Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.088
Filter
1.
Arch Microbiol ; 206(6): 254, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727835

ABSTRACT

Phthalic acid esters (PAEs) are human made chemicals widely used as plasticizers to enhance the flexibility of plastic products. Due to the lack of chemical bonding between phthalates and plastics, these materials can easily enter the environment. Deleterious effects caused by this chemo-pollutant have drawn the attention of the scientific community to remediate them from different ecosystem. In this context, many bacterial strains have been reported across different habitats and Sphingobium yanoikuyae strain P4 is among the few psychrotolerant bacterial species reported to biodegrade simple and complex phthalates. In the present study, biodegradation of three structurally different PAEs viz., diethyl phthalate (DEP), di-isobutyl phthalate (DIBP), and butyl benzyl phthalate (BBP) have been investigated by the strain P4. Quantitative analyses through High-performance liquid chromatography (HPLC) revealed that the bacterium completely degraded 1 g/L of DEP, DIBP, and BBP supplemented individually in minimal media pH 7.0 within 72, 54, and 120 h of incubation, respectively, at 28 °C and under shake culture condition (180 rpm). In addition, the strain could grow in minimal media supplemented individually with up to 3 g/L of DEP and 10.0 g/L of DIBP and BBP at 28 °C and pH 7.0. The strain also could grow in metabolites resulting from biodegradation of DEP, DIBP, and BBP, viz. n-butanol, isobutanol, butyric acid, ethanol, benzyl alcohol, benzoic acid, phthalic acid, and protocatechuic acid. Furthermore, phthalic acid and protocatechuic acid were also detected as degradation pathway metabolites of DEP and DIBP by HPLC, which gave an initial idea about the biodegradation pathway(s) of these phthalates.


Subject(s)
Biodegradation, Environmental , Phthalic Acids , Sphingomonadaceae , Phthalic Acids/metabolism , Sphingomonadaceae/metabolism , Sphingomonadaceae/genetics , Dibutyl Phthalate/metabolism , Plasticizers/metabolism , Chromatography, High Pressure Liquid , Hydroxybenzoates/metabolism
2.
BMC Oral Health ; 24(1): 541, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720320

ABSTRACT

BACKGROUND: Widespread exposure to phthalates may raise the probability of various diseases. However, the association of phthalate metabolites with periodontitis remains unclear. METHODS: Totally 3402 participants from the National Health and Nutrition Examination Survey (NHANES) 2009 to 2014 cycles were enrolled in the cross-sectional investigation. We utilized weighted logistic regression to evaluate the association of ten phthalate metabolites with periodontitis. Restricted cubic spline analysis was applied to investigate potential nonlinear relationships. RESULTS: The weighted prevalence of periodontitis in the study was 42.37%. A one standard deviation (SD) rise in log-transformed levels of mono-2-ethyl-5-carboxypenty phthalate (MECPP), mono-n-butyl phthalate (MnBP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono-isobutyl phthalate (MiBP), mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), and mono-benzyl phthalate (MBzP) was associated with higher odds of periodontitis, with odds ratios (95% confidence intervals) of 1.08 (1.02-1.14), 1.07 (1.02-1.11), 1.10 (1.05-1.15), 1.05 (1.01-1.09), 1.09 (1.04-1.14), and 1.08 (1.03-1.13), respectively. Individuals with the highest quartile concentrations of MECPP, MnBP, MEHHP, MEOHP, and MBzP were associated with 32%, 20%, 30%, 25%, and 26% increased odds of periodontitis, respectively, compared to those with the lowest quartile. Additionally, mono-(3-carboxypropyl) phthalate (MCPP) demonstrated an interesting inverted J-shaped relationship with periodontitis. CONCLUSIONS: The findings indicate an association of certain phthalate metabolites with periodontitis among US adults.


Subject(s)
Nutrition Surveys , Periodontitis , Phthalic Acids , Humans , Phthalic Acids/metabolism , Female , Cross-Sectional Studies , Male , Adult , Periodontitis/epidemiology , Periodontitis/metabolism , Middle Aged , United States/epidemiology , Prevalence , Young Adult
3.
J Hazard Mater ; 472: 134593, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38749249

