Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters











Publication year range
1.
Cells ; 12(20)2023 10 13.
Article in English | MEDLINE | ID: mdl-37887291

ABSTRACT

Light is both the main source of energy and a key environmental signal for plants. It regulates not only gene expression but also the tightly related processes of splicing and alternative splicing (AS). Two main pathways have been proposed to link light sensing with the splicing machinery. One occurs through a photosynthesis-related signal, and the other is mediated by photosensory proteins, such as red light-sensing phytochromes. Here, we evaluated the relative contribution of each of these pathways by performing a transcriptome-wide analysis of light regulation of AS in plants that do not express any functional phytochrome (phyQ). We found that an acute 2-h red-light pulse in the middle of the night induces changes in the splicing patterns of 483 genes in wild-type plants. Approximately 30% of these genes also showed strong light regulation of splicing patterns in phyQ mutant plants, revealing that phytochromes are important but not essential for the regulation of AS by R light. We then performed a meta-analysis of related transcriptomic datasets and found that different light regulatory pathways can have overlapping targets in terms of AS regulation. All the evidence suggests that AS is regulated simultaneously by various light signaling pathways, and the relative contribution of each pathway is highly dependent on the plant developmental stage.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phytochrome , Arabidopsis/genetics , Arabidopsis/metabolism , Phytochrome/genetics , Phytochrome/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Alternative Splicing/genetics , RNA Splicing , Plants/metabolism
2.
Plant Physiol ; 191(3): 1475-1491, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36617439

ABSTRACT

When exposed to changes in the light environment caused by neighboring vegetation, shade-avoiding plants modify their growth and/or developmental patterns to access more sunlight. In Arabidopsis (Arabidopsis thaliana), neighbor cues reduce the activity of the photosensory receptors phytochrome B (phyB) and cryptochrome 1, releasing photoreceptor repression imposed on PHYTOCHROME INTERACTING FACTORs (PIFs) and leading to transcriptional reprogramming. The phyB-PIF hub is at the core of all shade-avoidance responses, whilst other photosensory receptors and transcription factors contribute in a context-specific manner. CONSTITUTIVELY PHOTOMORPHOGENIC1 is a master regulator of this hub, indirectly stabilizing PIFs and targeting negative regulators of shade avoidance for degradation. Warm temperatures reduce the activity of phyB, which operates as a temperature sensor and further increases the activities of PIF4 and PIF7 by independent temperature sensing mechanisms. The signaling network controlling shade avoidance is not buffered against climate change; rather, it integrates information about shade, temperature, salinity, drought, and likely flooding. We, therefore, predict that climate change will exacerbate shade-induced growth responses in some regions of the planet while limiting the growth potential in others.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phytochrome , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Climate Change , Light , Arabidopsis/metabolism , Phytochrome B/genetics , Phytochrome B/metabolism , Phytochrome/metabolism , Transcription Factors/metabolism , Gene Expression Regulation, Plant , DNA-Binding Proteins/metabolism
3.
Photochem Photobiol Sci ; 21(11): 1869-1880, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35867260

ABSTRACT

Plant growth depends on the supply of carbohydrates produced by photosynthesis. Exogenously applied sucrose promotes the growth of the hypocotyl in Arabidopsis thaliana seedlings grown under short days. Whether this effect of sucrose is stronger under the environmental conditions where the light input for photosynthesis is limiting remains unknown. We characterised the effects of exogenous sucrose on hypocotyl growth rates under light compared to simulated shade, during different portions of the daily cycle. The strongest effects of exogenous sucrose occurred under shade and during the night; i.e., the conditions where there is reduced or no photosynthesis. Conversely, a faster hypocotyl growth rate, predicted to enhance the demand of carbohydrates, did not associate to a stronger sucrose effect. The early flowering 3 (elf3) mutation strongly enhanced the impact of sucrose on hypocotyl growth during the night of a white-light day. This effect occurred under short, but not under long days. The addition of sucrose enhanced the fluorescence intensity of ELF3 nuclear speckles. The elf3 mutant showed increased abundance of PHYTOCHROME INTERACTING FACTOR4 (PIF4), which is a transcription factor required for a full response to sucrose. Sucrose increased PIF4 protein abundance by post-transcriptional mechanisms. Under shade, elf3 showed enhanced daytime and reduced nighttime effects of sucrose. We conclude that ELF3 modifies the responsivity to sucrose according to the time of the daily cycle and the prevailing light or shade conditions.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phytochrome , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Sucrose/pharmacology , Sucrose/metabolism , Gene Expression Regulation, Plant , Hypocotyl/metabolism , Phytochrome/metabolism , Light
4.
Plant Cell ; 34(6): 2188-2204, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35234947

