Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 912
Filter
1.
J Biol Inorg Chem ; 29(3): 315-330, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38722397

ABSTRACT

Eighteen novel Ti(IV) complexes stabilized by different chelating amino-bis(phenolato) (ONNO, ONON, ONOO) ligands and 2,6-dipicolinic acid as a second chelator were synthesized with isolated yields ranging from 79 to 93%. Complexes were characterized by 1H and 13C-NMR spectroscopy, as well as by HRMS and X-Ray diffraction analysis. The good to excellent aqueous stability of these Ti(IV) complexes can be modulated by the substitutions on the 2-position of the phenolato ligands. Most of the synthesized Ti(IV) complexes demonstrated potent inhibitory activity against Hela S3 and Hep G2 tumor cells. Among them, the naphthalenyl based Salan type 2j, 2-picolylamine based [ONON] type 2n and N-(2-hydroxyethyl) based [ONOO] type 2p demonstrated up to 40 folds enhanced cytotoxicity compared to cisplatin together with a significantly reduced activity against healthy AML12 cells. The three Ti(IV) complexes exhibited fast cellular uptake by Hela S3 cells and induced almost exclusively apoptosis. 2j could trigger higher level of ROS generation than 2p and 2n.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Drug Screening Assays, Antitumor , Picolinic Acids , Titanium , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Picolinic Acids/chemistry , Picolinic Acids/pharmacology , Picolinic Acids/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Structure-Activity Relationship , Titanium/chemistry , Titanium/pharmacology , HeLa Cells , Apoptosis/drug effects , Molecular Structure , Cell Proliferation/drug effects
2.
Dalton Trans ; 53(21): 8988-9000, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38721696

ABSTRACT

A new family of six complexes based on 5-nitropicolinic acid (5-npic) and transition metals has been obtained: [M(5-npic)2]n (MII = Mn (1) and Cd (2)), [Cu(5-npic)2]n (3), and [M(5-npic)2(H2O)2] (MII = Co (4), Ni (5), and Zn (6)), which display 1D, 2D, and mononuclear structures, respectively, thanks to different coordination modes of 5-npic. After their physicochemical characterization by single-crystal X-ray diffraction (SCXRD), elemental analyses (EA), and spectroscopic techniques, quantum chemical calculations using Time-Dependent Density Functional Theory (TD-DFT) were performed to further study the luminescence properties of compounds 2 and 6. The potential anticancer activity of all complexes was tested against three tumor cell lines, B16-F10, HT29, and HepG2, which are models widely used for studying melanoma, colon cancer, and liver cancer, respectively. The best results were found for compounds 2 and 4 against B16-F10 (IC50 = 26.94 and 45.10 µg mL-1, respectively). In addition, anti-inflammatory studies using RAW 264.7 cells exhibited promising activity for 2, 3, and 6 (IC50 NO = 5.38, 24.10, and 17.63 µg mL-1, respectively). This multidisciplinary study points to complex 2, based on CdII, as a promising anticancer and anti-inflammatory material.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Picolinic Acids , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Mice , Animals , Picolinic Acids/chemistry , Picolinic Acids/pharmacology , Density Functional Theory , Cell Line, Tumor , Drug Screening Assays, Antitumor , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Drug Design , Cell Proliferation/drug effects , Molecular Structure , Models, Molecular , RAW 264.7 Cells , Cell Survival/drug effects
3.
J Biol Inorg Chem ; 29(3): 331-338, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38717473

ABSTRACT

Two new lanthanide-complexes based on the 5-nitropicolinate ligand (5-npic) were obtained and fully characterized. Single-crystal X-ray diffraction revealed that these compounds are isostructural to a Dy-complex, previously published by us, based on dinuclear monomers link together with an extended hydrogen bond network, providing a final chemical formula of [Ln2(5-npic)6(H2O)4]·(H2O)2, where Ln = Dy (1), Gd (2), and Tb (3). Preliminary photoluminescent studies exhibited a ligand-centered emission for all complexes. The potential antitumoral activity of these materials was assayed in a prostatic cancer cell line (PC-3; the 2nd most common male cancerous disease), showing a significant anticancer activity (50-60% at 500 µg·mL-1). In turn, a high biocompatibility by both, the complexes and their precursors in human immunological HL-60 cells, was evidenced. In view of the strongest toxic effect in the tumoral cell line provided by the free 5-npic ligand (~ 40-50%), the overall anticancer complex performance seems to be triggered by the presence of this molecule.


