Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Drug Metab Dispos ; 49(8): 694-705, 2021 08.
Article in English | MEDLINE | ID: mdl-34035125

ABSTRACT

3,3'-Diindolylmethane (DIM), a major phytochemical derived from ingestion of cruciferous vegetables, is also a dietary supplement. In preclinical models, DIM is an effective cancer chemopreventive agent and has been studied in a number of clinical trials. Previous pharmacokinetic studies in preclinical and clinical models have not reported DIM metabolites in plasma or urine after oral dosing, and the pharmacological actions of DIM on target tissues is assumed to be solely via the parent compound. Seven subjects (6 males and 1 female) ranging from 26-65 years of age, on a cruciferous vegetable-restricted diet prior to and during the study, took 2 BioResponse DIM 150-mg capsules (45.3 mg DIM/capsule) every evening for one week with a final dose the morning of the first blood draw. A complete time course was performed with plasma and urine collected over 48 hours and analyzed by UPLC-MS/MS. In addition to parent DIM, two monohydroxylated metabolites and 1 dihydroxylated metabolite, along with their sulfate and glucuronide conjugates, were present in both plasma and urine. Results reported here are indicative of significant phase 1 and phase 2 metabolism and differ from previous pharmacokinetic studies in rodents and humans, which reported only parent DIM present after oral administration. 3-((1H-indole-3-yl)methyl)indolin-2-one, identified as one of the monohydroxylated products, exhibited greater potency and efficacy as an aryl hydrocarbon receptor agonist when tested in a xenobiotic response element-luciferase reporter assay using Hepa1 cells. In addition to competitive phytochemical-drug adverse reactions, additional metabolites may exhibit pharmacological activity highlighting the importance of further characterization of DIM metabolism in humans. SIGNIFICANCE STATEMENT: 3,3'-Diindolylmethane (DIM), derived from indole-3-carbinol in cruciferous vegetables, is an effective cancer chemopreventive agent in preclinical models and a popular dietary supplement currently in clinical trials. Pharmacokinetic studies to date have found little or no metabolites of DIM in plasma or urine. In marked contrast, we demonstrate rapid appearance of mono- and dihydroxylated metabolites in human plasma and urine as well as their sulfate and glucuronide conjugates. The 3-((1H-indole-3-yl)methyl)indolin-2-one metabolite exhibited significant aryl hydrocarbon receptor agonist activity, emphasizing the need for further characterization of the pharmacological properties of DIM metabolites.


Subject(s)
Indoles , Administration, Oral , Anticarcinogenic Agents/blood , Anticarcinogenic Agents/pharmacokinetics , Anticarcinogenic Agents/urine , Capsules , Dietary Supplements , Drug Development , Drug Elimination Routes , Female , Humans , Inactivation, Metabolic/physiology , Indoles/blood , Indoles/pharmacokinetics , Indoles/urine , Male , Middle Aged , Phytochemicals/blood , Phytochemicals/pharmacokinetics , Phytochemicals/urine
2.
Se Pu ; 37(11): 1142-1156, 2019 Nov 08.
Article in Chinese | MEDLINE | ID: mdl-31642266

ABSTRACT

An ultra-performance liquid chromatography-triple quadrupole/linear ion trap mass spectrometry (UPLC-Qtrap MS) method was developed for the determination of 84 toxic plant constiuents in plasma and urine. Plasma was precipitated by acetonitrile to remove proteins and then passed through a Prime HLB SPE column to remove phospholipids, while urine was diluted with methanol. Chromatographic separation of the analytes was achieved on an Acquity BEH C18 column (100 mm×2.1 mm, 1.7 µm) by gradient elution using the mobile phase of 0.1% (v/v) formic acid and 2 mmol/L ammonium formate both in 97% (v/v) acetonitrile aqueous solution and water. Electrospray ionization mass spectrometry was carried out in the positive ion mode with multiple reaction monitoring-information dependent acquisition-enhanced product ion scan mode (MRM-IDA-EPI). The 84 analytes were quantified by the matrix working standard curve internal standard method, and a good linear relationship was observed, with correlation coefficients of ≥ 0.9911. The limits of detection (LODs) in plasma and urine were 0.01-1 µg/L and 0.03-2 µg/L, respectively. The intra- and inter-day precisions of these analytes were 0.7%-18.4% and 1.1%-18.5%, and the accuracy of all analytes ranged from 70.6% to 124.5%. This method is simple, sensitive, and accurate for the measurement of these analytes in plasma and urine for both clinical and forensic applications.


