Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
PLoS Negl Trop Dis ; 18(3): e0012050, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38527083

ABSTRACT

Pharmacophores such as hydroxyethylamine (HEA) and phthalimide (PHT) have been identified as potential synthons for the development of compounds against various parasitic infections. In order to further advance our progress, we conducted an experiment utilising a collection of PHT and HEA derivatives through phenotypic screening against a diverse set of protist parasites. This approach led to the identification of a number of compounds that exhibited significant effects on the survival of Entamoeba histolytica, Trypanosoma brucei, and multiple life-cycle stages of Leishmania spp. The Leishmania hits were pursued due to the pressing necessity to expand our repertoire of reliable, cost-effective, and efficient medications for the treatment of leishmaniases. Antileishmanials must possess the essential capability to efficiently penetrate the host cells and their compartments in the disease context, to effectively eliminate the intracellular parasite. Hence, we performed a study to assess the effectiveness of eradicating L. infantum intracellular amastigotes in a model of macrophage infection. Among eleven L. infantum growth inhibitors with low-micromolar potency, PHT-39, which carries a trifluoromethyl substitution, demonstrated the highest efficacy in the intramacrophage assay, with an EC50 of 1.2 +/- 3.2 µM. Cytotoxicity testing of PHT-39 in HepG2 cells indicated a promising selectivity of over 90-fold. A chemogenomic profiling approach was conducted using an orthology-based method to elucidate the mode of action of PHT-39. This genome-wide RNA interference library of T. brucei identified sensitivity determinants for PHT-39, which included a P-type ATPase that is crucial for the uptake of miltefosine and amphotericin, strongly indicating a shared route for cellular entry. Notwithstanding the favourable properties and demonstrated efficacy in the Plasmodium berghei infection model, PHT-39 was unable to eradicate L. major infection in a murine infection model of cutaneous leishmaniasis. Currently, PHT-39 is undergoing derivatization to optimize its pharmacological characteristics.


Subject(s)
Antiprotozoal Agents , Leishmania infantum , Leishmania , Leishmaniasis, Cutaneous , Humans , Animals , Mice , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Amphotericin B/therapeutic use , Leishmaniasis, Cutaneous/parasitology , Phthalimides/pharmacology , Phthalimides/therapeutic use
2.
Eur J Pharmacol ; 938: 175409, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36436591

ABSTRACT

Hydrogen sulfide (H2S) is a gaseous mediator that modulates several physiological and pathological processes. Phthalimide analogues, substances that have the phthalimide ring in the structure, belong to the group of thalidomide analogues. Both H2S donors and phthalimide analogues exhibit activities in models of inflammation and pain. As molecular hybridization is an important strategy aiming to develop drugs with a better pharmacological profile, in the present study we synthesized a novel H2S-releasing phthalimide hybrid, 2-(2-(4-thioxo-3H-1,2-dithiole-5-yl) phenoxy)ethyl)isoindole-1,3-thione (PTD-H2S), and evaluated its activity in models of inflammatory pain in mice. Per os (p.o.) administration of PTD-H2S (125 or 250 mg/kg) reduced mechanical allodynia induced by carrageenan and lipopolysaccharide. Intraperitoneal (i.p.) administration of PTD-H2S (25 mg/kg), but not equimolar doses of its precursors 5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione (14.2 mg/kg) and 2-phthalimidethanol (12 mg/kg), reduced mechanical allodynia induced by lipopolysaccharide. The antiallodynic effect induced by PTD-H2S (25 mg/kg, i.p.) was more sustained than that induced by the H2S donor NaHS (8 mg/kg, i.p.). Previous administration of hydroxocobalamin (300 mg/kg, i.p.) or glibenclamide (40 mg/kg, p.o.) attenuated PTD-H2S antiallodynic activity. In conclusion, we synthesized a novel H2S-releasing phthalimide hybrid and demonstrated its activity in models of inflammatory pain. PTD-H2S activity may be due to H2S release and activation of ATP-sensitive potassium channels. The demonstration of PTD-H2S activity in models of pain stimulates further studies aiming to evaluate H2S-releasing phthalimide hybrids as candidates for analgesic drugs.