ABSTRACT

Despite the identification of temperature sensors and downstream components involved in promoting stem growth by warm temperatures, when and how previous temperatures affect current plant growth remain unclear. Here we show that hypocotyl growth in Arabidopsis thaliana during the night responds not only to the current temperature but also to preceding daytime temperatures, revealing a short-term memory of previous conditions. Daytime temperature affected the levels of PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) and LONG HYPOCOTYL 5 (HY5) in the nucleus during the next night. These factors jointly accounted for the observed growth kinetics, whereas nighttime memory of prior daytime temperature was impaired in pif4 and hy5 mutants. PIF4 promoter activity largely accounted for the temperature-dependent changes in PIF4 protein levels. Notably, the decrease in PIF4 promoter activity triggered by cooling required a stronger temperature shift than the increase caused by warming, representing a typical hysteretic effect; this hysteretic pattern required EARLY-FLOWERING 3 (ELF3). Warm temperatures promoted the formation of nuclear condensates of ELF3 in hypocotyl cells during the afternoon but not in the morning. These nuclear speckles showed poor sensitivity to subsequent cooling. We conclude that ELF3 achieves hysteresis and drives the PIF4 promoter into the same behavior, enabling a short-term memory of daytime temperature conditions.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phytochrome , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Gene Expression Regulation, Plant/genetics , Hypocotyl , Phytochrome/metabolism , Temperature , Transcription Factors/genetics , Transcription Factors/metabolism
5.
Plant Physiol ; 189(3): 1450-1465, 2022 06 27.
Article in English | MEDLINE | ID: mdl-35266544

ABSTRACT

Light stimulates carotenoid synthesis in plants during photomorphogenesis through the expression of PHYTOENE SYNTHASE (PSY), a key gene in carotenoid biosynthesis. The orange carrot (Daucus carota) synthesizes and accumulates high amounts of carotenoids in the taproot that grows underground. Contrary to other organs, light impairs carrot taproot development and represses the expression of carotenogenic genes, such as DcPSY1 and DcPSY2, reducing carotenoid accumulation. By means of RNA sequencing, in a previous analysis, we observed that carrot PHYTOCHROME RAPIDLY REGULATED1 (DcPAR1) is more highly expressed in the underground grown taproot compared with those grown in light. PAR1 is a transcriptional cofactor with a negative role in shade avoidance syndrome regulation in Arabidopsis (Arabidopsis thaliana) through the dimerization with PHYTOCHROME-INTERACTING FACTORs (PIFs), allowing a moderate synthesis of carotenoids. Here, we show that overexpressing AtPAR1 in carrot increases carotenoid production in taproots grown underground as well as DcPSY1 expression. The high expression of AtPAR1 and DcPAR1 led us to hypothesize a functional role of DcPAR1 that was verified through in vivo binding to AtPIF7 and overexpression in Arabidopsis, where AtPSY expression and carotenoid accumulation increased together with a photomorphogenic phenotype. Finally, DcPAR1 antisense carrot lines presented a dramatic decrease in carotenoid levels and in relative expression of key carotenogenic genes as well as impaired taproot development. These results suggest that DcPAR1 is a key factor for secondary root development and carotenoid synthesis in carrot taproot grown underground.