ABSTRACT

Due to the lack of research on the co-effects of microplastics and trace metals in the environment on nitrogen cycling-related functional microorganisms, the occurrence of microplastics and one of their plasticisers, phthalate esters, as well as trace metals, were determined in soils and river sediments in the Qinghai-Tibet Plateau. Relationship between microplastics and phthalate esters in the area was determined; the co-effects of these potentially toxic materials, and key factors and pathways affecting nitrogen functions were further explored. Significant correlations between fibre- and film-shaped microplastics and phthalate esters were detected in the soils from the plateau. Copper, lead, cadmium and di-n-octyl phthalate detected significantly affected nitrogen cycling-related functional microorganisms. The co-existence of di-n-octyl phthalate and copper in soils synergistically stimulated the expression of denitrification microorganisms nirS gene and "nitrate_reduction". Additionally, di-n-octyl phthalate and dimethyl phthalate more significantly affected the variation of nitrogen cycling-related functional genes than the number of microplastics. In a dimethyl phthalate- and cadmium-polluted area, nitrogen cycling-related functional genes, especially nirK gene, were more sensitive and stressed. Overall, phthalate esters originated from microplastics play a key role in nitrogen cycling-related functions than microplastics themselves, moreover, the synergy between di-n-octyl phthalate and copper strengthen the expression of denitrification functions.


Subject(s)
Denitrification , Microplastics , Soil Microbiology , Soil Pollutants , Denitrification/drug effects , Soil Pollutants/toxicity , Soil Pollutants/metabolism , Tibet , Microplastics/toxicity , Plasticizers/toxicity , Plasticizers/metabolism , Microbiota/drug effects , Phthalic Acids/toxicity , Phthalic Acids/metabolism , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Metals, Heavy/toxicity
4.
J Agric Food Chem ; 72(21): 12045-12056, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38753963

ABSTRACT

The gene-encoding carboxylesterase (TM1022) from the hyperthermophilic bacterium Thermotoga maritima (T. maritima) was cloned and expressed in Escherichia coli Top10 and BL21 (DE3). Recombinant TM1022 showed the best activity at pH 8.0 and 85 °C and retained 57% activity after 8 h cultivation at 90 °C. TM1022 exhibited good stability at pH 6.0-9.0, maintaining 53% activity after incubation at pH 10.0 and 37 °C for 6 h. The esterase TM1022 exhibited the optimum thermo-alkali stability and kcat/Km (598.57 ± 19.97 s-1mM-1) for pN-C4. TM1022 hydrolyzed poly(ethylene terephthalate) (PET) degradation intermediates, such as bis(2-hydroxyethyl) terephthalate (BHET) and mono(2-hydroxyethyl) terephthalate (MHET). The Km, kcat, and kcat/Km values for BHET were 0.82 ± 0.01 mM, 2.20 ± 0.02 s-1, and 2.67 ± 0.02 mM-1 s-1, respectively; those for MHET were 2.43 ± 0.07 mM, 0.04 ± 0.001 s-1, and 0.02 ± 0.001 mM-1 s-1, respectively. When purified TM1022 was added to the cutinase BhrPETase, hydrolysis of PET from drinking water bottle tops produced pure terephthalic acids (TPA) with 166% higher yield than those obtained after 72 h of incubation with BhrPETase alone as control. The above findings demonstrate that the esterase TM1022 from T. maritima has substantial potential for depolymerizing PET into monomers for reuse.


Subject(s)
Bacterial Proteins , Enzyme Stability , Phthalic Acids , Thermotoga maritima , Thermotoga maritima/enzymology , Thermotoga maritima/genetics , Hydrolysis , Hydrogen-Ion Concentration , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Kinetics , Phthalic Acids/metabolism , Phthalic Acids/chemistry , Substrate Specificity , Esterases/metabolism , Esterases/genetics , Esterases/chemistry , Polyethylene Terephthalates/metabolism , Polyethylene Terephthalates/chemistry , Temperature
5.
J Hazard Mater ; 472: 134493, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38696960

ABSTRACT

Environmental pollution caused by plastic waste has become global problem that needs to be considered urgently. In the pursuit of a circular plastic economy, biodegradation provides an attractive strategy for managing plastic wastes, whereas effective plastic-degrading microbes and enzymes are required. In this study, we report that Blastobotrys sp. G-9 isolated from discarded plastic in landfills is capable of depolymerizing polyurethanes (PU) and poly (butylene adipate-co-terephthalate) (PBAT). Strain G-9 degrades up to 60% of PU foam after 21 days of incubation at 28 â„ƒ by breaking down carbonyl groups via secretory hydrolase as confirmed by structural characterization of plastics and degradation products identification. Within the supernatant of strain G-9, we identify a novel cutinase BaCut1, belonging to the esterase family, that can reproduce the same effect. BaCut1 demonstrates efficient degradation toward commercial polyester plastics PU foam (0.5 mg enzyme/25 mg plastic) and agricultural film PBAT (0.5 mg enzyme/10 mg plastic) with 50% and 18% weight loss at 37 â„ƒ for 48 h, respectively. BaCut1 hydrolyzes PU into adipic acid as a major end-product with 42.9% recovery via ester bond cleavage, and visible biodegradation is also identified from PBAT, which is a beneficial feature for future recycling economy. Molecular docking, along with products distribution, elucidates a special substrate-binding modes of BaCut1 with plastic substrate analogue. BaCut1-mediated polyester plastic degradation offers an alternative approach for managing PU plastic wastes through possible bio-recycling.