Subject(s)
Phytochemicals/blood , Phytochemicals/urine , Plants, Toxic/chemistry , Chromatography, High Pressure Liquid , Humans , Mass Spectrometry
3.
Zhongguo Zhong Yao Za Zhi ; 44(10): 2156-2162, 2019 May.
Article in Chinese | MEDLINE | ID: mdl-31355575

ABSTRACT

Ultra performance liquid chromatography coupled with time-of-flight mass spectrometry( UPLC-Q-TOF-MS/MS) method was applied to analyze the prototypes and metabolites of the effective components of Polygonum orientale in SD rat serum and urine. The separation was performed on Agilent Eclipse Plus C_(18) column( 2. 1 mm×100 mm,1. 8 µm),with 0. 1% formic acid solution( A)-acetonitrile( B) as the mobile phase for gradient elution. Mass spectrometry data of biological samples were obtained under positive and negative electrospray ion mode. By comparing chromatogram differences between blank samples and drug treatment samples,prototype components and metabolites of the effective components of P. orientale extract were identified. The results showed that 12 metabolites were detected in serum and 26 metabolites in urine( including cross-components) of rats. The main metabolic pathways included hydrogenation,hydroxylation,glucuronidation,sulfation reaction,and methylation-glucuronidation,etc. The method established in this study was reliable and effective for studying the metabolic characteristics of the effective components of P. orientale in rats,and it can provide a reference for further studies on therapeutic material basis of this herb.


Subject(s)
Drugs, Chinese Herbal/pharmacokinetics , Flowers/chemistry , Phytochemicals/blood , Phytochemicals/urine , Polygonum/chemistry , Animals , Chromatography, High Pressure Liquid , Rats , Rats, Sprague-Dawley , Tandem Mass Spectrometry
4.
J Sep Sci ; 42(17): 2762-2770, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31207093

ABSTRACT

Tianma-Gouteng granule has been used for the treatment of hypertension, headache, and stroke in China. However, the metabolism of Tianma-Gouteng granule has not been clear. In the present study, an ultra high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry method has been developed for rapid identification of 35 prototypes and 43 metabolites in human and rat urine after single oral administration of Tianma-Gouteng granule. The results showed that glucuronidation and sulfation were the main metabolic pathways for flavonoids, alkaloids, iridoidic glycosides, anthraquinones, phenols, and stilbenes that were found in Tianma-Gouteng granule. Moreover, a validated ultra high performance liquid chromatography coupled with tandem mass spectrometry method was applied for the quantification of 14 compounds in rat urine after an oral administration of Tianma-Gouteng granule (2.5 g/kg). During 0-48 h after dosing, the cumulative excretion rates of nine prototype components were 53% for gastrodin, 0.07∼1.6% for geniposide, baicalin and baicalein, wogonoside, rhynchophylline and isorhynchophylline, leonurine, and emodin, indicating that urinary excretion is the major way for gastrodin to eliminate from the body. This study provides a comprehensive understanding of metabolism and excretive kinetics of Tianma-Gouteng granule in human and/or rat, and helpful information for screening of its active components in vivo and clinical application.