Subject(s)
Arabidopsis , Daucus carota , Phytochrome , Arabidopsis/genetics , Arabidopsis/metabolism , Carotenoids/metabolism , Daucus carota/genetics , Daucus carota/metabolism , Gene Expression Regulation, Plant , Phytochrome/metabolism
6.
FEBS J ; 288(20): 5986-6002, 2021 10.
Article in English | MEDLINE | ID: mdl-33864705

ABSTRACT

Red/far-red light-sensing bacteriophytochrome photoreceptor (BphP) pathways play key roles in bacterial physiology and ecology. These bilin-binding proteins photoswitch between two states, Pr (red absorbing) and Pfr (far-red absorbing). The isomerization of the chromophore and the downstream structural changes result in the light signal transduction. The agricultural pathogen Xanthomonas campestris pv. campestris (Xcc) code for a single bathy-like type BphP (XccBphP), previously shown to negatively regulate several light-mediated biological processes involved in virulence. Here, we generated three different full-length variants with single amino acid changes within its GAF domain that affect the XccBphP photocycle favouring its Pr state: L193Q, L193N and D199A. While D199A recombinant protein locks XccBphP in a Pr-like state, L193Q and L193N exhibit a significant enrichment of the Pr form in thermal equilibrium. The X-ray crystal structures of the three variants were solved, resembling the wild-type protein in the Pr state. Finally, we studied the effects of altering the XccBphP photocycle on the exopolysaccharide xanthan production and stomatal aperture assays as readouts of its bacterial signalling pathway. Null-mutant complementation assays show that the photoactive Pr-favoured XccBphP variants L193Q and L193N tend to negatively regulate xanthan production in vivo. In addition, our results indicate that strains expressing these variants also promote stomatal apertures in challenged plant epidermal peels, compared to wild-type Xcc. The findings presented in this work provide new evidence on the Pr state of XccBphP as a negative regulator of the virulence-associated mechanisms by light in Xcc.


Subject(s)
Arabidopsis/microbiology , Bile Pigments/metabolism , Phytochrome/chemistry , Phytochrome/genetics , Plant Diseases/microbiology , Virulence , Xanthomonas campestris/physiology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Crystallography, X-Ray , Light , Models, Molecular , Mutagenesis, Site-Directed , Mutation , Phytochrome/metabolism
7.
Trends Plant Sci ; 26(5): 509-523, 2021 05.
Article in English | MEDLINE | ID: mdl-33461868

ABSTRACT

Major strides have been made over the past decade in elucidating the mechanisms that mediate shade-avoidance responses. The canonical PHYTOCHROME INTERACTING FACTOR (PIF)-auxin pathway that begins with inactivation of phytochrome B (phyB) by a low red:far-red (R:FR) ratio, and that leads to increased elongation, has been thoroughly characterized in arabidopsis (Arabidopsisthaliana) seedlings. Nevertheless, studies in other life stages and plant species have demonstrated the role of other wavelengths, photoreceptors, and hormones in the orchestration of shade-avoidance responses. We highlight recent developments that illustrate how canopy light cues regulate signaling through auxin, gibberellins (GAs), jasmonic acid (JA), salicylic acid (SA), abscisic acid (ABA), and strigolactones (SLs) to modulate key aspects of plant growth, metabolism, and defense.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phytochrome , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Hormones , Light , Phytochrome/metabolism , Phytochrome B/metabolism
8.
Plant Physiol ; 183(3): 869-882, 2020 07.
Article in English | MEDLINE | ID: mdl-32409479

ABSTRACT

Changes in environmental temperature influence many aspects of plant metabolism; however, the underlying regulatory mechanisms remain poorly understood. In addition to their role in light perception, phytochromes (PHYs) have been recently recognized as temperature sensors affecting plant growth. In particular, in Arabidopsis (Arabidopsis thaliana), high temperature reversibly inactivates PHYB, reducing photomorphogenesis-dependent responses. Here, we show the role of phytochrome-dependent temperature perception in modulating the accumulation of isoprenoid-derived compounds in tomato (Solanum lycopersicum) leaves and fruits. The growth of tomato plants under contrasting temperature regimes revealed that high temperatures resulted in coordinated up-regulation of chlorophyll catabolic genes, impairment of chloroplast biogenesis, and reduction of carotenoid synthesis in leaves in a PHYB1B2-dependent manner. Furthermore, by assessing a triple phyAB1B2 mutant and fruit-specific PHYA- or PHYB2-silenced plants, we demonstrated that biosynthesis of the major tomato fruit carotenoid, lycopene, is sensitive to fruit-localized PHY-dependent temperature perception. The collected data provide compelling evidence concerning the impact of PHY-mediated temperature perception on plastid metabolism in both leaves and fruit, specifically on the accumulation of isoprenoid-derived compounds.