Subject(s)
Antineoplastic Agents , Lanthanoid Series Elements , Picolinic Acids , Humans , Lanthanoid Series Elements/chemistry , Lanthanoid Series Elements/pharmacology , Picolinic Acids/chemistry , Picolinic Acids/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Male , Drug Screening Assays, Antitumor , Models, Molecular , HL-60 Cells , Crystallography, X-Ray , Molecular Structure , Cell Line, Tumor , PC-3 Cells , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Cell Survival/drug effects , Cell Proliferation/drug effects
4.
PLoS One ; 19(5): e0300292, 2024.
Article in English | MEDLINE | ID: mdl-38718051

ABSTRACT

The aim of the study was to investigate the effect of returning to a balanced diet combined with chromium picolinate (CrPic) or chromium nanoparticles (CrNPs) supplementation at a pharmacologically relevant dose of 0.3 mg/kg body weight on the expression level of selected genes and bone turnover markers in the blood and bones of rats fed an obese diet. The results of the study showed that chronic intake of a high-fat obesogenic diet negatively affects bone turnover by impairing processes of both synthesis and degradation of bones. The switch to a healthy diet proved insufficient to regulate bone metabolism disorders induced by an obesogenic diet, even when it was supplemented with chromium, irrespective of its form. Supplementation with CrPic with no change in diet stimulated bone metabolism only at the molecular level, towards increased osteoclastogenesis (bone resorption). In contrast, CrNPs added to the high-fat diet effectively regulated bone turnover by increasing both osteoblastogenesis and osteoclastogenesis, with these changes directed more towards bone formation. The results of the study suggest that unfavourable changes in bone metabolism induced by chronic intake of a high-fat diet can be mitigated by supplementation with CrNPs, whereas a change in eating habits fails to achieve a similar effect.


Subject(s)
Bone Remodeling , Chromium , Diet, High-Fat , Animals , Diet, High-Fat/adverse effects , Rats , Chromium/administration & dosage , Chromium/pharmacology , Male , Bone Remodeling/drug effects , Nanoparticles/chemistry , Dietary Fiber/pharmacology , Picolinic Acids/pharmacology , Picolinic Acids/administration & dosage , Dietary Supplements , Bone and Bones/metabolism , Bone and Bones/drug effects , Rats, Wistar , Metal Nanoparticles/chemistry , Metal Nanoparticles/administration & dosage , Osteogenesis/drug effects
5.
FASEB J ; 38(8): e23618, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38651689

ABSTRACT

Intestinal barrier dysfunction usually occurred in acute pancreatitis (AP) but the mechanism remains unclear. In this study, RNA sequencing of ileum in L-arginine-induced AP mice demonstrated that phosphoenolpyruvate kinase 1 (Pck1) was significantly up-regulated. Increased Pck1 expression in intestinal epithelial cells (IECs) was further validated in ileum of AP mice and duodenum of AP patients. In AP mice, level of Pck1 was positively correlated with pancreatic and ileal histopathological scores, serum amylase activity, and intestinal permeability (serum diamine oxidase (DAO), D-lactate, and endotoxin). In AP patients, level of Pck1 had a positive correlation with Ranson scores, white blood cell count and C-reactive protein. Inhibition of Pck1 by 3-Mercaptopicolinic acid hydrochloride (3-MPA) alleviated pancreatic and ileal injuries in AP mice. AP + 3-MPA mice showed improved intestinal permeability, including less epithelial apoptosis, increased tight junction proteins (TJPs) expression, decreased serum DAO, D-lactate, endotoxin, and FITC-Dextran levels, and reduced bacteria translocation. Lysozyme secreted by Paneth cells and mucin2 (MUC2) secretion in goblet cells were also partly restored in AP + 3-MPA mice. Meanwhile, inhibition of Pck1 improved intestinal immune response during AP, including elevation of M2/M1 macrophages ratio and secretory immunoglobulin A (sIgA) and reduction in neutrophils infiltration. In vitro, administration of 3-MPA dramatically ameliorated inflammation and injuries of epithelial cells in enteroids treated by LPS. In conclusion, inhibition of Pck1 in IECs might alleviate AP via modulating intestinal homeostasis.