Subject(s)
Drugs, Chinese Herbal/chemistry , Phytochemicals/urine , Animals , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/metabolism , Humans , Male , Phytochemicals/metabolism , Rats , Rats, Sprague-Dawley , Tandem Mass Spectrometry
5.
J Nutr ; 149(1): 26-35, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30476157

ABSTRACT

Background: Tomato and soy intake is associated with reduced prostate cancer risk or severity in epidemiologic and experimental studies. Objective: On the basis of the principle that multiple bioactives in tomato and soy may act on diverse anticancer pathways, we developed and characterized a tomato-soy juice for clinical trials. In this phase 2 dose-escalating study, we examined plasma, prostate, and urine biomarkers of carotenoid and isoflavone exposure. Methods: Men scheduled for prostatectomy were recruited to consume 0, 1, or 2 cans of tomato-soy juice/d before surgery (mean ± SD duration: 24 ± 4.6 d). The juice provided 20.6 mg lycopene and 66 mg isoflavone aglycone equivalents/177-mL can. Plasma carotenoids and urinary isoflavone metabolites were quantified by HPLC-photometric diode array and prostate carotenoids and isoflavones by HPLC-tandem mass spectrometry. Results: We documented significant dose-response increases (P < 0.05) in plasma concentrations of tomato carotenoids. Plasma concentrations were 1.86-, 1.69-, 1.73-, and 1.69-fold higher for lycopene, ß-carotene, phytoene, and phytofluene, respectively, for the 1-can/d group and 2.34-, 3.43-, 2.54-, and 2.29-fold higher, respectively, for the 2-cans/d group compared with 0 cans/d. Urinary isoflavones daidzein, genistein, and glycitein increased in a dose-dependent manner. Prostate carotenoid and isoflavone concentrations were not dose-dependent in this short intervention; yet, correlations between plasma carotenoid and urinary isoflavones with respective prostate concentrations were documented (R2 = 0.78 for lycopene, P < 0.001; R2 = 0.59 for dihydrodaidzein, P < 0.001). Secondary clustering analyses showed urinary isoflavone metabolite phenotypes. To our knowledge, this is the first demonstration of the phytoene and phytofluene in prostate tissue after a dietary intervention. Secondary analysis showed that the 2-cans/d group experienced a nonsignificant decrease in prostate-specific antigen slope compared with 0 cans/d (P = 0.078). Conclusion: These findings provide the foundation for evaluating a well-characterized tomato-soy juice in human clinical trials to define the impact on human prostate carcinogenesis. This trial is registered at clinicaltrials.gov as NCT01009736.


Subject(s)
Beverages/analysis , Phytochemicals/blood , Phytochemicals/urine , Prostatic Neoplasms/metabolism , Solanum lycopersicum , Soybean Proteins , Aged , Biomarkers/blood , Carotenoids/chemistry , Humans , Male , Middle Aged , Prostate/chemistry , Prostatic Neoplasms/blood , Prostatic Neoplasms/urine
6.
Drug Test Anal ; 11(1): 86-94, 2019 Jan.
Article in English | MEDLINE | ID: mdl-29975460