Subject(s)
Arabidopsis/genetics , Arabidopsis/metabolism , Hot Temperature , Phytochrome/metabolism , Plastids/metabolism , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Terpenes/metabolism , Gene Expression Regulation, Plant , Genes, Plant
9.
J Exp Bot ; 70(13): 3425-3434, 2019 07 05.
Article in English | MEDLINE | ID: mdl-31099390

ABSTRACT

The growth-defense trade-off in plant biology has gained enormous traction in the last two decades, highlighting the importance of understanding how plants deal with two of the greatest challenges for their survival and reproduction. It has been well established that in response to competition signals perceived by informational photoreceptors, shade-intolerant plants typically activate the shade-avoidance syndrome (SAS). In turn, in response to signals of biotic attack, plants activate a suite of defense responses, many of which are directed to minimize the loss of plant tissue to the attacking agent (broadly defined, the defense syndrome, DS). We argue that components of the SAS, including increased elongation, apical dominance, reduced leaf mass per area (LMA), and allocation to roots, are in direct conflict with configurational changes that plants require to maximize defense. We hypothesize that these configurational trade-offs provide a functional explanation for the suppression of components of the DS in response to competition cues. Based on this premise, we discuss recent advances in the understanding of the mechanisms by which informational photoreceptors, by interacting with jasmonic acid (JA) signaling, help the plant to make intelligent allocation and developmental decisions that optimize its configuration in complex biotic contexts.


Subject(s)
Arabidopsis Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Cyclopentanes/metabolism , Oxylipins/metabolism , Photoreceptors, Plant/metabolism , Phytochrome/metabolism , Viridiplantae , Plant Development/physiology , Plant Diseases/immunology , Plant Immunity/physiology , Plant Leaves/metabolism , Plant Proteins/metabolism , Plant Roots/metabolism , Signal Transduction , Viridiplantae/growth & development , Viridiplantae/immunology , Viridiplantae/metabolism
10.
J Exp Bot ; 69(15): 3573-3586, 2018 06 27.
Article in English | MEDLINE | ID: mdl-29912373

ABSTRACT

Light signaling has long been reported to influence fruit biology, although the regulatory impact of fruit-localized photoreceptors on fruit development and metabolism remains unclear. Studies performed in phytochrome (PHY)-deficient tomato (Solanum lycopersicum) mutants suggest that SlPHYA, SlPHYB2, and to a lesser extent SlPHYB1 influence fruit development and ripening. By employing fruit-specific RNAi-mediated silencing of SlPHY genes, we demonstrated that fruit-localized SlPHYA and SlPHYB2 play contrasting roles in regulating plastid biogenesis and maturation in tomato. Our data revealed that fruit-localized SlPHYA, rather than SlPHYB1 or SlPHYB2, positively influences tomato plastid differentiation and division machinery via changes in both light and cytokinin signaling-related gene expression. Fruit-localized SlPHYA and SlPHYB2 were also shown to modulate sugar metabolism in early developing fruits via overlapping, yet distinct, mechanisms involving the co-ordinated transcriptional regulation of genes related to sink strength and starch biosynthesis. Fruit-specific SlPHY silencing also drastically altered the transcriptional profile of genes encoding light-repressor proteins and carotenoid-biosynthesis regulators, leading to reduced carotenoid biosynthesis during fruit ripening. Together, our data reveal the existence of an intricate PHY-hormonal interplay during fruit development and ripening, and provide conclusive evidence on the regulation of tomato quality by fruit-localized phytochromes.