Subject(s)
Hydrogen Sulfide , Hyperalgesia , Mice , Animals , Thiones , Isoindoles , Lipopolysaccharides , Pain/drug therapy , Phthalimides/pharmacology , Phthalimides/therapeutic use , Phthalimides/chemistry
4.
JAMA ; 328(13): 1348-1350, 2022 10 04.
Article in English | MEDLINE | ID: mdl-35994281

ABSTRACT

This case series describes the clinical resolution of systemic symptoms and lesions, along with any adverse events, in patients with monkeypox infection who were treated with tecovirimat on a compassionate use basis.


Subject(s)
Antiviral Agents , Benzamides , Compassionate Use Trials , Mpox (monkeypox) , Phthalimides , Antiviral Agents/therapeutic use , Benzamides/therapeutic use , Humans , Isoindoles/therapeutic use , Mpox (monkeypox)/drug therapy , Phthalimides/therapeutic use
6.
Curr Comput Aided Drug Des ; 18(3): 159-167, 2022.
Article in English | MEDLINE | ID: mdl-35546772

ABSTRACT

BACKGROUND AND OBJECTIVE: Phthalimide, as the rigid form of ameltolide, exhibits a phenytoin-like profile of drug-receptor interaction and is active in the MES model and inactive in the PTZ model as an anti-epileptic agent. In this research, based on the isosteric replacement, we reported the design, preparation, and antiepileptic activity of 13 new analogs of pyrrolopyridine and isoindole. METHODS: The designed compounds were prepared by condensing 3, 4-pyridine dicarboxylic anhydride, or 4-fluorophthalic anhydride with different aryl amines. MES and PTZ-induced seizure models were utilized to evaluate the antiepileptic effect of the prepared ligands. RESULTS: It was found that the prepared ligands have significantly affected both tonic and clonic seizures. In tonic seizures, the prepared compounds decreased mortality to a significant extent, and in clonic seizures, they significantly showed better frequency and latency. Compounds 9, 12, and 13 were the most potent ligands than phenytoin. CONCLUSION: It is concluded that the best distance between two aryl parts is two bonds, and the substitution of the nitro group at the meta position of the phenyl ring is better than the para position. Our research group has investigated this concept for designing newer compounds with better anticonvulsant activity.


Subject(s)
Anticonvulsants , Phenytoin , Amines , Anhydrides/adverse effects , Anticonvulsants/chemistry , Electroshock , Humans , Isoindoles , Pentylenetetrazole/adverse effects , Phenytoin/adverse effects , Phthalimides/therapeutic use , Pyridines/pharmacology , Seizures/chemically induced , Seizures/drug therapy
7.
N Engl J Med ; 386(11): 1034-1045, 2022 03 17.
Article in English | MEDLINE | ID: mdl-35294813

ABSTRACT

BACKGROUND: Iberdomide, a cereblon modulator promoting degradation of the transcription factors Ikaros and Aiolos, which affect leukocyte development and autoimmunity, is being evaluated for the treatment of systemic lupus erythematosus (SLE). METHODS: In this phase 2 trial, we randomly assigned patients in a 2:2:1:2 ratio to receive oral iberdomide (at a dose of 0.45, 0.30, or 0.15 mg) or placebo once daily for 24 weeks, in addition to standard medications. The primary end point at week 24 was a response on the SLE Responder Index (SRI-4), which was defined as a reduction of at least 4 points in the Systemic Lupus Erythematosus Disease Activity Index 2000 score (a 24-item weighted score of lupus activity that ranges from 0 to 105, with higher scores indicating greater disease activity), no new disease activity as measured on the British Isles Lupus Assessment Group 2004 index, and no increase of 0.3 points or more in the Physician's Global Assessment score (on a visual-analogue scale ranging from 0 [no disease activity] to 3 [maximal disease]). RESULTS: A total of 288 patients received the assigned intervention: 81 received iberdomide at a dose of 0.45 mg, 82 received iberdomide at a dose of 0.30 mg, 42 received iberdomide at a dose of 0.15 mg, and 83 received placebo. At week 24, the percentages of patients with an SRI-4 response were 54% in the iberdomide 0.45-mg group, 40% in the iberdomide 0.30-mg group, 48% in the iberdomide 0.15-mg group, and 35% in the placebo group (adjusted difference between the iberdomide 0.45-mg group and the placebo group, 19.4 percentage points; 95% confidence interval, 4.1 to 33.4; P = 0.01), with no significant differences between the groups that received the lower doses of iberdomide and the group that received placebo. Iberdomide-associated adverse events included urinary tract and upper respiratory tract infections and neutropenia. CONCLUSIONS: In this 24-week, phase 2 trial involving patients with SLE, iberdomide at a dose of 0.45 mg resulted in a higher percentage of patients with an SRI-4 response than did placebo. Data from larger, longer trials are needed to determine the efficacy and safety of iberdomide in SLE. (Funded by Bristol Myers Squibb; ClinicalTrials.gov number, NCT03161483; EudraCT number, 2016-004574-17.).