Subject(s)
Biodegradation, Environmental , Carboxylic Ester Hydrolases , Polyurethanes , Recycling , Polyurethanes/chemistry , Carboxylic Ester Hydrolases/metabolism , Carboxylic Ester Hydrolases/chemistry , Burkholderiales/enzymology , Burkholderiales/metabolism , Phthalic Acids/metabolism , Phthalic Acids/chemistry , Plastics/chemistry , Plastics/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Polyesters
6.
Environ Sci Technol ; 58(19): 8182-8193, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38691136

ABSTRACT

As an alternative plasticizer to conventional phthalates, di(2-ethylhexyl) terephthalate (DEHTP) has attracted considerable concerns, given its widespread detection in the environment and humans. However, the potential toxicity, especially liver toxicity, posed by DEHTP remains unclear. In this study, based on the 2017-2018 National Health and Nutrition Examination Survey, two metabolites of DEHTP, i.e., mono(2-ethyl-5-hydroxyhexyl) terephthalate (MEHHTP) and mono(2-ethyl-5-carboxypentyl) terephthalate (MECPTP), were found to be present in the urine samples of nearly all representative U.S. adults. Moreover, a positive linear correlation was observed between the concentrations of the two metabolites and the risk of nonalcoholic fatty liver disease (NAFLD) in the population. Results of weighted quantile sum and Bayesian kernel machine regression indicated that MEHHTP contributed a greater weight to the risk of NAFLD in comparison with 12 conventional phthalate metabolites. In vitro experiments with hepatocyte HepG2 revealed that MEHHTP exposure could increase lipogenic gene programs, thereby promoting a dose-dependent hepatic lipid accumulation. Activation of liver X receptor α may be an important regulator of MEHHTP-induced hepatic lipid disorders. These findings provide new insights into the liver lipid metabolism toxicity potential of DEHTP exposure in the population.


Subject(s)
Non-alcoholic Fatty Liver Disease , Phthalic Acids , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/metabolism , Humans , Phthalic Acids/toxicity , Phthalic Acids/metabolism , Male , Adult , Female
7.
Int J Mol Sci ; 25(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38791471

ABSTRACT

Given the widespread use of esters and polyesters in products like cosmetics, fishing nets, lubricants and adhesives, whose specific application(s) may cause their dispersion in open environments, there is a critical need for stringent eco-design criteria based on biodegradability and ecotoxicity evidence. Our approach integrates experimental and computational methods based on short oligomers, offering a screening tool for the rapid identification of sustainable monomers and oligomers, with a special focus on bio-based alternates. We provide insights into the relationships between the chemical structure and properties of bio-based oligomers in terms of biodegradability in marine environments and toxicity in benchmark organisms. The experimental results reveal that the considered aromatic monomers (terephthalic acid and 2,5-furandicarboxylic acid) accumulate under the tested conditions (OECD 306), although some slight biodegradation is observable when the inoculum derives from sites affected by industrial and urban pollution, which suggests that ecosystems adapt to non-natural chemical pollutants. While clean seas are more susceptible to toxic chemical buildup, biotic catalytic activities offer promise for plastic pollution mitigation. Without prejudice to the fact that biodegradability inherently signifies a desirable trait in plastic products, nor that it automatically grants them a sustainable "license", this study is intended to facilitate the rational design of new polymers and materials on the basis of specific uses and applications.


Subject(s)
Biodegradation, Environmental , Polyesters/chemistry , Aquatic Organisms , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity , Phthalic Acids/chemistry , Phthalic Acids/toxicity , Phthalic Acids/metabolism
8.
J Hazard Mater ; 470: 134187, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38574659

ABSTRACT

The increasing use of phthalate acid esters (PAEs) in various applications has inevitably led to their widespread presence in the aquatic environment. This presents a considerable threat to plants. However, the interactions between PAEs and plants in the aquatic environment have not yet been comprehensively reviewed. In this review, the properties, occurrence, uptake, transformation, and toxic effects of PAEs on plants in the aquatic environment are summarized. PAEs have been prevalently detected in the aquatic environment, including surface water, groundwater, seawater, and sediment, with concentrations ranging from the ng/L or ng/kg to the mg/L or mg/kg range. PAEs in the aquatic environment can be uptake, translocated, and metabolized by plants. Exposure to PAEs induces multiple adverse effects in aquatic plants, including growth perturbation, structural damage, disruption of photosynthesis, oxidative damage, and potential genotoxicity. High-throughput omics techniques further reveal the underlying toxicity molecular mechanisms of how PAEs disrupt plants on the transcription, protein, and metabolism levels. Finally, this review proposes that future studies should evaluate the interactions between plants and PAEs with a focus on long-term exposure to environmental PAE concentrations, the effects of PAE alternatives, and human health risks via the intake of plant-based foods.