Subject(s)
Carotenoids/metabolism , Light Signal Transduction/radiation effects , Phytochrome/metabolism , Solanum lycopersicum/physiology , Starch/metabolism , Cytokinins/metabolism , Fruit/genetics , Fruit/growth & development , Fruit/physiology , Fruit/radiation effects , Indoleacetic Acids/metabolism , Solanum lycopersicum/genetics , Solanum lycopersicum/growth & development , Solanum lycopersicum/radiation effects , Plant Growth Regulators/metabolism , Plastids/metabolism
11.
Proc Natl Acad Sci U S A ; 115(21): 5612-5617, 2018 05 22.
Article in English | MEDLINE | ID: mdl-29724856

ABSTRACT

Light cues from neighboring vegetation rapidly initiate plant shade-avoidance responses. Despite our detailed knowledge of the early steps of this response, the molecular events under prolonged shade are largely unclear. Here we show that persistent neighbor cues reinforce growth responses in addition to promoting auxin-responsive gene expression in Arabidopsis and soybean. However, while the elevation of auxin levels is well established as an early event, in Arabidopsis, the response to prolonged shade occurs when auxin levels have declined to the prestimulation values. Remarkably, the sustained low activity of phytochrome B under prolonged shade led to (i) decreased levels of PHYTOCHROME INTERACTING FACTOR 4 (PIF4) in the cotyledons (the organs that supply auxin) along with increased levels in the vascular tissues of the stem, (ii) elevated expression of the PIF4 targets INDOLE-3-ACETIC ACID 19 (IAA19) and IAA29, which in turn reduced the expression of the growth-repressive IAA17 regulator, (iii) reduced abundance of AUXIN RESPONSE FACTOR 6, (iv) reduced expression of MIR393 and increased abundance of its targets, the auxin receptors, and (v) elevated auxin signaling as indicated by molecular markers. Mathematical and genetic analyses support the physiological role of this system-level rearrangement. We propose that prolonged shade rewires the connectivity between light and auxin signaling to sustain shade avoidance without enhanced auxin levels.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Gene Expression Regulation, Plant/drug effects , Indoleacetic Acids/pharmacology , Light , Phytochrome/metabolism , Plant Physiological Phenomena , Arabidopsis/drug effects , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Phytochrome/genetics , Plant Growth Regulators/pharmacology , Signal Transduction
12.
Plant Cell Environ ; 40(11): 2530-2543, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28102548

ABSTRACT

Plants use photoreceptor proteins to detect the proximity of other plants and to activate adaptive responses. Of these photoreceptors, phytochrome B (phyB), which is sensitive to changes in the red (R) to far-red (FR) ratio of sunlight, is the one that has been studied in greatest detail. The molecular connections between the proximity signal (low R:FR) and a model physiological response (increased elongation growth) have now been mapped in considerable detail in Arabidopsis seedlings. We briefly review our current understanding of these connections and discuss recent progress in establishing the roles of other photoreceptors in regulating growth-related pathways in response to competition cues. We also consider processes other than elongation that are controlled by photoreceptors and contribute to plant fitness under variable light conditions, including photoresponses that optimize the utilization of soil resources. In examining recent advances in the field, we highlight emerging roles of phyB as a major modulator of hormones related to plant immunity, in particular salicylic acid and jasmonic acid (JA). Recent attempts to manipulate connections between light signals and defence in Arabidopsis suggest that it might be possible to improve crop health at high planting densities by targeting links between phyB and JA signalling.


Subject(s)
Ecological and Environmental Phenomena , Light , Phytochrome/metabolism , Plant Development/radiation effects , Signal Transduction
13.
PLoS Genet ; 12(11): e1006413, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27820825

ABSTRACT

Plants have developed sophisticated systems to monitor and rapidly acclimate to environmental fluctuations. Light is an essential source of environmental information throughout the plant's life cycle. The model plant Arabidopsis thaliana possesses five phytochromes (phyA-phyE) with important roles in germination, seedling establishment, shade avoidance, and flowering. However, our understanding of the phytochrome signaling network is incomplete, and little is known about the individual roles of phytochromes and how they function cooperatively to mediate light responses. Here, we used a bottom-up approach to study the phytochrome network. We added each of the five phytochromes to a phytochrome-less background to study their individual roles and then added the phytochromes by pairs to study their interactions. By analyzing the 16 resulting genotypes, we revealed unique roles for each phytochrome and identified novel phytochrome interactions that regulate germination and the onset of flowering. Furthermore, we found that ambient temperature has both phytochrome-dependent and -independent effects, suggesting that multiple pathways integrate temperature and light signaling. Surprisingly, none of the phytochromes alone conferred a photoperiodic response. Although phyE and phyB were the strongest repressors of flowering, both phyB and phyC were needed to confer a flowering response to photoperiod. Thus, a specific combination of phytochromes is required to detect changes in photoperiod, whereas single phytochromes are sufficient to respond to light quality, indicating how phytochromes signal different light cues.


