial city of Lanzhou in Northwest China, and 22 phthalate esters (PAEs) were analyzed in these samples by gas chromatography-mass spectrometry for the pollution characteristics, potential sources, and combined exposure risks of PAEs. The results showed that the total concentration of 22 PAEs (Æ©22PAEs) presented surface dust (4.94 × 104 ng/g) â‰« dustfall (1.56 × 104 ng/g) â‰« food (2.14 × 103 ng/g) â‰« urban soil (533 ng/g). Di-n-butyl phthalate (DNBP), di-isobutyl phthalate, di(2-ethylhexyl) phthalate (DEHP), and di-isononyl phthalate/di-isodecyl phthalate were predominant in the environmental media and commercial food, being controlled by priority (52.1%-65.5%) and non-priority (62.1%) PAEs, respectively. Elevated Æ©22PAEs in the urban soil and surface dust was found in the west, middle, and east of Lanzhou. Principal component analysis indicated that PAEs the urban soil and surface dust were related with the emissions of products containing PAEs, atmosphere depositions, and traffic and industrial emissions. PAEs in the foods were associated with the growth and processing environment. The health risk assessment of United States Environmental Protection Agency based on the Chinese population exposure parameters indicated that the total exposure dose of 22 PAEs was from 0.111 to 0.226 mg/kg/day, which were above the reference dose (0.02 mg/kg/day) and tolerable daily intake (TDI, 0.05 mg/kg/day) for DEHP (0.0333-0.0631 mg/kg/day), and TDI (0.01 mg/kg/day) for DNBP (0.0213-0.0405 mg/kg/day), implying that the exposure of PAEs via multi-media should not be ignored; the total non-carcinogenic risk of six priority PAEs was below 1 for the three environmental media (1.21 × 10-5-2.90 × 10-3), while close to 1 for food (4.74 × 10-1-8.76 × 10-1), suggesting a potential non-carcinogenic risk of human exposure to PAEs in food; the total carcinogenic risk of BBP and DEHP was below 1 × 10-6 for the three environmental media (9.13 × 10-10-5.72 × 10-7), while above 1 × 10-4 for DEHP in food (1.02 × 10-4), suggesting a significantly carcinogenic risk of human exposure to DEHP in food. The current research results can provide certain supports for pollution and risk prevention of PAEs.


Subject(s)
Dust , Environmental Monitoring , Esters , Phthalic Acids , Soil Pollutants , Soil , Phthalic Acids/analysis , China , Dust/analysis , Soil/chemistry , Soil Pollutants/analysis , Esters/analysis , Cities , Humans , Air Pollutants/analysis , Environmental Exposure/statistics & numerical data , Environmental Exposure/analysis , Food Contamination/analysis , Food Contamination/statistics & numerical data
7.
Environ Res ; 255: 119177, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38788789

ABSTRACT

Various plastic materials are used in contact with agricultural soil, like mulching films, crop covers, weed controlling fabrics and nets. Polyethylene (PE) mulches have already been recognized as a significant source of plastic in soil and they have been shown to contain additives like phthalates, known as endocrine disruptors. However, other agricultural plastics are less studied, and little is known on the substances potentially released from them endangering biodiversity and the human health. This research aims to assess whether different agricultural plastics release additives into soil and to compare the release among various materials. We collected soil samples from 38 agricultural fields where conventional mulching films (PE), weed controlling fabrics (PP), biodegradable mulches based on polybutylene adipate terephthalate (PBAT), frost covers (PP), and oxo-degradable films (at least OXO-PE) were used. We analyzed the soils for phthalates and acetyl tributyl citrate (ATBC), used as plastic additives, and for polycyclic aromatic hydrocarbons (PAH) and dodecane that have high affinity for plastics. In comparison to the control soils, dibutylphthalate (DBP) and ATBC concentrations were significantly higher in soils mulched with PE and, partly, with biodegradable films. DBP concentration found in soil samples ranged between below the limit of quantification at a control site (1.5 µg kg-1) to 135 µg kg-1 at a site mulched with OXO-PE. The highest ATBC concentration, 22 ± 6 µg kg-1, was registered in a site mulched with PE, showing a statistically significant difference not only in comparison to the controls but also when compared to sites mulched with OXO-PE (p = 0.029) and PBAT (p < 0.009). On the contrary, the use of agricultural plastics did not influence the concentration of PAHs and dodecane. Our results indicate that agricultural plastics are a source of some organic chemicals to agricultural soils, including phthalates that are known for posing threat to soil ecosystem and human health.