ABSTRACT

Eurycoma longifolia Jack (Tongkat Ali, Simaroubaceae) is a medicinal plant endemic to South-East Asia. For centuries, different parts of the plant have been used as a natural remedy to treat fever, hypertension, or sexual insufficiency. Today, Eurycoma longifolia preparations are commercially available and advertised to enhance athletic performance and muscle strength. Several studies have demonstrated a testosterone-boosting effect that might be caused by the release of free testosterone from the sex-hormone-binding globulin. To date, many phytochemical constituents of Eurycoma longifolia root extracts have been identified and physiological effects have been examined, while studies on their biotransformation and monitoring are still lacking. Within this study, eurycomalide C, eurycomalactone, 5,6-dehydro-eurycomalactone, longilactone, 14,15ß-dihydroklaieanone, 11-dehydroklaieanone, 9-hydroxycanthin-6-one, and 9-methoxycanthin-6-one isolated from E. longifolia root were incubated with liver microsomes. Respective metabolites were analyzed by liquid chromatography-tandem (high-resolution) mass spectrometry. The compounds were chosen based on their potential androgenic effects (estimated by in vitro assays), their concentrations in plant extracts, and presumptive metabolic pathways. Hydroxylated phase I metabolites were only observed for 5,6-dehydro-eurycomalactone, 11-dehydroklaieanone, 9-hydroxycanthin-6-one, and 9-methoxycanthin-6-one. Moreover, an O-demethylated metabolite of 9-methoxycanthin-6-one was found. Besides, the glucuronide of 9-hydroxycanthin-6-one was detected after in vitro glucuronidation using liver microsomes. The in vitro generated metabolites were comparable to that detected in urine and serum after a single ingestion of either 9-methoxycanthin-6-one or an Eurycoma longifolia root extract. Hence, 9-methoxycanthin-6-one, its glucuronide, and the glucuronide of its O-demethylated biotransformation product are proposed to be the most suitable targets for detection of 9-methoxycanthin-6-one or Tongkat Ali application in urine and serum.


Subject(s)
Doping in Sports/prevention & control , Eurycoma , Microsomes, Liver/metabolism , Plant Extracts/blood , Plant Extracts/urine , Plant Roots , Animals , Biomarkers/blood , Biomarkers/urine , Humans , Male , Phytochemicals/blood , Phytochemicals/urine , Rats , Rats, Sprague-Dawley
7.
Trials ; 18(1): 527, 2017 Nov 09.
Article in English | MEDLINE | ID: mdl-29121975

ABSTRACT

BACKGROUND: Coffee is an important source of bioactive compounds, including caffeine, phenolic compounds (mainly chlorogenic acids), trigonelline, and diterpenes. Several studies have highlighted the preventive effects of coffee consumption on major cardiometabolic diseases, but the impact of coffee dosage on markers of cardiometabolic risk is not well understood. Moreover, the pool of coffee-derived circulating metabolites and the contribution of each metabolite to disease prevention still need to be evaluated in real-life settings. The aim of this study will be to define the bioavailability and beneficial properties of coffee bioactive compounds on the basis of different levels of consumption, by using an innovative experimental design. The contribution of cocoa-based products containing coffee to the pool of circulating metabolites and their putative bioactivity will also be investigated. METHODS: A three-arm, crossover, randomized trial will be conducted. Twenty-one volunteers will be randomly assigned to consume three treatments in a random order for 1 month: 1 cup of espresso coffee/day, 3 cups of espresso coffee/day, and 1 cup of espresso coffee plus 2 cocoa-based products containing coffee twice per day. The last day of each treatment, blood and urine samples will be collected at specific time points, up to 24 hours following the consumption of the first product. At the end of each treatment the same protocol will be repeated, switching the allocation group. Besides the bioavailability of the coffee/cocoa bioactive compounds, the effect of the coffee/cocoa consumption on several cardiometabolic risk factors (anthropometric measures, blood pressure, inflammatory markers, trimethylamine N-oxide, nitric oxide, blood lipids, fasting indices of glucose/insulin metabolism, DNA damage, eicosanoids, and nutri-metabolomics) will be investigated. DISCUSSION: Results will provide information on the bioavailability of the main groups of phytochemicals in coffee and on their modulation by the level of consumption. Findings will also show the circulating metabolites and their bioactivity when coffee consumption is substituted with the intake of cocoa-based products containing coffee. Finally, the effect of different levels of 1-month coffee consumption on cardiometabolic risk factors will be elucidated, likely providing additional insights on the role of coffee in the protection against chronic diseases. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03166540 . Registered on May 21, 2017.