Subject(s)
Epithelial Cells , Intestinal Mucosa , Pancreatitis , Phosphoenolpyruvate Carboxykinase (GTP) , Animals , Mice , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Homeostasis , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Mice, Inbred C57BL , Pancreatitis/metabolism , Pancreatitis/pathology , Pancreatitis/drug therapy , Phosphoenolpyruvate Carboxykinase (GTP)/antagonists & inhibitors , Phosphoenolpyruvate Carboxykinase (GTP)/metabolism , Picolinic Acids/pharmacology
6.
J Biophotonics ; 17(6): e202400015, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38613161

ABSTRACT

Pollution from toxic spores has caused us a lot of problems because spores are extremely resistant and can survive most disinfectants. Therefore, the detection of spore response to disinfectant is of great significance for the development of effective decontamination strategies. In this work, we investigated the effect of 0.5% sodium hypochlorite on the molecular and morphological properties of single spores of Bacillus subtilis using single-cell techniques. Laser tweezers Raman spectroscopy showed that sodium hypochlorite resulted in Ca2+-dipicolinic acid release and nucleic acid denaturation. Atomic force microscopy showed that the surface of treated spores changed from rough to smooth, protein shells were degraded at 10 min, and the permeability barrier was destroyed at 15 min. The spore volume decreased gradually over time. Live-cell imaging showed that the germination and growth rates decreased with increasing treatment time. These results provide new insight into the response of spores to sodium hypochlorite.


Subject(s)
Bacillus subtilis , Single-Cell Analysis , Sodium Hypochlorite , Spores, Bacterial , Sodium Hypochlorite/pharmacology , Bacillus subtilis/drug effects , Bacillus subtilis/cytology , Bacillus subtilis/physiology , Spores, Bacterial/drug effects , Picolinic Acids/pharmacology , Spectrum Analysis, Raman
7.
J Agric Food Chem ; 72(15): 8840-8848, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38570314

ABSTRACT

A series of new 4-amino-3,5-dicholo-6-(5-aryl-substituted-1H-pyrazol-1-yl)-2-picolinic acid compounds were designed and prepared to discover herbicidal molecules. The inhibitory activities of all new compounds against the root growth ofArabidopsis thaliana were assayed. On the whole, the new synthesized compounds displayed good inhibition effects and had excellent herbicidal activities on root growth of weed at 500 µM. Importantly, a selection of compounds demonstrated comparable herbicidal properties to picloram. At the dosage of 250 g/ha, most of the compounds showed a 100% postemergence herbicidal activity to control Chenopodium album and Amaranthus retroflexus. Using compound V-2, the mechanism of action was investigated based on a phenotype study using AFB5-deficient Arabidopsis thaliana. It was found that the novel 6-pyrazolyl-2-picolinic acids were auxinic compounds. In addition, it was proposed that V-2 may be an immune activator due to its upregulation of defense genes and the increased content of jasmonic acid.


Subject(s)
Arabidopsis , Herbicides , Herbicides/pharmacology , Structure-Activity Relationship , Picolinic Acids/pharmacology , Arabidopsis/genetics
8.
Pest Manag Sci ; 80(7): 3269-3277, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38363171

ABSTRACT

BACKGROUND: In pesticide research, bleaching herbicides have always been a hot topic. Our previous research showed that N-(4-fluorobenzyl)-2-methoxybenzamide is an innovative lead compound for bleaching herbicides. RESULTS: A total of 40 derivatives of picolinamides were prepared and evaluated for their herbicidal activity by Petri dish tests and postemergence trials. The structure-activity relationship (SAR) revealed that introducing electron-withdrawing groups at the 3- or 4-positions of the benzyl significantly enhances herbicidal activity. Furthermore, ZI-04 induced similar symptoms such as bleaching effect in treated weeds and accumulation of biosynthetic precursors for carotenoids as observed with diflufenican. ZI-04 also exhibited significant cross-resistance to diflufenican and had a lower resistance risk than diflufenican. CONCLUSION: N-benzyl-6-methylpicolinamides were discovered as a novel scaffold for bleaching herbicides. The accumulation of phytoene, phytofluene and ζ-Carotene in radish cotyledons, and cross-resistance observed with diflufenican, showed that title compounds can interfere with carotenoid biosynthesis. © 2024 Society of Chemical Industry.