Subject(s)
Agriculture , Biodegradable Plastics , Phthalic Acids , Soil Pollutants , Soil , Phthalic Acids/analysis , Soil Pollutants/analysis , Soil Pollutants/chemistry , Soil/chemistry , Biodegradable Plastics/chemistry , Environmental Monitoring/methods , Plastics/analysis , Plastics/chemistry
8.
Arch Environ Contam Toxicol ; 86(3): 288-303, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38568248

ABSTRACT

In this study, the occurrence of phthalates in the municipal water supply of Nagpur City, India, was studied for the first time. The study aimed to provide insights into the extent of phthalate contamination and identify potential sources of contamination in the city's tap water. We analyzed fifteen phthalates and the total concentration (∑15phthalates) ranged from 0.27 to 76.36 µg L-1. Prominent phthalates identified were di-n-butyl phthalate (DBP), di-isobutyl phthalate (DIBP), benzyl butyl phthalate (BBP), di (2-ethylhexyl) phthalate (DEHP), di-n-octyl phthalate (DNOP), and di-nonyl phthalate (DNP). Out of the fifteen phthalates analyzed, DEHP showed the highest concentration in all the samples with the median concentration of 2.27 µg L-1, 1.39 µg L-1, 1.83 µg L-1, 2.02 µg L-1, respectively in Butibori, Gandhibaag, Civil Lines, and Kalmeshwar areas of the city. In 30% of the tap water samples, DEHP was found higher than the EPA maximum contaminant level of 6 µg L-1. The average daily intake (ADI) of phthalates via consumption of tap water was higher for adults (median: 0.25 µg kg-1 day-1) compared to children (median: 0.07 µg kg-1 day-1). The hazard index (HI) calculated for both adults and children was below the threshold level, indicating no significant health risks from chronic toxic risk. However, the maximum carcinogenic risk (CR) for adults (8.44 × 10-3) and children (7.73 × 10-3) was higher than the threshold level. Knowledge of the sources and distribution of phthalate contamination in municipal drinking water is crucial for effective contamination control and management strategies.


Subject(s)
Diethylhexyl Phthalate , Drinking Water , Phthalic Acids , Child , Adult , Humans , Phthalic Acids/analysis , Water Supply , Risk Assessment
9.
Chemosphere ; 357: 142041, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636919

ABSTRACT

Phthalate esters (PAEs) are widely prevalent in agricultural soil and pose potential risks to crop growth and food safety. However, the current understanding of factors influencing the behavior and fate of PAEs is limited. This study conducted a large-scale investigation (106 sites in 18 counties with 44 crop types) of 16 types of PAEs on a tropical island. Special attention was given to the impacts of land use type, soil environmental conditions, agricultural activity intensity, and urbanization level. The health risks to adults and children from soil PAEs via multiple routes of exposure were also evaluated. The results showed that the mean concentration of PAEs was 451.87 ± 284.08 µg kg-1 in the agricultural soil. Elevated agricultural and urbanization activities contributed to more pronounced contamination by PAEs in the northern and southern regions. Land use type strongly affected the concentration and composition of PAEs in agricultural soils, and the soil PAE concentration decreased in the order of vegetable fields, orchards, paddy fields, and woodlands. In paddy fields, di-isobutyl phthalate and di-n-butyl phthalate made more substantial contributions to the process through which the overlying water inhibited volatilization. Soil microplastic abundance, pesticide usage, crop yield, gross domestic product, and distance to the nearest city were calculated to be the major factors influencing the concentration and distribution of PAEs. Soil pH, organic matter content, microplastic abundance and the fertilizer application rate can affect the adsorption of PAEs by changing the soil environment. A greater risk was detected in the northern region and paddy fields due to the higher soil PAE concentrations and the dietary structure of the population. This study reveals important pathways influencing the sources and fate of PAE pollution in agricultural soils, providing fundamental data for controlling PAE contamination.