Subject(s)
Adaptor Proteins, Signal Transducing/agonists , Lupus Erythematosus, Systemic/drug therapy , Morpholines/therapeutic use , Phthalimides/therapeutic use , Piperidones/therapeutic use , Adult , Dose-Response Relationship, Drug , Double-Blind Method , Female , Humans , Ikaros Transcription Factor/metabolism , Lupus Erythematosus, Systemic/ethnology , Male , Middle Aged , Morpholines/administration & dosage , Morpholines/pharmacology , Phthalimides/administration & dosage , Phthalimides/pharmacology , Piperidones/administration & dosage , Piperidones/pharmacology , Severity of Illness Index , Ubiquitin-Protein Ligases/metabolism
8.
Bioorg Chem ; 119: 105548, 2022 02.
Article in English | MEDLINE | ID: mdl-34959174

ABSTRACT

Epilepsy is a disease that affects millions of people around the globe and has a multifactorial cause. Inflammation is a process that can be involved in the development of seizures. Thus, the present study proposed the design and synthesis of new candidates for antiepileptic drugs that would also control the inflammatory process. Nine new derivatives of the substituted thiazophthalimide hybrid core were obtained with satisfactory purity ≥99% and yields between 27% and 87%. All compounds showed cell viability values greater than 90% in the culture of PBMC cells from healthy volunteers and, therefore, were not considered cytotoxic. These compounds modulated proinflammatory cytokines IFN-y and IL-17A and can mitigate inflammation. Acute toxicity studies of compound 7i in an animal model indicated that the compound has low toxicity and an LD50 greater than 2 g/kg in healthy adult rats. The same compound did not show positive results for anticonvulsant activity through the PTZ test. However, 7i demonstrates the interaction with the target GABA-A receptor in silico, indicating a possible activity as an agonist of that receptor. Thus, further studies are needed to investigate the anticonvulsant activity, in particular, using models in which the inflammatory process triggers epileptic seizures.


Subject(s)
Anticonvulsants/therapeutic use , Epilepsy/drug therapy , Phthalimides/therapeutic use , Seizures/drug therapy , Thiazoles/therapeutic use , Animals , Anticonvulsants/chemical synthesis , Anticonvulsants/chemistry , Cells, Cultured , Dose-Response Relationship, Drug , Epilepsy/pathology , Humans , Male , Molecular Docking Simulation , Molecular Structure , Phthalimides/chemical synthesis , Phthalimides/chemistry , Rats , Rats, Wistar , Seizures/pathology , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/chemistry
9.
J Med Chem ; 64(18): 13487-13509, 2021 09 23.
Article in English | MEDLINE | ID: mdl-34473519

ABSTRACT

We report herein the discovery of exceptionally potent and orally bioavailable PROTAC AR degraders with ARD-2585 being the most promising compound. ARD-2585 achieves DC50 values of ≤0.1 nM in the VCaP cell line with AR gene amplification and in the LNCaP cell line carrying an AR mutation. It potently inhibits cell growth with IC50 values of 1.5 and 16.2 nM in the VCaP and LNCaP cell lines, respectively, and achieves excellent pharmacokinetics and 51% of oral bioavailability in mice. It is more efficacious than enzalutamide in inhibition of VCaP tumor growth and does not cause any sign of toxicity in mice. ARD-2585 is a promising AR degrader for extensive investigations for the treatment of advanced prostate cancer.