Subject(s)
Herbicides , Picolinic Acids , Herbicides/pharmacology , Herbicides/chemistry , Picolinic Acids/chemistry , Picolinic Acids/pharmacology , Structure-Activity Relationship , Plant Weeds/drug effects , Amides/chemistry , Amides/pharmacology
9.
Molecules ; 29(2)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38257244

ABSTRACT

Thirty-eight new 4-amino-3,5-dicholo-6-(1H-indazolyl)-2-picolinic acids and 4-amino-3,5-dicholo-6-(2H-indazolyl)-2-picolinic acids were designed by scaffold hopping and synthesized to discover potential herbicidal molecules. All the new compounds were tested to determine their inhibitory activities against Arabidopsis thaliana and the root growth of five weeds. In general, the synthesized compounds exhibited excellent inhibition properties and showed good inhibitory effects on weed root growth. In particular, compound 5a showed significantly greater root inhibitory activity than picloram in Brassica napus and Abutilon theophrasti Medicus at the concentration of 10 µM. The majority of compounds exhibited a 100% post-emergence herbicidal effect at 250 g/ha against Amaranthus retroflexus and Chenopodium album. We also found that 6-indazolyl-2-picolinic acids could induce the up-regulation of auxin genes ACS7 and NCED3, while auxin influx, efflux and auxin response factor were down-regulated, indicating that 6-indazolyl-2-picolinic acids promoted ethylene release and ABA production to cause plant death in a short period, which is different in mode from other picolinic acids.


Subject(s)
Arabidopsis , Herbicides , Herbicides/pharmacology , Picolinic Acids/pharmacology , Picloram , Biological Transport , Indoleacetic Acids/pharmacology
10.
J Inorg Biochem ; 240: 112094, 2023 03.
Article in English | MEDLINE | ID: mdl-36525714

ABSTRACT

Four novel Salan Hf(IV) complexes stabilized by 2,6-dipicolinic acid (Dipic) were synthesized and characterized by 1H, 13C NMR and X-ray diffraction spectroscopy. These Hf(IV)bis-chelates could be obtained in good to excellent yields (88%-91%) and demonstrated rather good stability in aqueous media and on silica gel. [L2Hf(IV)Dipic4-H,Cl] containing steric bulk L2 were stable in about 10% H2O (H2O/THF (v/v)), however, [L1Hf(IV)Dipic4-H,Cl] with non-steric L1 could slowly dissociate and release nontoxic L1. [L1-2Hf(IV)Dipic4-Cl] showed excellent anti-tumoral activity in the range of cisplatin (Hela S3: IC50 = 3.5 ± 0.4 µM, Hep G2: IC50 = 11.2 ± 2.1 µM). In addition, the cellular uptake and apoptosis investigation of [L1Hf(IV)Dipic4-Cl] suggested a fast cellular uptake process against Hela S3 cells with an almost exclusive induced apoptosis cell death path.


Subject(s)
Antineoplastic Agents , Hafnium , Humans , X-Rays , Antineoplastic Agents/chemistry , Picolinic Acids/pharmacology , Picolinic Acids/chemistry
11.
J Photochem Photobiol B ; 236: 112569, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36152351

ABSTRACT

Dipicolinic acid (DPA) is a specific molecule of bacterial spores which is essential to their resistance to various stresses such as ultraviolet (UV) exposure and to their germination. DPA has a particular photochemistry that remains imperfectly understood. In particular, due to its ability to absorb UVc radiation, it is likely to form in vitro a wide variety of photoproducts (DPAp) of which only about ten have been recently identified. The photochemical reactions resulting in DPAp, especially those inside the spores, are still poorly understood. Only one of these DPAp, which probably acts as a photosensitizer of DNA upon exposure to UVc, has been identified as having an impact on spores. However, as UVc is required to form DPAp, it is difficult to decouple the overall effect of UVc exposure from the possible effects of DPAp alone. In this study, DPAp were artificially introduced into the spores of the FB122 mutant strain of Bacillus subtilis, one that does not produce DPA. These experiments revealed that some DPAp may play a positive role for the spore. These benefits are visible in an improvement in spore germination rate and kinetics, as well as in an increase in their resistance to UVc exposure.