Subject(s)
Agriculture , Environmental Monitoring , Phthalic Acids , Soil Pollutants , Soil , Soil Pollutants/analysis , Phthalic Acids/analysis , Soil/chemistry , Risk Assessment , Esters/analysis , Humans , Islands
10.
Environ Pollut ; 349: 123877, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38574945

ABSTRACT

Silicone wristbands are a noninvasive personal exposure assessment tool. However, despite their utility, questions remain about the rate at which chemicals accumulate on wristbands when worn, as validation studies utilizing wristbands worn by human participants are limited. This study evaluated the chemical uptake rates of 113 organic pollutants from several chemical classes (i.e., polychlorinated biphenyls (PCB), organophosphate esters (OPEs), alkyl OPEs, polybrominated diphenyl ethers (PBDEs), brominated flame retardants (BFR), phthalates, pesticides, and polycyclic aromatic hydrocarbons (PAHs) over a five-day period. Adult participants (n = 10) were asked to wear five silicone wristbands and then remove one wristband each day. Several compounds were detected in all participants' wristbands after only one day. The number of chemicals detected frequently (i.e. in at least seven participants wristbands) increased from 20% of target compounds to 26% after three days and more substantially increased to 34% of target compounds after four days of wear. Chemicals detected in at least seven participants' day five wristbands (n = 24 chemicals) underwent further statistical analysis, including estimating the chemical uptake rates over time. Some chemicals, including pesticides and phthalates, had postive and significant correlations between concentrations on wristbands worn five days and concentrations of wristbands worn fewer days suggesting chronic exposure. For 23 of the 24 compounds evaluated there was a statistically significant and positive linear association between the length of time wristbands were worn and chemical concentrations in wristbands. Despite the differences that exist between laboratory studies using polydimethylsiloxane (PDMS) environmental samplers and worn wristbands, these results indicate that worn wristbands are primarily acting as first-order kinetic samplers. These results suggest that studies using different deployment lengths should be comparable when results are normalized to the length of the deployment period. In addition, a shorter deployment period could be utilized for compounds that were commonly detected in as little as one day.


Subject(s)
Environmental Monitoring , Environmental Pollutants , Flame Retardants , Silicones , Humans , Adult , Flame Retardants/analysis , Environmental Pollutants/analysis , Environmental Monitoring/methods , Male , Female , Environmental Exposure/statistics & numerical data , Environmental Exposure/analysis , Halogenated Diphenyl Ethers/analysis , Polychlorinated Biphenyls/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Pesticides/analysis , Young Adult , Wrist , Phthalic Acids/analysis
11.
J Hazard Mater ; 471: 134423, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38678719

ABSTRACT

Phthalate esters (PAEs) are a class of plasticizers that are readily released from plastic products, posing a potential exposure risk to human body. At present, much attention is paid on PAE concentrations in indoor dust with the understanding of PAEs toxicity. This study collected 8187 data on 10 PAEs concentrations in indoor dusts from 26 countries and comprehensively reviewed the worldwide distribution, influencing factors, and health risks of PAEs. Di-(2-ethylhexyl) phthalate (DEHP) is the predominant PAE with a median concentration of 316 µg·g-1 in indoor dust. Polyvinyl chloride wallpaper and flooring and personal care products are the main sources of PAEs indoor dust. The dust concentrations of DEHP show a downward trend over the past two decades, while high dust concentrations of DiNP are found from 2011 to 2016. The median dust contents of 8 PAEs in public places are higher than those in households. Moreover, the concentrations of 9 PAEs in indoor dusts from high-income countries are higher than those from upper-middle-income countries. DEHP in 69.8% and 77.8% of the dust samples may pose a potential carcinogenic risk for adults and children, respectively. Besides, DEHP in 16.9% of the dust samples may pose a non-carcinogenic risk to children. Nevertheless, a negligible risk was found for other PAEs in indoor dust worldwide. This review contributes to an in-depth understanding of the global distribution, sources and health risks of PAEs in indoor dust.


