Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Bioconjug Chem ; 28(7): 1878-1892, 2017 07 19.
Article in English | MEDLINE | ID: mdl-28581724

ABSTRACT

A series of zinc(II) dipicolylamine (ZnDPA)-based drug conjugates have been synthesized to probe the potential of phosphatidylserine (PS) as a new antigen for small molecule drug conjugate (SMDC) development. Using in vitro cytotoxicity and plasma stability studies, PS-binding assay, in vivo pharmacokinetic studies, and maximum tolerated dose profiles, we provided a roadmap and the key parameters required for the development of the ZnDPA based drug conjugate. In particular, conjugate 24 induced tumor regression in the COLO 205 xenograft model and exhibited a more potent antitumor effect with a 70% reduction of cytotoxic payload compared to that of the marketed irinotecan when dosed at the same regimen. In addition to the validation of PS as an effective pharmacodelivery target for SMDC, our work also provided the foundation that, if applicable, a variety of therapeutic agents could be conjugated in the same manner to treat other PS-associated diseases.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Immunoconjugates/therapeutic use , Molecular Targeted Therapy/methods , Organometallic Compounds/immunology , Phosphatidylserines/immunology , Picolinic Acids/immunology , Animals , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Humans , Immunoconjugates/chemistry , Immunoconjugates/pharmacokinetics , Organometallic Compounds/chemical synthesis , Organometallic Compounds/pharmacology , Phosphatidylserines/metabolism , Picolinic Acids/chemical synthesis , Picolinic Acids/pharmacology , Structure-Activity Relationship , Xenograft Model Antitumor Assays
2.
J Immunol ; 164(6): 3283-91, 2000 Mar 15.
Article in English | MEDLINE | ID: mdl-10706721

ABSTRACT

We previously found that the tryptophan catabolite picolinic acid (PA) is a costimulus for the activation of macrophage effector functions. In this study, we have investigated the ability of PA to modulate the expression of chemokines in macrophages. We demonstrate that PA is a potent activator of the inflammatory chemokines MIP (macrophage inflammatory protein)-1 alpha and MIP-1 beta (MIPs) mRNA expression in mouse macrophages in a dose- and time-dependent fashion and through a de novo protein synthesis-dependent process. The induction by PA occurred within 3 h of treatment and reached a peak in 12 h. The stimulatory effects of PA were selective for MIPs because other chemokines, including monocyte chemoattractant protein-1, RANTES, IFN-gamma-inducible protein-10, MIP-2, and macrophage-derived chemokine, were not induced under the same experimental conditions and were not an epiphenomenon of macrophage activation because IFN-gamma did not affect MIPs expression. Induction of both MIP-1 alpha and MIP-1 beta by PA was associated with transcriptional activation and mRNA stabilization, suggesting a dual molecular mechanism of control. Iron chelation could be involved in MIPs induction by PA because iron sulfate inhibited the process and the iron-chelating agent, desferrioxamine, induced MIPs expression. We propose the existence of a new pathway leading to inflammation initiated by tryptophan catabolism that can communicate with the immune system through the production of PA, followed by secretion of chemokines by macrophages. These results establish the importance of PA as an activator of macrophage proinflammatory functions, providing the first evidence that this molecule can be biologically active without the need for a costimulatory agent.


Subject(s)
Macrophage Inflammatory Proteins/biosynthesis , Macrophages/metabolism , Picolinic Acids/immunology , Tryptophan/metabolism , Adjuvants, Immunologic/pharmacology , Animals , Cell Line , Chemokine CCL4 , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Iron Chelating Agents/pharmacology , Macrophage Inflammatory Proteins/genetics , Macrophages/drug effects , Macrophages/immunology , Mice , Mice, Inbred C57BL , Picolinic Acids/metabolism , Picolinic Acids/pharmacology , RNA, Messenger/biosynthesis , RNA, Messenger/metabolism , Trans-Activators/immunology , Trans-Activators/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...