Subject(s)
Esters , Phthalic Acids , Plants , Water Pollutants, Chemical , Phthalic Acids/toxicity , Phthalic Acids/metabolism , Esters/toxicity , Plants/drug effects , Plants/metabolism , Water Pollutants, Chemical/toxicity
9.
Chemosphere ; 358: 141919, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641291

ABSTRACT

The global concern surrounding pollution caused by phthalates is escalating, with dimethyl phthalate (DMP) emerging as one of the most prevalent contaminants within the phthalates (PAEs) category. Although the biodegradation of DMP is considered both safe and efficient, its underlying degradation mechanism is not yet fully elucidated, and the degradation performance can be somewhat inconsistent. To address this issue, our study isolated a DMP-degrading bacterium (DNM-S1) from a vegetable greenhouse. The resulting data revealed that DNM-S1 exhibited a remarkable degradation performance, successfully degrading 84.98% of a 2000 mg L-1 DMP solution within 72 h. Remarkably, it achieved complete degradation of a 50 mg L-1 DMP solution within just 3 h. DMP degradation by DNM-S1 was also found to be efficient even under low-temperature conditions (10 °C). Our research further indicates that DNM-S1 is capable of capturing DMP through the ester bond in the bacterium's cell wall fatty acids, forming hydrogen bonds through hydrophobic interactions. The DMP was then transported into the DNM-S1 protoplasm using an active transport mechanism. Interestingly, the secondary metabolites of DNM-S1 contained natural carotenoids, which could potentially counteract the damaging effects of PAEs on cell membrane permeability. In summary, these findings highlight the potential of DNM-S1 in addressing PAEs pollution and provide new insights into the metabolic mechanism of PAEs degradation.


Subject(s)
Biodegradation, Environmental , Phthalic Acids , Phthalic Acids/metabolism , Bacteria/metabolism
10.
Sci Total Environ ; 931: 172833, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38688369

ABSTRACT

Phthalates acid esters (PAEs) have accumulated in soil and crops like wheat as a result of the widespread usage of plastic films. It is yet unclear, nevertheless, how these dynamic variations in PAE accumulation in wheat tissues relate to rhizosphere bacteria in the field. In this work, a field root-bag experiment was conducted to examine the changes of PAEs accumulation in the rhizosphere soil and wheat tissues under film residue conditions at four different growth stages of wheat, and to clarify the roles played by the microbial community in the alterations. Results showed that the plastic film residues significantly increased the concentrations of PAEs in soils, wheat roots, straw and grains. The maximum ΣPAEs concentration in soils and different wheat tissues appeared at the maturity, with the ΣPAEs concentration of 1.57 mg kg-1, 4.77 mg kg-1, 5.21 mg kg-1, 1.81 mg kg-1 for rhizosphere soils, wheat roots, straw and grains, respectively. The plastic film residues significantly changed the functions and components of the bacterial community, increased the stochastic processes of the bacterial community assembly, and reduced the complexity and stability of the bacterial network. In addition, the present study identified some bacteria associated with plastic film residues and PAEs degradation in key-stone taxa, and their relative abundances were positive related to the ΣPAEs concentration in soils. The PAEs content and key-stone taxa in rhizosphere soil play a crucial role in the formation of rhizosphere soil bacterial communities. This field study provides valuable information for better understanding the role of microorganisms in the complex system consisting of film residue, soil and crops.


Subject(s)
Phthalic Acids , Rhizosphere , Soil Microbiology , Soil Pollutants , Triticum , Triticum/microbiology , Soil Pollutants/analysis , Soil Pollutants/metabolism , Phthalic Acids/metabolism , Plastics/metabolism , Esters/analysis , Esters/metabolism , Bacteria/metabolism , Soil/chemistry , Microbiota , Plant Roots/microbiology , Plant Roots/metabolism
11.
Environ Sci Technol ; 58(18): 7791-7801, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38653734