Subject(s)
Air Pollution, Indoor , Dust , Esters , Phthalic Acids , Plasticizers , Dust/analysis , Air Pollution, Indoor/analysis , Phthalic Acids/analysis , Phthalic Acids/toxicity , Humans , Esters/analysis , Plasticizers/analysis , Plasticizers/toxicity , Risk Assessment , Environmental Exposure/analysis , Air Pollutants/analysis
12.
Chemosphere ; 358: 142055, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641292

ABSTRACT

The impact of desalination brine on the marine environment is a global concern. Regarding this, salinity is generally accepted as the major environmental factor in desalination concentrate. However, recent studies have shown that the influence of organic contaminants in brine cannot be ignored. Therefore, a non-targeted screening method based on comprehensive two-dimensional gas chromatography-quadrupole mass spectrometry (GC × GC-qMS) was developed for identifying organic contaminants in the desalination brine. A total of 404 compounds were tentatively identified from four seawater desalination plants (three reverse osmosis plants and one multiple effect distillation plant) in China. The identified compounds were prioritized based on their persistence, bioaccumulation, ecotoxicity, usage, and detection frequency. Twenty-one (21) compounds (seven phthalates, ten pesticides, four trihalomethanes) were then selected for further quantitative analysis and ecological risk assessment, including compounds from the priority list along with substances from the same chemical classes. Ecologically risky substances in brine include diisobutylphthalate and bis(2-Ethylhexyl) phthalate, atrazine and acetochlor, and bromoform. Most of the contaminants come from raw seawater, and no high risk contaminants introduced by the desalination process have been found except for disinfection by-products. In brine discharge management, people believed that all pollution in raw seawater was concentrated by desalination process. This study shows that not all pollutants are concentrated during the desalination process. In this study, the total concentration of pesticide in the brine increased by 58.42%. The concentration of ∑PAEs decreased by 13.65% in reverse osmosis desalination plants and increased by 10.96% in the multi-effect distillation plant. The concentration of trihalomethane increased significantly in the desalination concentrate. The change in the concentration of pollutants in the desalination concentrate was related to the pretreatment method and the chemical characteristics of the contaminants. The method and results given in this study hinted a new idea to identify and control the environmental impact factors of brine.


Subject(s)
Salinity , Seawater , Water Pollutants, Chemical , Water Purification , Seawater/chemistry , Water Pollutants, Chemical/analysis , Risk Assessment , Water Purification/methods , China , Environmental Monitoring/methods , Pesticides/analysis , Gas Chromatography-Mass Spectrometry , Salts/chemistry , Phthalic Acids/analysis , Trihalomethanes/analysis
13.
Environ Health Perspect ; 132(4): 45002, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38683745

ABSTRACT

BACKGROUND: Humans are exposed to hazardous chemicals found in consumer products. In 2019, the Pollution Prevention for Healthy People and Puget Sound Act was passed in Washington State. This law is meant to reduce hazardous chemicals in consumer products and protect human health and the environment. The law directs the Washington State Department of Ecology to assess chemicals and chemical classes found in products, determine whether there are safer alternatives, and make regulatory determinations. OBJECTIVES: To implement the law, the Department of Ecology developed a hazard-based framework for identifying safer alternatives to classes of chemicals. METHODS: We developed a hazard-based framework, termed the "Criteria for Safer," to set a transparent bar for determining whether new chemical alternatives are safer than existing classes of chemicals. Our "Criteria for Safer" is a framework that builds on existing hazard assessment methodologies and published approaches for assessing chemicals and chemical classes. DISCUSSION: We describe implementation of our criteria using a case study on the phthalates chemical class in two categories of consumer products: vinyl flooring and fragrances used in personal care and beauty products. Additional context and considerations that guided our decision-making process are also discussed, as well as benefits and limitations of our approach. This paper gives insight into our development and implementation of a hazard-based framework to address classes of chemicals in consumer products and will aid others working to build and employ similar approaches. https://doi.org/10.1289/EHP13549.