Subject(s)
Chocolate , Coffee , Phytochemicals/pharmacokinetics , Biological Availability , Biomarkers/blood , Biomarkers/urine , Biotransformation , Clinical Protocols , Cross-Over Studies , DNA Damage , Health Status , Heart Diseases/blood , Heart Diseases/prevention & control , Heart Diseases/urine , Humans , Inflammation Mediators/blood , Metabolic Diseases/blood , Metabolic Diseases/prevention & control , Metabolic Diseases/urine , Oxidative Stress , Phytochemicals/administration & dosage , Phytochemicals/blood , Phytochemicals/urine , Research Design , Risk Factors
8.
J Proteome Res ; 16(7): 2516-2526, 2017 07 07.
Article in English | MEDLINE | ID: mdl-28585834

ABSTRACT

Flavan-3-ols and methylxanthines have potential beneficial effects on human health including reducing cardiovascular risk. We performed a randomized controlled crossover intervention trial to assess the acute effects of consumption of flavan-3-ol-enriched dark chocolate, compared with standard dark chocolate and white chocolate, on the human metabolome. We assessed the metabolome in urine and blood plasma samples collected before and at 2 and 6 h after consumption of chocolates in 42 healthy volunteers using a nontargeted metabolomics approach. Plasma samples were assessed and showed differentiation between time points with no further separation among the three chocolate treatments. Multivariate statistics applied to urine samples could readily separate the postprandial time points and distinguish between the treatments. Most of the markers responsible for the multivariate discrimination between the chocolates were of dietary origin. Interestingly, small but significant level changes were also observed for a subset of endogenous metabolites. 1H NMR revealed that flavan-3-ol-enriched dark chocolate and standard dark chocolate reduced urinary levels of creatinine, lactate, some amino acids, and related degradation products and increased the levels of pyruvate and 4-hydroxyphenylacetate, a phenolic compound of bacterial origin. This study demonstrates that an acute chocolate intervention can significantly affect human metabolism.


Subject(s)
Chocolate/analysis , Flavonoids/administration & dosage , Metabolome/physiology , Phytochemicals/administration & dosage , Amino Acids/blood , Amino Acids/urine , Creatinine/blood , Creatinine/urine , Cross-Over Studies , Female , Flavonoids/blood , Flavonoids/urine , Humans , Lactic Acid/blood , Lactic Acid/urine , Male , Metabolomics/methods , Phenylacetates/blood , Phenylacetates/urine , Phytochemicals/blood , Phytochemicals/urine , Postprandial Period , Pyruvic Acid/blood , Pyruvic Acid/urine , Sex Factors
9.
Eur J Nutr ; 56(1): 387-397, 2017 Feb.
Article in English | MEDLINE | ID: mdl-26519282

ABSTRACT

PURPOSE: Benzoxazinoids (BXs) are a group of wholegrain phytochemicals with potential pharmacological properties; however, limited information exists on their absorption, metabolism, and excretion in humans. The aim of this study was to investigate the dose-dependent uptake and excretion of dietary BXs in a healthy population. METHODS: Blood and urine were collected from 19 healthy participants from a crossover study after a washout, a LOW BX diet or HIGH BX diet, and analysed for 12 BXs and 4 phenoxazinone derivatives. RESULTS: We found that the plasma BX level peaked approximately 3 h after food intake, whereas BXs in urine were present even at 36 h after consuming a meal. No phenoxazinone derivatives could be detected in either plasma or urine. The dominant BX metabolite in both plasma and urine was 2-ß-D-glucopyranosyloxy-1,4-benzoxazin-3-one (HBOA-Glc), even though 2-ß-D-glucopyranosyloxy-4-hydroxy-1,4-benzoxazin-3-one (DIBOA-Glc) was the major component in the diet. CONCLUSION: The dietary BX treatment correlated well with the plasma and urine levels, illustrating strong dose-dependent BX absorption, which also had a rapid washout, especially from the plasma compartment.