Subject(s)
Bacillus subtilis , Spores, Bacterial , Spores, Bacterial/radiation effects , Picolinic Acids/pharmacology , Ultraviolet Rays , Bacterial Proteins/genetics
12.
Proc Natl Acad Sci U S A ; 119(14): e2111804119, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35353625

ABSTRACT

The receptor for colony stimulating factor 1 (CSF-1R) is important for the survival and function of myeloid cells that mediate pathology during experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). CSF-1 and IL-34, the ligands of CSF-1R, have similar bioactivities but distinct tissue and context-dependent expression patterns, suggesting that they have different roles. This could be the case in EAE, given that CSF-1 expression is up-regulated in the CNS, while IL-34 remains constitutively expressed. We found that targeting CSF-1 with neutralizing antibody halted ongoing EAE, with efficacy superior to CSF-1R inhibitor BLZ945, whereas IL-34 neutralization had no effect, suggesting that pathogenic myeloid cells were maintained by CSF-1. Both anti­CSF-1 and BLZ945 treatment greatly reduced the number of monocyte-derived cells and microglia in the CNS. However, anti­CSF-1 selectively depleted inflammatory microglia and monocytes in inflamed CNS areas, whereas BLZ945 depleted virtually all myeloid cells, including quiescent microglia, throughout the CNS. Anti­CSF-1 treatment reduced the size of demyelinated lesions and microglial activation in the gray matter. Lastly, we found that bone marrow­derived immune cells were the major mediators of CSF-1R­dependent pathology, while microglia played a lesser role. Our findings suggest that targeting CSF-1 could be effective in ameliorating MS pathology, while preserving the homeostatic functions of myeloid cells, thereby minimizing risks associated with ablation of CSF-1R­dependent cells.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Macrophage Colony-Stimulating Factor , Multiple Sclerosis , Animals , Benzothiazoles/pharmacology , Benzothiazoles/therapeutic use , Central Nervous System/immunology , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/immunology , Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Macrophage Colony-Stimulating Factor/metabolism , Mice , Mice, Inbred C57BL , Multiple Sclerosis/drug therapy , Multiple Sclerosis/immunology , Myeloid Cells/drug effects , Myeloid Cells/metabolism , Picolinic Acids/pharmacology , Picolinic Acids/therapeutic use , Receptor, Macrophage Colony-Stimulating Factor/antagonists & inhibitors
13.
Pharmacol Res Perspect ; 10(1): e00907, 2022 02.
Article in English | MEDLINE | ID: mdl-34962108

ABSTRACT

Muscarinic acetylcholine receptors (mAChRs) have been shown to mediate alcohol consumption and seeking. Both M4 and M5 mAChRs have been highlighted as potential novel treatment targets for alcohol use disorders (AUD). Similarly, M1 mAChRs are expressed throughout reward circuitry, and their signaling has been implicated in cocaine consumption. However, whether the same effects are seen for alcohol consumption, or whether natural reward intake is inadvertently impacted is still unknown. To determine the role of M1 mAChRs in alcohol consumption, we tested operant self-administration of alcohol under both fixed ratio (FR3) and progressive ratio (PR3-4) schedules. Enhancing M1 mAChR signaling (via the M1 PAM-Agonist PF-06767832, 1 mg/kg, i.p.) reduced operant alcohol consumption on a fixed schedule but had no effect on motivation to acquire alcohol. To determine whether these actions were specific to alcohol, we examined the effects of M1 enhancement on natural reward (sucrose) self-administration. Systemic administration of PF-06767832 (1 mg/kg, i.p.) also reduced operant sucrose self-administration, suggesting the actions of the M1 receptor may be non-selective across drug and natural rewards. Finally, to understand whether this reduction extended to natural consummatory behaviors, we assessed home cage standard chow and water consumption. M1 enhancement via systemic PF-06767832 administration reduced food and water consumption. Together our results suggest the M1 PAM-agonist, PF-06767832, non-specifically reduces consummatory behaviors that are not associated with motivational strength for the reward. These data highlight the need to further characterize M1 agonists, PAMs, and PAM-agonists, which may have varying degrees of utility in the treatment of neuropsychiatric disorders including AUD.