Subject(s)
Hazardous Substances , Phthalic Acids , Phthalic Acids/analysis , Phthalic Acids/toxicity , Washington , Humans , Hazardous Substances/analysis , Risk Assessment/methods , Consumer Product Safety , Environmental Exposure , Environmental Pollutants/analysis , Cosmetics/analysis
14.
Chemosphere ; 356: 141873, 2024 May.
Article in English | MEDLINE | ID: mdl-38593958

ABSTRACT

Phthalic acid esters (PAEs) are byproducts released from various sources, including microplastics, cosmetics, personal care products, pharmaceuticals, waxes, inks, detergents, and insecticides. This review article provides an overview of the literature on PAEs in landfill leachates, exploring their identification, occurrence, characteristics, fate, and transport in landfills across different countries. The study emphasizes the influence of these substances on the environment, especially on water and soil. Various analytical techniques, such as GC-MS, GC-FID, and HPLC, are commonly employed to quantify concentrations of PAEs. Studies show significant variations in levels of PAEs among different countries, with the highest concentration observed in landfill leachates in Brazil, followed by Iran. Among the different types of PAE, the survey highlights DEHP as the most concentrated PAE in the leachate, with a concentration of 89.6 µg/L. The review also discusses the levels of other types of PAEs. The data shows that DBP has the highest concentration at 6.8 mg/kg, while DOP has the lowest concentration (0.04 mg/kg). The concentration of PAEs typically decreases as the depth in the soil profile increases. In older landfills, concentrations of PAE decrease significantly, possibly due to long-term degradation and conversion of PAE into other chemical compounds. Future research should prioritize evaluating the effectiveness of landfill liners and waste management practices in preventing the release of PAE and other pollutants into the environment. It is also possible to focus on developing efficient physical, biological, and chemical methods for removing PAEs from landfill leachates. Additionally, the effectiveness of existing treatment processes in removing PAEs from landfill leachates and the necessity for new treatment processes can be considered.


Subject(s)
Environmental Monitoring , Esters , Phthalic Acids , Waste Disposal Facilities , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Phthalic Acids/analysis , Esters/analysis , Soil Pollutants/analysis , Brazil , Soil/chemistry
15.
Environ Toxicol Pharmacol ; 108: 104457, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677495

ABSTRACT

Phthalate esters (PAEs) are widely used as plasticizers to enhance the flexibility and durability of different consumer products, including clothing. However, concerns have been raised about the potential adverse health effects associated with the presence of phthalates in textiles, such as endocrine disruption, reproductive toxicity and potential carcinogenicity. Based on examination of more than 120 published articles, this paper presents a comprehensive review of studies concerning the phthalate content in clothing and other textile products, with special emphasis on those conducted in the last decade (2014-2023). The types and role of PAEs as plasticizers, the relevant legislation in different countries (emphasizing the importance of monitoring PAE levels in clothing to protect consumer health) and the analytical methods used for PAE determination are critically evaluated. The review also discusses the models used to evaluate exposure to PAEs and the associated health risks. Finally, the study limitations and challenges related to determining the phthalate contents of textile products are considered.


Subject(s)
Clothing , Esters , Phthalic Acids , Plasticizers , Phthalic Acids/analysis , Phthalic Acids/toxicity , Humans , Plasticizers/analysis , Plasticizers/toxicity , Esters/analysis , Textiles/analysis , Animals
16.
Sci Total Environ ; 930: 172696, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38657800