ABSTRACT

Microplastics (MPs) pose potential health risks to the intestinal tract and gut microbiota, a topic that has garnered significant attention. However, the absence of quantitative assessment methods for human gut MP exposure impedes related health risk assessments. Here, we performed long-term continuous exposure experiments on mice using MPs that mimic actual human exposure characteristics. The daily excretion of fecal MPs and the concentrations of phthalates (PAEs) and their metabolites (mPAEs) in serum and urine were detected. The cumulative excretion rate of fecal MPs remains stable at about 93%. A significant linear correlation was observed between MP exposure and concentration of mPAEs in urine for both low MP (LMP; 150 µg of MPs/d) (R2 = 0.90) and high MP (HMP; 360 µg of MPs/d) groups (R2 = 0.97). Moreover, a strong correlation was found between daily PAEs exposure and total MP-associated PAEs exposure in both LMP (R2 = 0.77) and HMP (R2 = 0.88) groups. Based on these findings, we established a noninvasive model and evaluated multiple MP exposure parameters in the human gut across 6 continents, 30 countries, and 133 individuals. This study offers novel insights for the quantitative assessment of in vivo MP exposure and provides technical support for assessing the health risks of MPs.


Subject(s)
Microplastics , Mice , Animals , Humans , Feces/chemistry , Phthalic Acids/urine , Phthalic Acids/metabolism , Environmental Exposure
12.
Environ Pollut ; 349: 123959, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38608855

ABSTRACT

The worldwide prevalence of obesity highlights the potential contribution of endocrine-disrupting chemicals (EDCs). However, common epidemiological measures such as body mass index and waist circumference may misrepresent the intricate obesity risks these chemicals pose across genders. This study delves deeper into abdominal fat by differentiating between subcutaneous and visceral regions by analyzing data from National Health and Nutrition Examination Surveys (NHANES). We particularly investigated the gender-specific associations between organophosphorus flame-retardant metabolites (mOPFRs), phthalates (mPAEs) and accumulated fat indexes from 2536 people. Aiding by Bayesian Kernel Machine Regression (BKMR), we found while co-exposure to mOPFRs and mPAEs was linked to general and abdominal obesity across the entire and gender-specific populations, a gender-specific fat distribution emerged. For women, urinary BDCPP and MBzP were linked to an increased subcutaneous fat index (SFI) [BDCPP OR: 1.12 (95% CI: 1.03-1.21), MBzP OR: 1.09 (95% CI: 1.01-1.18)], but not to visceral fat index (VFI). These metabolites had a combined linkage with SFI, with BDCPP (weighting 22.0%) and DPHP (weighting 31.0%) being the most influential in Quantile g-computation model (qgcomp) model. In men, BCEP exposure exclusively associated with the elevated VFI [OR: 1.14 (95% CI: 1.03-1.26)], a trend further highlighted in mixture models with BCEP as the predominant association. Intriguingly, only males displayed a marked correlation between these metabolites and insulin resistance in subpopulation. An attempted mediation analysis revealed that elevated C-reactive protein mediated 12.1% of the association between urinary BCEP and insulin resistance, suggesting a potential role of inflammation. In conclusion, the gender-specific fat distribution and insulin resistance that associated with mOPFRs represented the potential risk of these chemicals to man.


Subject(s)
Environmental Exposure , Insulin Resistance , Phthalic Acids , Humans , Female , Male , Phthalic Acids/metabolism , Adult , Middle Aged , Environmental Exposure/statistics & numerical data , Endocrine Disruptors/metabolism , Organophosphates/metabolism , Abdominal Fat/metabolism , Environmental Pollutants/metabolism , Esters/metabolism , Flame Retardants/metabolism , Young Adult , Nutrition Surveys , Sex Factors
13.
PLoS One ; 19(4): e0301097, 2024.
Article in English | MEDLINE | ID: mdl-38640138

ABSTRACT

As a new definition for the evidence of hepatic steatosis and metabolic dysfunctions, the relationship between phthalates (PAEs) and metabolic dysfunction-associated fatty liver disease (MAFLD) remains virtually unexplored. This study included 3,137 adults from the National Health and Nutrition Examination Survey spanning 2007-2018. The diagnosis of MAFLD depended on the US Fatty Liver Index (US FLI) and evidence of metabolic dysregulation. Eleven metabolites of PAEs were included in the study. Poisson regression, restricted cubic spline (RCS), and weighted quantile sum (WQS) regression were used to assess the associations between phthalate metabolites and MAFLD. After adjusting for potential confounders, Poisson regression analysis showed that mono-2-ethyl-5-carboxypentyl phthalate (MECPP), mono-n-butyl phthalate, mono-(3-carboxypropyl) phthalate, mono-ethyl phthalate (MEP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) and mono-(2-ethyl-5-oxohexyl) phthalate were generally significant positively associated with MAFLD (P<0.05). Furthermore, the WQS index constructed for the eleven phthalates was significantly related to MAFLD (OR:1.43; 95%CI: 1.20, 1.70), MEHHP (33.30%), MEP (20.84%), MECPP (15.43%), and mono-isobutyl phthalate (11.78%) contributing the most. This study suggests that exposure to phthalates, individually or in combination, may be associated with an increased risk of MAFLD.