Subject(s)
Benzoxazines/pharmacokinetics , Diet , Dietary Fiber/administration & dosage , Adolescent , Adult , Aged , Benzoxazines/blood , Benzoxazines/urine , Body Mass Index , Cross-Over Studies , Edible Grain/chemistry , Evaluation Studies as Topic , Female , Humans , Male , Middle Aged , Phytochemicals/blood , Phytochemicals/pharmacokinetics , Phytochemicals/urine , Young Adult
10.
Electrophoresis ; 36(7-8): 1055-63, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25639974

ABSTRACT

This report describes the use of surfactant-coated graphitized multiwalled carbon nanotubes (SC-GMWNTs) as a novel pseudostationary phase in CE with diode array detection for the determination of phenolic acids and tanshinones in herbal and urine samples. Several parameters influencing the separation were studied, such as the concentrations of SDS, GMWNTs, and isopropanol; choice of carbon nanotubes; sodium borate content; and buffer pH. The results revealed that the presence of SC-GMWNTs in buffer enhanced the separation efficiency for the target analytes relative to conventional micelles due to the strong interaction between the surface of the GMWNTs and the target compounds. Under the optimum conditions, the method showed good linearity, with correlation coefficients higher than 0.9950. LODs were in the range of 0.71-3.10 µg/mL. Furthermore, satisfactory separations were achieved with good recovery values in the range of 89.97 and 103.30% when 10 mM borate, 30 mM SDS, 10% isopropanol, and 6 µg/mL SC-GMWNTs were introduced into the buffer solution.


Subject(s)
Electrophoresis, Capillary/methods , Nanotubes, Carbon/chemistry , Phytochemicals/analysis , 2-Propanol/chemistry , Animals , Borates , Buffers , Drugs, Chinese Herbal/chemistry , Electrophoresis, Capillary/instrumentation , Graphite/chemistry , Hydrogen-Ion Concentration , Limit of Detection , Male , Microscopy, Electron, Scanning , Phytochemicals/urine , Rats, Sprague-Dawley , Reproducibility of Results , Salvia miltiorrhiza/chemistry , Sodium Dodecyl Sulfate/chemistry , Surface-Active Agents/chemistry
11.
Phytochem Anal ; 25(4): 314-30, 2014.
Article in English | MEDLINE | ID: mdl-24375623

ABSTRACT

INTRODUCTION: Natural products have been used traditionally for the treatment and prevention of diseases for thousands of years and are nowadays consumed as dietary supplements and herbal medicine. To ensure the safe and effective use of these herbal products, information about bioavailability of active compounds in plasma or target tissues should be provided via validated analytical methods combined with appropriate sampling methods. OBJECTIVE: To provide comprehensive and abridged information about sample preparation methods for the quantification of phytochemicals in biological samples using liquid chromatography analysis. METHODS: Sample pre-treatment procedures used in analytical methods for in vivo pharmacokinetic studies of natural compounds or herbal medicines were reviewed. These were categorised according to the biological matrices (plasma, bile, urine, faeces and tissues) and sample clean-up processes (protein precipitation, liquid-liquid extraction and solid-phase extraction). RESULTS: Although various kinds of sample pre-treatment methods have been developed, liquid-liquid extraction is still widely used and solid-phase extraction is becoming increasingly popular because of its efficiency for extensive clean up of complex matrix samples. However, protein precipitation is still favoured due to its simplicity. CONCLUSION: Sample treatment for phytochemical analysis in biological fluids is an indispensable and critical step to obtain high quality results. This step could dominate the overall analytical process because both the duration of the process as well as the reliability of the data depend in large part on its efficiency. Thus, special attention should be given to the choice of a proper sample treatment method that targets analytes and their biomatrix.