ABSTRACT

Phthalates (PAEs) are a typical class of endocrine disruptors (EEDs). As one of the most commonly used plasticizers, they have received widespread attention due to their wide application in various countries and high detection rates in various environmental media. To be able to clarify the contamination status of PAEs pollutants in a typical northern cold-temperate urban river, 30 water samples from Yitong River in Changchun City, northern China were collected, during the 2023 dry season (March), normal season (May) and wet season (July). Using these samples, a total of 16 target PAEs are investigated. The resulting total PAEs concentrations are: dry season 408 to 1494 ng/L, wet season 491 to 1299 ng/L, and normal season 341 to 780 ng/L. The average concentration of the 16 PAEs over the three seasons is 773 ng/L. Di-2-ethylhexyl phthalate (DEHP) and Dibutyl phthalate (DBP) have the highest concentrations, ranging from 12 to 403 ng/L and 28-680 ng/L respectively. The ecological risks within the Yitong River Basin are evaluated based on the degree of PAEs contamination. DBP and DEHP pose higher risk assessment levels for algae, crustaceans and fish than the other target PAEs. The accurate determination of PAEs provided baseline data on PAEs for the management of the Yitong River, which is of great significance for the prediction of ecological risk assessment and the development of corresponding control measures, supported further research on PAEs in the cold-temperate zone aquatic environments, and shed light on the seasonal variations of PAEs in the Northeast region in the future. Moreover, considering the bioaccumulation and persistence of PAEs, it is necessary to continue to pay attention to the pollution status of cold-temperate zones rivers and the changes in ecological risks in the future.


Subject(s)
Environmental Monitoring , Phthalic Acids , Rivers , Seasons , Water Pollutants, Chemical , China , Rivers/chemistry , Phthalic Acids/analysis , Water Pollutants, Chemical/analysis , Risk Assessment , Endocrine Disruptors/analysis
17.
Environ Pollut ; 348: 123655, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38467366

ABSTRACT

Although global plastic distribution is at the heart of 21st century environmental concerns, little information is available concerning how organic plastic additives contaminate freshwater sediments, which are often subject to strong anthropogenic pressure. Here, sediment core samples were collected in the Rhone and the Rhine watersheds (France), dated using 137Cs and 210Pbxs methods and analysed for nine phthalates (PAEs) and seven organophosphate esters (OPEs). The distribution of these organic contaminants was used to establish a chronological archive of plastic additive pollution from 1860 (Rhine) and 1930 (Rhone) until today. Sediment grain size and parameters related to organic matter (OM) were also measured as potential factors that may affect the temporal distribution of OPEs and PAEs in sediments. Our results show that OPE and PAE levels increased continuously in Rhone and Rhine sediments since the first records. In both rivers, ∑PAEs levels (from 9.1 ± 1.7 to 487.3 ± 27.0 ng g-1 dry weight (dw) ± standard deviation and from 4.6 ± 1.3 to 65.2 ± 11.2 ng g-1 dw, for the Rhine and the Rhone rivers, respectively) were higher than ∑OPEs levels (from 0.1 ± 0.1 to 79.1 ± 13.7 ng g-1 dw and from 0.6 ± 0.1 to 17.8 ± 2.3 ng g-1 dw, for Rhine and Rhone rivers, respectively). In both rivers, di(2-ethylhexyl) phthalate (DEHP) was the most abundant PAE, followed by diisobutyl phthalate (DiBP), while tris (2-chloroisopropyl) phosphate (TCPP) was the most abundant OPE. No relationship was found between granulometry and additives concentrations, while organic matter helps explain the vertical distribution of PAEs and OPEs in the sediment cores. This study thus establishes a temporal trajectory of PAEs and OPEs contents over the last decades, leading to a better understanding of historical pollution in these two Western European rivers.


Subject(s)
Phthalic Acids , Phthalic Acids/analysis , Esters/analysis , Dibutyl Phthalate/analysis , Environmental Pollution/analysis , Rivers , Organophosphates/analysis , China
18.
Environ Sci Pollut Res Int ; 31(16): 23408-23434, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38456985

ABSTRACT

Phthalic acid esters (PAEs) are high production volume chemicals used extensively as plasticizers, to increase the flexibility of the main polymer. They are reported to leach into their surroundings from plastic products and are now a ubiquitous environmental contaminant. Phthalate levels have been determined in several environmental matrices, especially in water. These levels serve as an indicator of plasticizer abuse and plastic pollution, and also serve as a route of exposure to different species including humans. Reports published on effects of different PAEs on experimental models demonstrate their carcinogenic, teratogenic, reproductive, and endocrine disruptive effects. Therefore, regular monitoring and remediation of environmental water samples is essential to ascertain their hazard quotient and daily exposure levels. This review summarises the extraction and detection techniques available for phthalate analysis in water samples such as chromatography, biosensors, immunoassays, and spectroscopy. Current remediation strategies for phthalate removal such as adsorption, advanced oxidation, and microbial degradation have also been highlighted.