Subject(s)
Antineoplastic Agents/therapeutic use , Phthalimides/therapeutic use , Piperidones/therapeutic use , Prostatic Neoplasms, Castration-Resistant/drug therapy , Proteolysis/drug effects , Receptors, Androgen/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Androgen Receptor Antagonists/chemical synthesis , Androgen Receptor Antagonists/pharmacokinetics , Androgen Receptor Antagonists/therapeutic use , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Drug Design , Humans , Male , Mice, SCID , Molecular Structure , Phthalimides/chemical synthesis , Phthalimides/pharmacokinetics , Piperidones/chemical synthesis , Piperidones/pharmacokinetics , Structure-Activity Relationship , Xenograft Model Antitumor Assays
10.
Eur J Pharmacol ; 888: 173489, 2020 Dec 05.
Article in English | MEDLINE | ID: mdl-32822642

ABSTRACT

Epilepsy is a chronic neurological disease with high prevalence and adverse impacts on the quality of life of patients and caregivers. Up to one-third of individuals with epilepsy do not respond to current pharmacotherapy, underscoring the importance of identifying new molecules for epilepsy control. Thalidomide, the first synthetized phthalimide, is a neuroactive molecule with anti-seizure drug properties. The phthalimide group has been studied in some N-phthaloyl amino acids due to its pharmacological properties. Here we examine enantiomers of phthaloyl aspartate (R and S) and phthaloyl glutamate (R and S) for anti-seizure effects using zebrafish as a model. The zebrafish model is rapidly growing in use as a preclinical screening tool for drug discovery in epilepsy. Pentylenetetrazol (PTZ) exposure was used to produce convulsive behavior in 7- and 10-days post-fertilization (dpf) zebrafish larvae; these ages correspond to before and after the blood-brain-barrier (BBB) is fully developed. Larvae were pre-treated for 60 min with: control, valproic acid sodium salt (SVP) 3 mM, or one of two concentrations of N-phthaloyl-R-glutamic acid (R-TGLU; 100, 316 µM) prior to PTZ addition. R-TGLU modified the locomotor phenotype and protected against PTZ in 7 and 10 dpf larvae at 316 µM, suggesting it crossed the BBB. We next tested the per se and anticonvulsant effect of the glutamate and aspartate phthalimides were tested at 237.1 and 316 µM concentration in 10dpf zebrafish. The four tested molecules produced an anticonvulsant effect at 237.1 µM concentration, however the behavioral changes that they induce suggest that they might act by different mechanisms.


Subject(s)
Anticonvulsants/therapeutic use , Excitatory Amino Acids/therapeutic use , Larva/drug effects , Pentylenetetrazole/toxicity , Phthalimides/therapeutic use , Seizures/prevention & control , Animals , Anticonvulsants/chemistry , Anticonvulsants/pharmacology , Dose-Response Relationship, Drug , Excitatory Amino Acids/chemistry , Excitatory Amino Acids/pharmacology , Larva/physiology , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Phthalimides/chemistry , Phthalimides/pharmacology , Seizures/chemically induced , Seizures/physiopathology , Stereoisomerism , Zebrafish
11.
Curr Org Synth ; 17(4): 252-270, 2020.
Article in English | MEDLINE | ID: mdl-32209046

ABSTRACT

Phthalimide derivatives have been presenting several promising biological activities in the literature, such as anti-inflammatory, analgesic, antitumor, antimicrobial and anticonvulsant. The most well-known and studied phthalimide derivative (isoindoline-1,3-dione) is thalidomide: this compound initially presented important sedative effects, but it is now known that thalidomide has effectiveness against a wide variety of diseases, including inflammation and cancer. This review approaches some of the recent and efficient chemical synthesis pathways to obtain phthalimide analogues and also presents a summary of the main biological activities of these derivatives found in the literature. Therefore, this review describes the chemical and therapeutic aspects of phthalimide derivatives.


Subject(s)
Phthalimides/chemical synthesis , Phthalimides/therapeutic use , Animals , Cell Line, Tumor , Humans , Phthalimides/pharmacology
12.
Eur J Pharm Sci ; 133: 15-27, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30877068