Subject(s)
Alcohol Drinking/metabolism , Consummatory Behavior/drug effects , Picolinic Acids/pharmacology , Receptor, Muscarinic M1/metabolism , Thiazoles/pharmacology , Alcoholism/physiopathology , Alcoholism/therapy , Animals , Male , Rats , Receptor, Muscarinic M1/agonists , Reward , Self Administration , Sucrose/administration & dosage
14.
Biol Trace Elem Res ; 200(1): 339-347, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33598892

ABSTRACT

The aim of present study was to investigate the beneficial effect of chromium (III) picolinate (CrPic) and chromium (III) picolinate nanoparticles (NCrPic) addition on growth performance, stress-related hormonal changes, and serum levels of various immunity biomarkers, as well as the gene expression of IFN-γ in broilers exposed to heat stress conditions. Treatments included T1 which received the basal diet with no feed additive; T2 exposed to heat stress; T3, T4, and T5 containing 500, 1000, and 1500 ppb CrPic; as well as T6, T7, and T8 containing 500, 1000, and 1500 ppb NCrPic, respectively. After 2 weeks from CrPic and NCrPic supplementation, IFN-γ mRNA expression was assayed using the RT-PCR technique. The results showed that the lower body weight, daily weight gain, daily feed intake by heat stress, and the feed conversion ratio were recovered remarkably by CrPic and NCrPic supplements. The stress-elevated levels of cortisol and immunoglobulin were reduced significantly using CrPic and NCrPic supplementation (P ≤ 0.05). The gene expression profile showed that the upregulated expression of IFN-γ was regulated by the addition of CrPic and NCrPic, in particular, to the diet; however, a full downregulation of IFN-γ expression was observed after week 2 of NCrPic supplementation. In conclusion, the results indicated that nanoparticle supplementation could be effective in reducing heat stress-induced detrimental alterations, thereby attributing to substantial changes to the immune system, including IFN-γ expression.


Subject(s)
Chickens , Nanoparticles , Animal Feed/analysis , Animals , Chromium/pharmacology , Diet , Dietary Supplements , Heat-Shock Response , Picolinic Acids/pharmacology
15.
Cancer Immunol Res ; 10(1): 40-55, 2022 01.
Article in English | MEDLINE | ID: mdl-34795032

ABSTRACT

Macrophages often abound within tumors, express colony-stimulating factor 1 receptor (CSF1R), and are linked to adverse patient survival. Drugs blocking CSF1R signaling have been used to suppress tumor-promoting macrophage responses; however, their mechanisms of action remain incompletely understood. Here, we assessed the lung tumor immune microenvironment in mice treated with BLZ945, a prototypical small-molecule CSF1R inhibitor, using single-cell RNA sequencing and mechanistic validation approaches. We showed that tumor control was not caused by CSF1R+ cell depletion; instead, CSF1R targeting reshaped the CSF1R+ cell landscape, which unlocked cross-talk between antitumoral CSF1R- cells. These cells included IFNγ-producing natural killer and T cells, and an IL12-producing dendritic cell subset, denoted as DC3, which were all necessary for CSF1R inhibitor-mediated lung tumor control. These data indicate that CSF1R targeting can activate a cardinal cross-talk between cells that are not macrophages and that are essential to mediate the effects of T cell-targeted immunotherapies and promote antitumor immunity.See related Spotlight by Burrello and de Visser, p. 4.


Subject(s)
Dendritic Cells/immunology , Immunotherapy/methods , Interferon-gamma/metabolism , Interleukin-12/metabolism , Lung Neoplasms/therapy , Animals , Benzothiazoles/pharmacology , Cell Line, Tumor , Female , Lung Neoplasms/immunology , Mice , Mice, Inbred C57BL , Picolinic Acids/pharmacology , Tumor Microenvironment/drug effects , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/metabolism , Xenograft Model Antitumor Assays
16.
J Am Chem Soc ; 143(49): 20988-21002, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34855372

ABSTRACT

Guanine-rich DNA can fold into secondary structures known as G-quadruplexes (G4s). G4s can form from a single DNA strand (intramolecular) or from multiple DNA strands (intermolecular), but studies on their biological functions have been often limited to intramolecular G4s, owing to the low probability of intermolecular G4s to form within genomic DNA. Herein, we report the first example of an endogenous protein, Cockayne Syndrome B (CSB), that can bind selectively with picomolar affinity toward intermolecular G4s formed within rDNA while displaying negligible binding toward intramolecular structures. We observed that CSB can selectively resolve intermolecular over intramolecular G4s, demonstrating that its selectivity toward intermolecular structures is also reflected at the resolvase level. Immunostaining of G4s with the antibody BG4 in CSB-impaired cells (CS1AN) revealed that G4-staining in the nucleolus of these cells can be abrogated by transfection of viable CSB, suggesting that intermolecular G4s can be formed within rDNA and act as binding substrate for CSB. Given that loss of function of CSB elicits premature aging phenotypes, our findings indicate that the interaction between CSB and intermolecular G4s in rDNA could be of relevance to maintain cellular homeostasis.