Subject(s)
Body Fluids/chemistry , Chromatography, Liquid/methods , Phytochemicals/analysis , Phytochemicals/blood , Phytochemicals/urine , Solid Phase Extraction
12.
Br J Nutr ; 110(10): 1760-70, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23657156

ABSTRACT

Metabolomic profiles were used to characterise the effects of consuming a high-phytochemical diet compared with a diet devoid of fruits and vegetables (F&V) in a randomised trial and cross-sectional study. In the trial, 8 h fasting urine from healthy men (n 5) and women (n 5) was collected after a 2-week randomised, controlled trial of two diet periods: a diet rich in cruciferous vegetables, citrus and soya (F&V), and a fruit- and vegetable-free (basal) diet. Among the ions found to differentiate the diets, 176 were putatively annotated with compound identifications, with forty-six supported by MS/MS fragment evidence. Metabolites more abundant in the F&V diet included markers of the dietary intervention (e.g. crucifers, citrus and soya), fatty acids and niacin metabolites. Ions more abundant in the basal diet included riboflavin, several acylcarnitines and amino acid metabolites. In the cross-sectional study, we compared the participants based on the tertiles of crucifers, citrus and soya from 3 d food records (n 36) and FFQ (n 57); intake was separately divided into the tertiles of total fruit and vegetable intake for FFQ. As a group, ions individually differential between the experimental diets differentiated the observational study participants. However, only four ions were significant individually, differentiating the third v. first tertile of crucifer, citrus and soya intake based on 3 d food records. One of these ions was putatively annotated: proline betaine, a marker of citrus consumption. There were no ions significantly distinguishing tertiles by FFQ. The metabolomic assessment of controlled dietary interventions provides a more accurate and stronger characterisation of the diet than observational data.


Subject(s)
Brassicaceae , Citrus , Diet , Glycine max , Metabolome , Nutrition Assessment , Phytochemicals/urine , Adult , Biomarkers/urine , Carnitine/analogs & derivatives , Carnitine/urine , Cross-Sectional Studies , Diet Records , Fatty Acids/urine , Feeding Behavior , Female , Fruit , Humans , Ions/urine , Male , Metabolomics , Niacin/urine , Proline/analogs & derivatives , Proline/urine , Riboflavin/urine , Surveys and Questionnaires , Vegetables , Young Adult
13.
Mol Nutr Food Res ; 57(6): 962-73, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23637065

ABSTRACT

SCOPE: Metabolomics approach is focused on identifying all metabolites present in a biological sample (metabolome). Consumption of cocoa products has been related to health benefits including positive effect on cardiovascular health. METHODS AND RESULTS: Twenty volunteers were included in this randomized, crossover, and controlled clinical trial. After a 2-wk washout period, subjects received 40 g/day of cocoa powder with 500 mL skimmed milk (cocoa with skimmed milk intervention) or 500 mL/day of skimmed milk (skimmed milk intervention) for 4-wk. Urine (24 h) samples were collected at baseline and after each intervention and were analyzed by HPLC-hybrid quadrupole TOF in negative and positive ionization modes followed by multivariate analysis. This analysis revealed a marked separation between the cocoa with skimmed milk intervention and skimmed milk intervention and baseline periods. Thirty-nine compounds linked with cocoa intake, including alkaloid metabolites, polyphenol host and gut microbial metabolites (hydroxyphenylvalerolactones and hydroxyphenylvaleric acids), diketopiperazines and N-phenylpropenoyl-l-amino acids were identified. In the case of endogenous metabolites, putative identifications suggested that metabolites linked with carnitine metabolism and sulfation of tyrosine were decreased by the consumption of cocoa. CONCLUSION: LC-MS metabolomics strategy allows the defining of a complex metabolic profile derived from cocoa phytochemicals. Likewise, the identification of endogenous markers could lead to new hypotheses to unravel the relationship between cocoa intake and cardiovascular diseases.


Subject(s)
Biomarkers/blood , Cacao , Cardiovascular Diseases/diet therapy , Aged , Biomarkers/urine , Cardiovascular Diseases/etiology , Cardiovascular Diseases/prevention & control , Female , Humans , Male , Metabolomics , Multivariate Analysis , Phytochemicals/blood , Phytochemicals/urine
SELECTION OF CITATIONS
SEARCH DETAIL
...