ABSTRACT

Schistosomiasis is a major public health problem worldwide, especially in poor communities. Praziquantel is currently the only drug available to treat schistosomiasis and it shows low efficacy against schistosomula and juveniles stages of Schistosoma mansoni, allowing lower cure rate in areas with high endemicity. There is an urgent need to identify new antischistosomal drugs. Previous works identified phthalimido-thiazoles as privileged structures acting as schistossomicidal agent. In this way, a phthalimido-thiosemicarbazide intermediate and eight phthalimido-thiazoles derivatives were evaluated concerning the in vitro antischistosomal activity compounds in adult phase of Schistosoma mansoni and examined alterations on the tegumental surface. The results revealed that compounds 2f, 2 l and 2 m caused significant mortality in adult worms at concentrations range of 20 µg/mL to 100 µg/mL. These compounds were also selected in view to verify the activity against the schistosomula. Compound 2 m promoted 100% of mortality of larval forms until doses of 2.5 µg/mL within 48 h. In addition, when compound 2 m was administered orally at dose of 200 mg/kg for 5 consecutive days to the infected mouse with adult schistosomes, a reduction in the parasite burden was observed. Furthermore, scanning electron microscopy revealed that compound 2 m kill the parasite by tegumental damage and bubbles generation.


Subject(s)
Phthalimides/therapeutic use , Schistosomiasis mansoni/drug therapy , Schistosomicides/therapeutic use , Thiazoles/therapeutic use , Animals , Cell Line , Cell Survival/drug effects , Cercaria/drug effects , Male , Mice, Inbred BALB C , Microscopy, Electron, Scanning , Parasite Load , Phthalimides/pharmacology , Schistosoma mansoni/drug effects , Schistosoma mansoni/ultrastructure , Schistosomiasis mansoni/parasitology , Schistosomicides/pharmacology , Thiazoles/pharmacology
13.
Anticancer Res ; 39(2): 759-769, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30711955

ABSTRACT

BACKGROUND/AIM: Strategies to enhance the therapeutic ratio of radiotherapy in glioblastoma are warranted. Our aim was to report a novel DNA methyltransferase inhibitor as a potential radiosensitizing agent in glioblastoma. MATERIALS AND METHODS: Four glioblastoma cell lines and one normal astrocyte cell line were incubated with a newly-synthetized phthalimido-alkanamide derivative, MA17, and its radiosensitizing effects were assessed. We performed a tumor growth delay assay in two glioblastoma lines: U87MG and U138MG. We evaluated DNA methyltransferase (DNMT) inhibition, apoptosis, autophagy, DNA damage repair, and FANCA expression. RESULTS: MA17 radiosensitized all glioblastoma cells (all p<0.05), but it did not affect normal astrocytes (p=0.193). MA17 significantly prolonged the mean tumor doubling time in vivo, in cells treated in addition with radiotherapy, compared to radiotherapy alone (p<0.05). DNMT activity was down-regulated, and apoptosis and autophagy were induced by MA17. Double-stranded DNA break foci were observed for prolonged periods in cells treated with MA17. FANCA expression was also inhibited. CONCLUSION: A novel phthalimido-alkanamide derivative demonstrated significant radiosensitization in glioblastoma cells in vitro and in vivo. Further investigation is needed to translate these results to the clinic.


Subject(s)
Alkanes/pharmacology , DNA (Cytosine-5-)-Methyltransferase 1/antagonists & inhibitors , Glioblastoma/drug therapy , Glioblastoma/radiotherapy , Phthalimides/pharmacology , Radiation-Sensitizing Agents/pharmacology , Animals , Apoptosis , Astrocytes/drug effects , Astrocytes/radiation effects , Autophagy , Cell Line, Tumor , Cell Survival/drug effects , DNA Breaks, Double-Stranded/drug effects , DNA Repair , Fanconi Anemia Complementation Group A Protein/metabolism , Female , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Transplantation , Phthalimides/therapeutic use , Radiation Tolerance/drug effects
14.
Anticancer Agents Med Chem ; 19(5): 667-676, 2019.
Article in English | MEDLINE | ID: mdl-30734686