Subject(s)
DNA Helicases/metabolism , DNA Repair Enzymes/metabolism , DNA/metabolism , G-Quadruplexes , Poly-ADP-Ribose Binding Proteins/metabolism , Recombinases/metabolism , Aminoquinolines/pharmacology , Animals , Benzothiazoles/pharmacology , Cell Nucleolus/metabolism , DNA/genetics , HeLa Cells , Humans , Naphthyridines/pharmacology , Picolinic Acids/pharmacology , Protein Binding/drug effects , Sf9 Cells , Spodoptera
17.
Bioorg Chem ; 116: 105387, 2021 11.
Article in English | MEDLINE | ID: mdl-34628225

ABSTRACT

Alzheimer's disease (AD) is a prevalent neurodegenerative disorder that has multiple causes. Therefore, multiple-target-directed ligands (MTDLs), which act on multiple targets, have been developed as a novel strategy for AD therapy. In this study, novel drug candidates were designed and synthesized by the covalent linkings of tacrine, a previously used anti-AD acetylcholinesterase (AChE) inhibitor, and dipicolylamine, an ß-amyloid (Aß) aggregation inhibitor. Most tacrine-dipicolylamine dimers potently inhibited AChE and Aß1-42 aggregation in vitro, and 13a exhibited nanomolar level inhibition. Molecular docking analysis suggested that 13a could interact with the catalytic active sites and the peripheral anion site of AChE, and bind to Aß1-42 pentamers. Moreover, 13a effectively attenuated Aß1-42 oligomers-induced cognitive dysfunction in mice by activating the cAMP-response element binding protein/brain-derived neurotrophic factor signaling pathway, decreasing tau phosphorylation, preventing synaptic toxicity, and inhibiting neuroinflammation. The safety profile of 13a in mice was demonstrated by acute toxicity experiments. All these results suggested that novel tacrine-dipicolylamine dimers, especially 13a, have multi-target neuroprotective and cognitive-enhancing potentials, and therefore might be developed as MTDLs to combat AD.


Subject(s)
Alzheimer Disease/drug therapy , Amines/pharmacology , Cholinesterase Inhibitors/pharmacology , Drug Design , Neuroprotective Agents/pharmacology , Picolinic Acids/pharmacology , Tacrine/pharmacology , Acetylcholinesterase/metabolism , Alzheimer Disease/metabolism , Amines/chemistry , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Dose-Response Relationship, Drug , Humans , Ligands , Molecular Structure , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Peptide Fragments/antagonists & inhibitors , Peptide Fragments/metabolism , Picolinic Acids/chemistry , Protein Aggregates/drug effects , Structure-Activity Relationship , Tacrine/chemistry
18.
Nutrients ; 13(10)2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34684352

ABSTRACT

Magnesium (Mg) deficiency may affect bone metabolism by increasing osteoclasts, decreasing osteoblasts, promoting inflammation/oxidative stress, and result in subsequent bone loss. The objective of the present study was to identify the molecular mechanism underlying the bone protective effect of different forms of Mg (inorganic magnesium oxide (MgO) versus organic magnesium picolinate (MgPic) compound) in rats fed with a high-fat diet (HFD). Forty-two Wistar albino male rats were divided into six group (n = 7): (i) control, (ii) MgO, (iii) MgPic, (iv) HFD, (v) HFD + MgO, and (vi) HFD + MgPic. Bone mineral density (BMD) increased in the Mg supplemented groups, especially MgPic, as compared with the HFD group (p < 0.001). As compared with the HFD + MgO group, the HFD + MgPic group had higher bone P (p < 0.05) and Mg levels (p < 0.001). In addition, as compared to MgO, MgPic improved bone formation by increasing the levels of osteogenetic proteins (COL1A1 (p < 0.001), BMP2 (p < 0.001), Runx2 (p < 0.001), OPG (p < 0.05), and OCN (p < 0.001), IGF-1 (p < 0.001)), while prevented bone resorption by reducing the levels of RANK and RANKL (p < 0.001). In conclusion, the present data showed that the MgPic could increase osteogenic protein levels in bone more effectively than MgO, prevent bone loss, and contribute to bone formation in HFD rats.