Subject(s)
Apoproteins/genetics , Arabidopsis Proteins/genetics , Arabidopsis/genetics , Phytochrome B/genetics , Phytochrome/genetics , Apoproteins/metabolism , Arabidopsis/growth & development , Arabidopsis Proteins/metabolism , Genotype , Germination/genetics , Light , Phytochrome/metabolism , Phytochrome A , Phytochrome B/metabolism , Plant Leaves/genetics , Plant Leaves/growth & development , Seedlings/genetics , Seedlings/growth & development , Signal Transduction/genetics , Temperature
14.
J Mol Biol ; 428(19): 3702-20, 2016 09 25.
Article in English | MEDLINE | ID: mdl-27107635

ABSTRACT

Phytochromes constitute a major superfamily of light-sensing proteins that are reversibly photoconverted between a red-absorbing (Pr) and a far-red-absorbing (Pfr) state. Bacteriophytochromes (BphPs) are found among photosynthetic and non-photosynthetic bacteria, including pathogens. To date, several BphPs have been biophysically characterized. However, it is still not fully understood how structural changes are propagated from the photosensory module to the output module during the signal transduction event. Most phytochromes share a common architecture consisting of an N-terminal photosensor that includes the PAS2-GAF-PHY domain triad and a C-terminal variable output module. Here we present the crystal structure of the full-length BphP from the plant pathogen Xanthomonas campestris pv. campestris (XccBphP) bearing its photosensor and its complete output module, a PAS9 domain. In the crystals, the protein was found to be in the Pr state, whereas diffraction data together with resonance Raman spectroscopic and theoretical results indicate a ZZZssa and a ZZEssa chromophore configuration corresponding to a mixture of Pr and Meta-R state, the precursor of Pfr. The XccBphP quaternary assembly reveals a head-to-head dimer in which the output module contributes to the helical dimer interface. The photosensor, which is shown to be a bathy-like BphP, is influenced in its dark reactions by the output module. Our structural analyses suggest that the photoconversion between the Pr and Pfr states in the full-length XccBphP may involve changes in the relative positioning of the output module. This work contributes to understand the light-induced structural changes propagated from the photosensor to the output modules in phytochrome signaling.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Phytochrome/chemistry , Phytochrome/metabolism , Signal Transduction , Xanthomonas campestris/chemistry , Crystallography, X-Ray , Light , Models, Biological , Models, Molecular , Protein Conformation , Protein Multimerization , Spectrum Analysis, Raman , X-Ray Diffraction
15.
New Phytol ; 204(2): 342-54, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25236170

ABSTRACT

Shade-intolerant plants respond to low red : far-red (R : FR) ratios, which signal the proximity of potential competitors, by down-regulating immune responses. Here we investigated the mechanisms underlying this immune suppression in Arabidopsis. We used genetic, transcriptomic and metabolomic approaches to examine the functional connections between R : FR ratio and Arabidopsis resistance to the fungus Botrytis cinerea. Low R : FR ratios reduced the concentration of indol-3-ylmethyl glucosinolate (I3M) (an indolic glucosinolate, iGS) and camalexin in plants inoculated with B. cinerea, and attenuated the I3M response triggered by jasmonate elicitation. These effects on metabolite abundance correlated with reduced expression of iGS and camalexin biosynthetic genes. Furthermore, the effect of low R : FR increasing Arabidopsis susceptibility to B. cinerea was not present in mutants deficient in the biosynthesis of camalexin (pad3) or metabolism of iGS (pen2). Finally, in a mutant deficient in the JASMONATE ZIM DOMAIN-10 (JAZ10) protein, which does not respond to low R : FR with increased susceptibility to B. cinerea, supplemental FR failed to down-regulate iGS production. These results indicate that suppression of Arabidopsis immunity against B. cinerea by low R : FR ratios is mediated by reduced levels of Trp-derived defenses, and provide further evidence for a functional role of JAZ10 in the link between phytochrome and jasmonate signaling.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/immunology , Glucosinolates/metabolism , Indoles/metabolism , Nuclear Proteins/metabolism , Phytochrome/metabolism , Plant Diseases/immunology , Thiazoles/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/radiation effects , Arabidopsis Proteins/genetics , Biosynthetic Pathways , Botrytis/physiology , Cyclopentanes/metabolism , Disease Susceptibility , Gene Expression Regulation, Plant , Glucosinolates/chemistry , Indoleacetic Acids/metabolism , Indoles/chemistry , Mutation , Nuclear Proteins/genetics , Oxylipins/metabolism , Plant Diseases/microbiology , Plant Immunity , Plant Leaves/genetics , Plant Leaves/immunology , Plant Leaves/metabolism , Plant Leaves/radiation effects , Signal Transduction , Thiazoles/chemistry
16.
Plant Cell Environ ; 37(9): 2014-23, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24471455