ABSTRACT

BACKGROUND: It was recently demonstrated that the phthalimide N-(4-methyl-phenyl)-4- methylphthalimide (MPMPH-1) has important effects against acute and chronic pain in mice, with a mechanism of action correlated to adenylyl cyclase inhibition. Furthermore, it was also demonstrated that phthalimide derivatives presented antiproliferative and anti-tumor effects. Considering the literature data, the present study evaluated the effects of MPMPH-1 on breast cancer bone metastasis and correlated painful symptom, and provided additional toxicological information about the compound and its possible metabolites. METHODS: In silico toxicological analysis was supported by in vitro and in vivo experiments to demonstrate the anti-tumor and anti-hypersensitivity effects of the compound. RESULTS: The data obtained with the in silico toxicological analysis demonstrated that MPMPH-1 has mutagenic potential, with a low to moderate level of confidence. The mutagenicity potential was in vivo confirmed by micronucleus assay. MPMPH-1 treatments in the breast cancer bone metastasis model were able to prevent the osteoclastic resorption of bone matrix. Regarding cartilage, degradation was considerably reduced within the zoledronic acid group, while in MPMPH-1, chondrocyte multiplication was observed in random areas, suggesting bone regeneration. Additionally, the repeated treatment of mice with MPMPH-1 (10 mg/kg, i.p.), once a day for up to 36 days, significantly reduces the hypersensitivity in animals with breast cancer bone metastasis. CONCLUSION: Together, the data herein obtained show that MPMPH-1 is relatively safe, and significantly control the cancer growth, allied to the reduction in bone reabsorption and stimulation of bone and cartilage regeneration. MPMPH-1 effects may be linked, at least in part, to the ability of the compound to interfere with adenylylcyclase pathway activation.


Subject(s)
Antineoplastic Agents/therapeutic use , Bone Neoplasms/drug therapy , Breast Neoplasms/pathology , Phthalimides/therapeutic use , Animals , Antineoplastic Agents/toxicity , Bone Neoplasms/secondary , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Inbred C57BL , Phthalimides/toxicity
15.
Curr Treat Options Oncol ; 19(12): 1, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30535808

ABSTRACT

OPINION STATEMENT: Use of poly(ADP-ribose) polymerase (PARP) inhibitors has greatly increased over the past 5 years. With several new Food and Drug Administration (FDA) approvals, three PARP inhibitors have entered into standard of care treatment for epithelial ovarian cancer (including ovarian, fallopian tube, and primary peritoneal cancer). Olaparib and rucaparib currently have indications for treatment of recurrent BRCA mutant ovarian cancer. Olaparib, rucaparib, and niraparib all have indications for maintenance therapy in recurrent platinum-sensitive ovarian cancer after response to platinum-based therapy. In our practice, we use both olaparib and rucaparib in the recurrent setting, and all three PARP inhibitors in the maintenance setting. Choice of which PARP inhibitor to use in either setting is largely based upon baseline laboratory values, number of prior therapies, and presence of a BRCA mutation and/or homologous recombination deficiency (HRD). As (HRD) and other biomarker assessments continue to improve, we anticipate being able to better identify which patients might most benefit from PARP inhibitor therapy in the future. The clinically available PARP inhibitors are currently undergoing extensive investigations in clinical trials. Other newer agents such as talazoparib, veliparib, 2X-121, and CEP-9722 are in earlier stages of development. As more FDA-approved indications for PARP inhibitor therapy in ovarian cancer become available, we anticipate the decision of which PARP inhibitor to use will become increasingly complex.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Ovarian Epithelial/drug therapy , Indazoles/therapeutic use , Indoles/therapeutic use , Ovarian Neoplasms/drug therapy , Phthalazines/therapeutic use , Piperazines/therapeutic use , Piperidines/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Benzimidazoles/therapeutic use , Carbazoles/therapeutic use , Carcinoma, Ovarian Epithelial/genetics , Female , Humans , Neoplasm Recurrence, Local/drug therapy , Ovarian Neoplasms/genetics , Ovary/pathology , Phthalimides/therapeutic use
16.
Bull Exp Biol Med ; 166(1): 1-6, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30417305

ABSTRACT

We studied the participation of DNA-methylation processes in the mechanisms of memory storage and reconsolidation, amnesia induction, and in recovery of the conditioned food aversion memory in edible snails. It was found that daily injections of DNA methyltransferases inhibitor over 3 days combined with a reminder of a conditioned food stimulus did not affect memory storage. The administration of DNA methyltransferase inhibitors did not suppress induction of amnesia caused the NMDA receptor antagonist/reminder. Injections of DNA methyltransferase inhibitors combined with the reminder led to memory recovery in 3 days after amnesia induction. Thus, DNA methyltransferase inhibitors in the same doses did not affect storage and reconsolidation of memory, as well as the mechanisms of amnesia induction. At the same time, injections of inhibitors led to memory recovery, apparently, due to disruption of reactivation and amnesia development.