Subject(s)
Bone Morphogenetic Protein 2/metabolism , Core Binding Factor Alpha 1 Subunit/metabolism , Feeding Behavior , Osteogenesis , Osteoprotegerin/metabolism , Picolinic Acids/pharmacology , RANK Ligand/metabolism , Receptor Activator of Nuclear Factor-kappa B/metabolism , Animals , Bone Density/drug effects , Bone and Bones/metabolism , Diet, High-Fat , Elements , Male , Osteogenesis/drug effects , Rats, Wistar , Signal Transduction/drug effects
19.
Chem Commun (Camb) ; 57(87): 11541-11544, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34664563

ABSTRACT

In this study, we introduced four "claw-like" units of dipicolylamine (DPA) to a tetraphenylethylene (TPE)-based organic molecular cage (DPA-TPE-Cage). Coordinated with Zn2+ ions, the obtained ZnDPA-TPE-Cage exhibited aggregation induced emission (AIE) effects and oxidase-like properties, which endowed it with the ability to selectively image and kill Gram-positive bacteria S. aureus efficiently.


Subject(s)
Anti-Bacterial Agents/pharmacology , Fluorescent Dyes/pharmacology , Nanoparticles/chemistry , Amines/chemistry , Amines/pharmacology , Amines/radiation effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/radiation effects , Catalysis/radiation effects , Cell Membrane/drug effects , Fluorescent Dyes/chemistry , Fluorescent Dyes/radiation effects , Light , Microbial Sensitivity Tests , Nanoparticles/radiation effects , Picolinic Acids/chemistry , Picolinic Acids/pharmacology , Picolinic Acids/radiation effects , Reactive Oxygen Species/metabolism , Staphylococcus aureus/drug effects , Stilbenes/chemistry , Stilbenes/pharmacology , Stilbenes/radiation effects , Zinc/chemistry , Zinc/pharmacology , Zinc/radiation effects
20.
Nucleic Acids Res ; 49(19): 11323-11336, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34614161

ABSTRACT

RNA guanine quadruplexes (rG4) assume important roles in post-transcriptional regulations of gene expression, which are often modulated by rG4-binding proteins. Hence, understanding the biological functions of rG4s requires the identification and functional characterizations of rG4-recognition proteins. By employing a bioinformatic approach based on the analysis of overlap between peaks obtained from rG4-seq analysis and those detected in >230 eCLIP-seq datasets for RNA-binding proteins generated from the ENCODE project, we identified a large number of candidate rG4-binding proteins. We showed that one of these proteins, G3BP1, is able to bind directly to rG4 structures with high affinity and selectivity, where the binding entails its C-terminal RGG domain and is further enhanced by its RRM domain. Additionally, our seCLIP-Seq data revealed that pyridostatin, a small-molecule rG4 ligand, could displace G3BP1 from mRNA in cells, with the most pronounced effects being observed for the 3'-untranslated regions (3'-UTR) of mRNAs. Moreover, luciferase reporter assay results showed that G3BP1 positively regulates mRNA stability through its binding with rG4 structures. Together, we identified a number of candidate rG4-binding proteins and validated that G3BP1 can bind directly with rG4 structures and regulate the stabilities of mRNAs.


Subject(s)
3' Untranslated Regions , Aminoquinolines/pharmacology , DNA Helicases/genetics , G-Quadruplexes , Picolinic Acids/pharmacology , Poly-ADP-Ribose Binding Proteins/genetics , RNA Helicases/genetics , RNA Recognition Motif Proteins/genetics , Aminoquinolines/chemistry , Base Sequence , Cloning, Molecular , Computational Biology/methods , DNA Helicases/metabolism , Datasets as Topic , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genes, Reporter , Genetic Vectors/chemistry , Genetic Vectors/metabolism , HEK293 Cells , HeLa Cells , Humans , Ligands , Luciferases/genetics , Luciferases/metabolism , Picolinic Acids/chemistry , Poly-ADP-Ribose Binding Proteins/metabolism , Protein Binding , RNA Helicases/metabolism , RNA Recognition Motif Proteins/metabolism , RNA Stability , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...