ABSTRACT

In several species, seed germination is regulated by light in a way that restricts seedling emergence to the environmental conditions that are likely to be favourable for the success of the new individual, and therefore, this behaviour is recognized to have adaptive value. The phytochromes are one of the most relevant photoreceptors involved in light perception by plants. We explored the redundancy and diversity functions of the phytochrome family in the control of seed responsiveness to light and gibberellins (GA) by using a set of phytochrome mutants of Arabidopsis. Our data show that, in addition to the well-known role of phyB in the promotion of germination in response to high red to far-red ratios (R/FR), phyE and phyD stimulate germination at very low R/FR ratios, probably by promoting the action of phyA. Further, we show that phyC regulates negatively the seed responsiveness to light, unravelling unexpected functions for phyC in seed germination. Finally, we find that seed responsiveness to GA is mainly controlled by phyB, with phyC, phyD and phyE having relevant roles when acting in a phyB-deficient background. Our results indicate that phytochromes have multiple and complex roles during germination depending on the active photoreceptor background.


Subject(s)
Arabidopsis/growth & development , Arabidopsis/genetics , Germination/radiation effects , Gibberellins/pharmacology , Light , Multigene Family , Phytochrome/genetics , Arabidopsis/drug effects , Arabidopsis/radiation effects , Germination/drug effects , Models, Biological , Mutation/genetics , Phytochrome/metabolism , Seeds/drug effects , Seeds/growth & development , Seeds/radiation effects
17.
Annu Rev Plant Biol ; 64: 403-27, 2013.
Article in English | MEDLINE | ID: mdl-23373700

ABSTRACT

The dynamic light environment of vegetation canopies is perceived by phytochromes, cryptochromes, phototropins, and UV RESISTANCE LOCUS 8 (UVR8). These receptors control avoidance responses to preclude exposure to limiting or excessive light and acclimation responses to cope with conditions that cannot be avoided. The low red/far-red ratios of shade light reduce phytochrome B activity, which allows PHYTOCHROME INTERACTING FACTORS (PIFs) to directly activate the transcription of auxin-synthesis genes, leading to shade-avoidance responses. Direct PIF interaction with DELLA proteins links gibberellin and brassinosteroid signaling to shade avoidance. Shade avoidance also requires CONSTITUTIVE PHOTOMORPHOGENESIS 1 (COP1), a target of cryptochromes, phytochromes, and UVR8. Multiple regulatory loops and the input of the circadian clock create a complex network able to respond even to subtle threats of competition with neighbors while still compensating for major environmental fluctuations such as the day-night cycles.


Subject(s)
Ecosystem , Photoreceptors, Plant/metabolism , Plants/metabolism , Signal Transduction , Gibberellins/metabolism , Light , Phytochrome/metabolism , Plant Growth Regulators/metabolism
18.
Sci Rep ; 2: 872, 2012.
Article in English | MEDLINE | ID: mdl-23173079

ABSTRACT

Ever since the discovery of the role of bacteriophytochrome (BphP) in inducing carotenoid synthesis in Deinococcus radiodurans in response to light the role of BphPs in other non-photosynthetic bacteria is not clear yet. Azospirillum brasilense, a non-photosynthetic rhizobacterium, harbours a pair of BphPs out of which AbBphP1 is a homolog of AtBphP1 of Agrobacterium tumefaciens. By overexpression, purification, biochemical and spectral characterization we have shown that AbBphP1 is a photochromic bacteriophytochrome. Phenotypic study of the ΔAbBphP1 mutant showed that it is required for the survival of A. brasilense on minimal medium under red light. The mutant also showed reduced chemotaxis towards dicarboxylates and increased sensitivity to the photooxidative stress. Unlike D. radiodurans, AbBphP1 was not involved in controlling carotenoid synthesis. Proteome analysis of the ΔAbBphP1 indicated that AbBphP1 is involved in inducing a cellular response that enables A. brasilense in regenerating proteins that might be damaged due to photodynamic stress.