Subject(s)
Environmental Pollutants , Liver Diseases , Phthalic Acids , Adult , Humans , United States/epidemiology , Nutrition Surveys , Phthalic Acids/toxicity , Phthalic Acids/metabolism , Environmental Exposure/adverse effects , Environmental Pollutants/toxicity
14.
J Hazard Mater ; 470: 134167, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38598880

ABSTRACT

This study investigated the leaching of phthalate and non-phthalate plasticizers from polyvinyl chloride microplastics (MPs) into sediment and their degradation over a 30-d period via abiotic and biotic processes. The results showed that 3579% of plasticizers were released into the sediment from the MPs and > 99.9% degradation was achieved. Although a significantly higher degradation was found in plasticizer-added microcosms under biotic processes (overall, 94%), there was a noticeable abiotic loss (72%), suggesting that abiotic processes also play a role in plasticizer degradation. Interestingly, when compared with the initial sediment-water partitioning for plasticizers, the partition constants for low-molecular-weight compounds decreased in both microcosms, whereas those for high-molecular-weight compounds increased after abiotic degradation. Furthermore, changes in the bacterial community, abundance of plasticizer-degrading bacterial populations, and functional gene profiles were assessed. In all the microcosms, a decrease in bacterial community diversity and a notable shift in bacterial composition were observed. The enriched potential plasticizer-degrading bacteria were Arthrobacter, Bacillus, Desulfovibrio, Desulfuromonas, Devosia, Gordonia, Mycobacterium, and Sphingomonas, among which Bacillus was recognized as the key plasticizer degrader. Overall, these findings shed light on the factors affecting plasticizer degradation, the microbial communities potentially involved in biodegradation, and the fate of plasticizers in the environment.


Subject(s)
Bacteria , Geologic Sediments , Microplastics , Phthalic Acids , Plasticizers , Polyvinyl Chloride , Water Pollutants, Chemical , Polyvinyl Chloride/chemistry , Plasticizers/metabolism , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Phthalic Acids/metabolism , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Bacteria/metabolism , Bacteria/classification , Biodegradation, Environmental
15.
Appl Microbiol Biotechnol ; 108(1): 276, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38536521

ABSTRACT

The massive usage of phthalate esters (PAEs) has caused serious pollution. Bacterial degradation is a potential strategy to remove PAE contamination. So far, an increasing number of PAE-degrading strains have been isolated, and the catabolism of PAEs has been extensively studied and reviewed. However, the investigation into the bacterial PAE uptake process has received limited attention and remains preliminary. PAEs can interact spontaneously with compounds like peptidoglycan, lipopolysaccharides, and lipids on the bacterial cell envelope to migrate inside. However, this process compromises the structural integrity of the cells and causes disruptions. Thus, membrane protein-facilitated transport seems to be the main assimilation strategy in bacteria. So far, only an ATP-binding-cassette transporter PatDABC was proven to transport PAEs across the cytomembrane in a Gram-positive bacterium Rhodococcus jostii RHA1. Other cytomembrane proteins like major facilitator superfamily (MFS) proteins and outer membrane proteins in cell walls like FadL family channels, TonB-dependent transporters, and OmpW family proteins were only reported to facilitate the transport of PAEs analogs such as monoaromatic and polyaromatic hydrocarbons. The functions of these proteins in the intracellular transport of PAEs in bacteria await characterization and it is a promising avenue for future research on enhancing bacterial degradation of PAEs. KEY POINTS: • Membrane proteins on the bacterial cell envelope may be PAE transporters. • Most potential transporters need experimental validation.


Subject(s)
Phthalic Acids , Phthalic Acids/metabolism , Membrane Transport Proteins , ATP-Binding Cassette Transporters/metabolism , Bacteria/metabolism , Esters , Dibutyl Phthalate/chemistry , China
16.
Sci Rep ; 14(1): 5187, 2024 03 02.
Article in English | MEDLINE | ID: mdl-38431676

ABSTRACT

This study analyzed the relationship between urine concentrations of phthalate metabolites (UCOM) and personal care products (PCPs) used in adults and examined the change in UCOM according to the usage frequency of PCPs based on raw data from the 3rd Korean National Environmental Health Survey conducted between 2015 and 2017. The relationship between PCP use frequency and UCOM was analyzed using multiple regression analysis, adjusting for baseline factors. The regression model consisted of a Crude Model with log-transformed UCOM before and after adjustment for urine creatinine concentrations. Model 1 was additionally adjusted for age, sex, and obesity, while Model 2 was additionally adjusted for smoking, alcohol consumption, pregnancy history, average monthly income of the household, and PCP exposure within the past 2 days. PCP usage frequency was significantly associated with the UCOM without adjustment for urine creatinine and correlated with demographic characteristics, urine creatinine concentration, and PCP exposure within the past 2 days. This study on exposure to urinary phthalates will play a crucial role in Korean public health by aligning with the fundamentals of research priorities and providing representative data on phthalate exposure for conducting population-level studies.