Subject(s)
Esters , Phthalic Acids , Humans , Esters/analysis , Phthalic Acids/analysis , Environmental Pollution/analysis , Plasticizers/analysis , Water/analysis , Dibutyl Phthalate , China
19.
Sci Total Environ ; 927: 172044, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38554953

ABSTRACT

Sedimentary records of polycyclic aromatic hydrocarbons (PAHs) and phthalates could reflect energy consumption and industrial production adjustment. However, there is limited knowledge about their effects on variations of PAH and phthalate compositions in the sediment core. The PAH and phthalate sedimentary records in Huguangyan Maar Lake in Guangdong, China were constructed, and random forest models were adopted to quantify the associated impact factors. Sums of sixteen PAH (∑16 PAH) and seven phthalate (∑7 PAE) concentrations in the sediment ranged from 28.8 to 1110 and 246-4290 µg/kg dry weight in 1900-2020. Proportions of 5-6 ring PAHs to the ∑16 PAHs increased from 32.0 %-40.7 % in 1900-2020 with increased coal and petroleum consumption, especially after 1980. However, those of 2-3 ring PAHs decreased from 30.7 % to 23.6 % due to the biomass substitution with natural gas. The proportions of bis (2-ethylhexyl) phthalate to the ∑7 PAEs decreased from 52.3 %-29.1 % in 1900-2020, while those of di-isobutyl phthalate increased (13.7 % to 42.3 %). The shift from traditional plasticizers to non-phthalates drove this transformation, though the primary plastic production is increasing. Our findings underscore the effectiveness of optimizing energy structures and updating chemical products in reducing organic pollution in aquatic environments.


Subject(s)
Environmental Monitoring , Geologic Sediments , Lakes , Phthalic Acids , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , China , Geologic Sediments/chemistry , Lakes/chemistry , Water Pollutants, Chemical/analysis , Phthalic Acids/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Economic Development
20.
Article in English | MEDLINE | ID: mdl-38547176

ABSTRACT

Bisphenols and phthalates are wide classes of endocrine disrupting chemicals (EDCs) extensively used as additives in plastic products. In this study, a fast and reliable analytical method based on matrix solid-phase dispersion (MSPD) coupled with LC-MS/MS was developed and optimized for simultaneous determination of 8 bisphenols and 7 phthalates in raw mussel extract. The LC-MS/MS method was tested for linearity (R2), inter- and intra-day repeatability, limit of detection and quantification, both for matrix-free and matrix-matched solutions. The MSPD method was optimized in terms of ratio between sample and sorbent, and the type and quantity of the eluents in order to maximize the recoveries and to minimize matrix effects. The obtained recoveries (values between 75% and 113%), limits of detection (values between 0.048 and 0.36 µg kg-1), limits of quantification (values between 0.16 and 1.28 µg kg-1), repeatability (RSD% between 1.30% and 8.41%) and linearity (R2 > 0.998) were satisfactory and suitable for the determination of target micropollutants in food samples. In addition, the low solvent consumption and fast execution make this method ideal for routinely determinations of bisphenols and phthalates in mussels.


Subject(s)
Benzhydryl Compounds , Bivalvia , Phenols , Phthalic Acids , Tandem Mass Spectrometry , Phthalic Acids/analysis , Phenols/analysis , Animals , Bivalvia/chemistry , Benzhydryl Compounds/analysis , Benzhydryl Compounds/chemistry , Food Contamination/analysis , Chromatography, Liquid , Solid Phase Extraction , Endocrine Disruptors/analysis , Liquid Chromatography-Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...