Subject(s)
Azospirillum brasilense/metabolism , Bacterial Proteins/metabolism , Carotenoids/metabolism , Phytochrome/metabolism , Azospirillum brasilense/growth & development , Bacterial Proteins/classification , Bacterial Proteins/genetics , Dimerization , Light , Mutation , Phylogeny , Phytochrome/classification , Phytochrome/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Tolonium Chloride/chemistry
19.
Plant J ; 69(4): 601-12, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21985558

ABSTRACT

Two aspects of light are very important for plant development: the length of the light phase or photoperiod and the quality of incoming light. Photoperiod detection allows plants to anticipate the arrival of the next season, whereas light quality, mainly the red to far-red ratio (R:FR), is an early signal of competition by neighbouring plants. phyB represses flowering by antagonising CO at the transcriptional and post-translational levels. A low R:FR decreases active phyB and consequently increases active CO, which in turn activates the expression of FT, the plant florigen. Other phytochromes like phyD and phyE seem to have redundant roles with phyB. PFT1, the MED25 subunit of the plant Mediator complex, has been proposed to act in the light-quality pathway that regulates flowering time downstream of phyB. However, whether PFT1 signals through CO and its specific mechanism are unclear. Here we show that CO-dependent and -independent mechanisms operate downstream of phyB, phyD and phyE to promote flowering, and that PFT1 is equally able to promote flowering by modulating both CO-dependent and -independent pathways. Our data are consistent with the role of PFT1 as an activator of CO transcription, and also of FT transcription, in a CO-independent manner. Our transcriptome analysis is also consistent with CO and FT genes being the most important flowering targets of PFT1. Furthermore, comparison of the pft1 transcriptome with transcriptomes after fungal and herbivore attack strongly suggests that PFT1 acts as a hub, integrating a variety of interdependent environmental stimuli, including light quality and jasmonic acid-dependent defences.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Flowers/physiology , Gene Expression Regulation, Plant/physiology , Nuclear Proteins/metabolism , Phytochrome/metabolism , Animals , Apoproteins/metabolism , Arabidopsis/genetics , Arabidopsis/radiation effects , Arabidopsis Proteins/genetics , Botrytis/physiology , Butterflies/physiology , Cyclopentanes/metabolism , DNA-Binding Proteins/genetics , Flowers/genetics , Flowers/radiation effects , Fusarium/physiology , Light , Mediator Complex/genetics , Mediator Complex/metabolism , Models, Biological , Mutation , Nuclear Proteins/genetics , Oxylipins/metabolism , Photoperiod , Phytochrome B/metabolism , Plant Leaves/genetics , Plant Leaves/physiology , Plant Leaves/radiation effects , Seedlings/genetics , Seedlings/physiology , Seedlings/radiation effects , Signal Transduction/physiology , Temperature , Thysanoptera/physiology , Transcription Factors/genetics , Transcriptome
20.
J Integr Plant Biol ; 53(12): 920-9, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22040287

ABSTRACT

It is well-documented that phytochromes can control plant growth and development from germination to flowering. Additionally, these photoreceptors have been shown to modulate both biotic and abiotic stress. This has led to a series of studies exploring the molecular and biochemical basis by which phytochromes modulate stresses, such as salinity, drought, high light or herbivory. Evidence for a role of phytrochromes in plant stress tolerance is explored and reviewed.


Subject(s)
Adaptation, Physiological , Phytochrome/metabolism , Plant Physiological Phenomena , Plants/metabolism , Stress, Physiological , Herbivory/physiology
SELECTION OF CITATIONS
SEARCH DETAIL