Subject(s)
Cosmetics , Environmental Pollutants , Phthalic Acids , Female , Pregnancy , Humans , Environmental Exposure/analysis , Creatinine/analysis , Phthalic Acids/metabolism , Cosmetics/analysis , Environmental Pollutants/metabolism
17.
Ecotoxicol Environ Saf ; 275: 116252, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38547731

ABSTRACT

BACKGROUND: Phthalates are widely used plasticizers, which were identified as risk factors in the development of many human diseases. However, the effects of phthalates in the periodontitis are unknown. We aimed to investigated the relationship of periodontitis and phthalate exposure as well as the underlying mechanisms. MATERIALS AND METHODS: Univariate and multivariate logistic regressions were employed to evaluate the association between phthalate metabolites and periodontitis. The generalized additive model and piecewise logistic regression were conducted to investigate the dose-response relationship. Cell and animal models were used to explore the role and mechanism of DEHP in the development of periodontitis. Transcriptome sequencing, bioinformatics analysis, western blot, immunofluorescence and mice model of periodontitis were also employed. RESULTS: MEHP (OR 1.14, 95% CI 1.05-1.24), MCPP (OR 1.08, 95% CI 1.00-1.17), MEHHP (OR 1.18, 95% CI 1.08-1.29), MEOHP (OR 1.18, 95% CI 1.07-1.29), MiBP (OR 1.15, 95% CI 1.04-1.28), and MECPP (OR 1.20, 95% CI 1.09-1.32) were independent risk factors. And MEHHP, the metabolite of DEHP, showed the relative most important effects on periodontitis with the highest weight (0.34) among all risk factors assessed. And the increase of inflammation and the activation of NFκB pathway in the periodontitis model mice and cells were observed. CONCLUSION: Exposure to multiple phthalates was positively associated with periodontitis in US adults between 30 and 80 years old. And DEHP aggravated inflammation in periodontitis by activating NFκB pathway.


Subject(s)
Diethylhexyl Phthalate , Environmental Pollutants , Periodontitis , Phthalic Acids , Adult , Humans , Animals , Mice , Middle Aged , Aged , Aged, 80 and over , Environmental Exposure/analysis , Diethylhexyl Phthalate/metabolism , Phthalic Acids/toxicity , Phthalic Acids/metabolism , Periodontitis/chemically induced , Inflammation , Environmental Pollutants/analysis
18.
Eur J Med Res ; 29(1): 192, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528598

ABSTRACT

BACKGROUND: Current evidence from epidemiologic studies suggested that phthalate metabolites might be associated with blood pressure (BP) changes. However, the special relationship between phthalate metabolites and BP changes in children has not been clearly elucidated in existing researches. OBJECTIVES: We investigated the links between phthalate metabolites and various BP parameters, including systolic/diastolic BP, mean arterial pressure (MAP), and the presence of hypertension. METHODS: The population sample consisted of 1036 children aged 8 to 17 years from the 2013-2018 NHANES in the United States. High performance liquid chromatography-electrospray ionization-tandem mass spectrometry was used to measure urinary concentrations of 19 phthalate metabolites. Systolic/diastolic BP were derived from the average of three valid measurements, and MAP was calculated as (systolic BP + 2 × diastolic BP)/3. Hypertension was defined as mean systolic BP and/or diastolic BP that was ≥ 95th percentile for gender, age, and height reference. Linear regression, logistic regression, and weighted quantile sum (WQS) regression models were employed to assess the associations between phthalate exposure and systolic/diastolic BP, MAP, and hypertension. RESULTS: Ten of 19 phthalate metabolites including MCNP, MCOP, MECPP, MBP, MCPP, MEP, MEHHP, MiBP, MEOHP, and MBzP had detection frequencies > 85% with samples more than 1000. MCNP, MCOP, MECPP, MBP, MCPP, MEHHP, MiBP, MEOHP, and MBzP were generally negatively associated with systolic/diastolic BP and MAP, but not protective factors for hypertension. These associations were not modified by age (8-12 and 13-17 years) or sex (boys and girls). The above-mentioned associations were further confirmed by the application of the WQS analysis, and MCOP was identified as the chemical with the highest weight. CONCLUSION: Phthalate metabolites were associated with modest reductions in systolic/diastolic BP, and MAP in children, while appeared not protective factors for hypertension. Given the inconsistent results among existing studies, our findings should be confirmed by other cohort studies.