Subject(s)
DNA Modification Methylases/metabolism , Memory/drug effects , Phthalimides/pharmacology , Tryptophan/analogs & derivatives , Valine/analogs & derivatives , Amnesia/drug therapy , Amnesia/enzymology , Amnesia/prevention & control , Animals , DNA Modification Methylases/antagonists & inhibitors , Helix, Snails , Phthalimides/therapeutic use , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Tryptophan/pharmacology , Tryptophan/therapeutic use , Valine/pharmacology , Valine/therapeutic use
17.
Parasitol Res ; 117(7): 2105-2115, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29736731

ABSTRACT

Phthalimide, 1,3-thiazole, and thiazolidinone cores are considered privileged scaffolds and represent an attractive starting point to design new bioactive compounds for neglected tropical disease (NTD). Schistosomiasis is a NTD, caused by Schistosoma worms which praziquantel (PZQ) is the only drug used to treat humans, but the decrease in the effect after treatment has been reported. Recently, some phthalimide-thiazole derivatives exhibited in vitro antischistosomal activity against adult worms with significant ultrastructural changes and a lower cytotoxic effect on splenocytes. This new biological phthalimido-thiazole profile has motivated us to evaluate a new generation of such molecules in immature and adult worms. Thus, a phthalimido-thiazolidinone derivative, (3c), and three phthalimido-thiazoles (6c, 7a, and 7h) were evaluated concerning their in vitro activity on schistosomulae and adult worms. The results showed that these compounds brought a significant reduction on the mortality, inhibited oviposition, and then induced mortality in immature and adult worms alike. According to scanning electron microscopy, the tegument was the principal target for 7a and 7h and revealed gradual damage to the tegument surface, inducing destruction and decomposition of the tegument in the same areas and exposition of subtegumental tissue and of muscle tissue. Furthermore, they caused less toxicity in splenocytes than PZQ. Compounds 7a and 7h revealed to possess promising activity against larval forms. According to the present study, the privileged structure phthalimido-thiazoles act as a molecular framework that has antischistosomal activity and most form the basis to the next pre-clinical tests. Graphical abstract.


Subject(s)
Phthalimides , Schistosoma mansoni/drug effects , Schistosomiasis mansoni/drug therapy , Thiazoles , Animals , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , In Vitro Techniques , Microscopy, Electron, Scanning , Phthalimides/chemistry , Phthalimides/pharmacology , Phthalimides/therapeutic use , Schistosoma mansoni/ultrastructure , Thiazoles/chemistry , Thiazoles/pharmacology , Thiazoles/therapeutic use
18.
Curr Comput Aided Drug Des ; 14(4): 310-321, 2018.
Article in English | MEDLINE | ID: mdl-29766822

ABSTRACT

INTRODUCTION: In this study, fifteen new 2,5-disubstituted analgouges of phthalimide were designed and synthesized using the appropriate synthetic route to evaluate anticonvulsant activity against the Maximal Electroshock (MES) and subcutaneous Pentylenetetrazole (scPTZ) compare to phenytoin as a positive control. The structures of the synthesized compounds were confirmed by FTIR, H-NMR, C-NMR and MASS spectroscopy. METHODS: All the tested compounds were found to be effective in the PTZ model at dose of 60 mg/kg and most of the compounds showed protection against MES test indicative of their ability to inhibit the seizure spread at all dose ranges. Compound 3 illustrated the best efficacy among all compounds and showed more potency than phenytoin in clonic seizure and was potent as phenytoin in tonic seizure. RESULTS & DISCUSSION: Using a model of the Na channel, these derivatives were docked in the active site. Docking studies displayed that all synthesized compounds have more negative binding energy compare to reference drug and inhibition-constant less than phenytoin that means they can block the receptor more efficiently and usually form hydrophobic interactions or hydrogen bond interaction frequently with the domains I, II, III and rarely with domain IV.