Subject(s)
Environmental Pollutants , Hypertension , Phthalic Acids , Male , Child , Female , Humans , United States/epidemiology , Environmental Exposure , Environmental Pollutants/urine , Blood Pressure , Nutrition Surveys , Phthalic Acids/metabolism , Hypertension/chemically induced , Hypertension/epidemiology
19.
J Hazard Mater ; 469: 133972, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38461665

ABSTRACT

Di-n-butyl phthalate (DBP) is one of the most extensively used phthalic acid esters (PAEs) and is considered to be an emerging, globally concerning pollutant. The genus Streptomyces holds promise as a degrader of various organic pollutants, but PAE biodegradation mechanisms by Streptomyces species remain unsolved. In this study, a novel PAE-degrading Streptomyces sp. FZ201 isolated from natural habitats efficiently degraded various PAEs. FZ201 had strong resilience against DBP and exhibited immediate degradation, with kinetics adhering to a first-order model. The comprehensive biodegradation of DBP involves de-esterification, ß-oxidation, trans-esterification, and aromatic ring cleavage. FZ201 contains numerous catabolic genes that potentially facilitate PAE biodegradation. The DBP metabolic pathway was reconstructed by genome annotation and intermediate identification. Streptomyces species have an open pangenome with substantial genome expansion events during the evolutionary process, enabling extensive genetic diversity and highly plastic genomes within the Streptomyces genus. FZ201 had a diverse array of highly expressed genes associated with the degradation of PAEs, potentially contributing significantly to its adaptive advantage and efficiency of PAE degradation. Thus, FZ201 is a promising candidate for remediating highly PAE-contaminated environments. These findings enhance our preliminary understanding of the molecular mechanisms employed by Streptomyces for the removal of PAEs.


Subject(s)
Diethylhexyl Phthalate , Environmental Pollutants , Phthalic Acids , Esters/metabolism , Phthalic Acids/metabolism , Dibutyl Phthalate/metabolism , Biodegradation, Environmental , Ecosystem , Diethylhexyl Phthalate/metabolism
20.
Environ Sci Technol ; 58(13): 5739-5749, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38456395

ABSTRACT

Epidemiological studies have demonstrated the embryonic and developmental toxicity of plasticizers. Thus, understanding the in utero biotransformation and accumulation of plasticizers is essential to assessing their fate and potential toxicity in early life. In the present study, 311 infant hair samples and 271 paired meconium samples were collected at birth in Guangzhou, China, to characterize fetal exposure to legacy and emerging plasticizers and their metabolites. Results showed that most of the target plasticizers were detected in infant hair, with medians of 9.30, 27.6, and 0.145 ng/g for phthalate esters (PAEs), organic phosphate ester (OPEs), and alternative plasticizers (APs), and 1.44, 0.313, and 0.066 ng/g for the metabolites of PAEs, OPEs, and APs, respectively. Positive correlations between plasticizers and their corresponding primary metabolites, as well as correlations among the oxidative metabolites of bis(2-ethylhexyl) phthalate (DEHP) and 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH), were observed, indicating that infant hair retained the major phase-I metabolism of the target plasticizers. While no positive correlations were found in parent compounds or their primary metabolites between paired infant hair and meconium, significant positive correlations were observed among secondary oxidative metabolites of DEHP and DINCH in hair and meconium, suggesting that the primary metabolites in meconium come from hydrolysis of plasticizers in the fetus but most of the oxidative metabolites come from maternal-fetal transmission. The parent compound/metabolite ratios in infant hair showed a decreasing trend across pregnancy, suggesting in utero accumulation and deposition of plasticizers. To the best of our knowledge, this study is the first to report in utero exposure to both parent compounds and metabolites of plasticizers by using paired infant hair and meconium as noninvasive biomonitoring matrices and provides novel insights into the fetal biotransformation and accumulation of plasticizers across pregnancy.


Subject(s)
Diethylhexyl Phthalate , Phthalic Acids , Humans , Pregnancy , Infant, Newborn , Female , Plasticizers , Meconium/metabolism , Diethylhexyl Phthalate/metabolism , Diethylhexyl Phthalate/toxicity , Phthalic Acids/metabolism , Hair/metabolism , Organophosphates , Biotransformation , Esters/metabolism , Environmental Exposure/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...