Subject(s)
Anticonvulsants/chemistry , Anticonvulsants/therapeutic use , Drug Design , Phthalimides/chemistry , Phthalimides/therapeutic use , Seizures/drug therapy , Animals , Anticonvulsants/chemical synthesis , Anticonvulsants/pharmacology , Electroshock/adverse effects , Male , Mice , Molecular Docking Simulation , Pentylenetetrazole , Phthalimides/chemical synthesis , Phthalimides/pharmacology , Seizures/chemically induced , Seizures/etiology , Seizures/metabolism , Sodium Channels/metabolism
19.
Biomed Pharmacother ; 96: 503-512, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29032334

ABSTRACT

The treatment of chronic pain remains a challenge for clinicians worldwide, independent of its pathogenesis. It motivates several studies attempting to discover strategies to treat the disease. The in silico analysis using molecular docking approach demonstrated that the phthalimide N-(4methyl-phenyl)-4-methylphthalimide (MPMPH-1) presented high affinity to adenylyl-cyclase enzyme (AC). It also prominently reduced the mechanical hypersensitivity of mice challenged by Forskolin, an AC activator. This effect lasted for up to 48h after Forskolin injection, presenting activity longer than MDL-12330A (AC inhibitor). MPMPH-1 was also effective in reducing the hypersensitivity induced by IL-1ß, bradykinin, prostaglandin E2 or epinephrine, chemical mediators that have, among others, AC as pivotal protein in their signalling cascade to induce mechanical-pain behaviour. The compound presented marked inhibition in inflammatory-pain models induced by carrageenan, lipopolysaccharide or complete Freund's adjuvant, including neutrophil migration inhibition. Furthermore, it also seems to act in both peripheral and pain central-control pathways, being also effective in reducing the persistent cancer-pain behaviour induced by melanoma cells in mice. MPMPH-1 could represent a promising pharmacological tool to treat acute and chronic painful diseases, with good bioavailability, local activity, and lack of locomotor-activity interference. Further studies are necessary to determine the exact mechanism of action but it seems to involve AC enzyme as possible target.


Subject(s)
Acute Pain/drug therapy , Chronic Pain/drug therapy , Pain Measurement/drug effects , Pain Threshold/drug effects , Phthalimides/chemistry , Phthalimides/therapeutic use , Acute Pain/chemically induced , Acute Pain/pathology , Analgesics/chemistry , Analgesics/pharmacology , Analgesics/therapeutic use , Animals , Carrageenan/toxicity , Chronic Pain/chemically induced , Chronic Pain/pathology , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Hyperalgesia/chemically induced , Hyperalgesia/drug therapy , Hyperalgesia/pathology , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/pathology , Male , Melanoma, Experimental/complications , Mice , Molecular Docking Simulation/methods , Neuralgia/chemically induced , Neuralgia/drug therapy , Neuralgia/pathology , Pain Measurement/methods , Pain Threshold/physiology , Phthalimides/pharmacology
20.
Bioorg Med Chem Lett ; 27(22): 5053-5059, 2017 11 15.
Article in English | MEDLINE | ID: mdl-29033232

ABSTRACT

A series of novel phthalimide-alkylamine derivatives were synthesized and evaluated as multi-functions inhibitors for the treatment of Alzheimer's disease (AD). The results showed that compound TM-9 could be regarded as a balanced multi-targets active molecule. It exhibited potent and balanced inhibitory activities against ChE and MAO-B (huAChE, huBuChE, and huMAO-B with IC50 values of 1.2µM, 3.8µM and 2.6 µM, respectively) with low selectivity. Both kinetic analysis of AChE inhibition and molecular modeling study suggested that TM-9 binds simultaneously to the catalytic active site and peripheral anionic site of AChE. Interestingly, compound TM-9 abided by Lipinski's rule of five. Furthermore, our investigation proved that TM-9 indicated weak cytotoxicity, and it could cross the blood-brain barrier (BBB) in vitro. The results suggest that compound TM-9, an interesting multi-targeted active molecule, offers an attractive starting point for further lead optimization in the drug-discovery process against Alzheimer's disease.


Subject(s)
Amines/chemistry , Cholinesterase Inhibitors/chemical synthesis , Drug Design , Monoamine Oxidase Inhibitors/chemical synthesis , Phthalimides/chemistry , Alzheimer Disease/drug therapy , Amines/pharmacology , Amines/therapeutic use , Binding Sites , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/therapeutic use , Cholinesterases/chemistry , Cholinesterases/metabolism , Humans , Inhibitory Concentration 50 , Kinetics , Molecular Docking Simulation , Monoamine Oxidase/chemistry , Monoamine Oxidase/metabolism , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase Inhibitors/therapeutic use , Phthalimides/chemical synthesis , Phthalimides/pharmacology , Phthalimides/therapeutic use , Protein Structure, Tertiary , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...