Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 865
Filter
1.
Microb Pathog ; 191: 106673, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705218

ABSTRACT

The Seneca Valley virus (SVV) is a recently discovered porcine pathogen that causes vesicular diseases and poses a significant threat to the pig industry worldwide. Erythropoietin-producing hepatoma receptor A2 (EphA2) is involved in the activation of the AKT/mTOR signaling pathway, which is involved in autophagy. However, the regulatory relationship between SVV and EphA2 remains unclear. In this study, we demonstrated that EphA2 is proteolysed in SVV-infected BHK-21 and PK-15 cells. Overexpression of EphA2 significantly inhibited SVV replication, as evidenced by decreased viral protein expression, viral titers, and viral load, suggesting an antiviral function of EphA2. Subsequently, viral proteins involved in the proteolysis of EphA2 were screened, and the SVV 3C protease (3Cpro) was found to be responsible for this cleavage, depending on its protease activity. However, the protease activity sites of 3Cpro did not affect the interactions between 3Cpro and EphA2. We further determined that EphA2 overexpression inhibited autophagy by activating the mTOR pathway and suppressing SVV replication. Taken together, these results indicate that SVV 3Cpro targets EphA2 for cleavage to impair its EphA2-mediated antiviral activity and emphasize the potential of the molecular interactions involved in developing antiviral strategies against SVV infection.


Subject(s)
3C Viral Proteases , Autophagy , Picornaviridae , Receptor, EphA2 , Signal Transduction , TOR Serine-Threonine Kinases , Viral Proteins , Virus Replication , Animals , Receptor, EphA2/metabolism , Receptor, EphA2/genetics , TOR Serine-Threonine Kinases/metabolism , Cell Line , Swine , Picornaviridae/physiology , Picornaviridae/genetics , 3C Viral Proteases/metabolism , Viral Proteins/metabolism , Viral Proteins/genetics , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/genetics , Proteolysis , Cricetinae , Host-Pathogen Interactions , Viral Load
2.
Front Immunol ; 15: 1365521, 2024.
Article in English | MEDLINE | ID: mdl-38629064

ABSTRACT

3D polymerase, also known as RNA-dependent RNA polymerase, is encoded by all known picornaviruses, and their structures are highly conserved. In the process of picornavirus replication, 3D polymerase facilitates the assembly of replication complexes and directly catalyzes the synthesis of viral RNA. The nuclear localization signal carried by picornavirus 3D polymerase, combined with its ability to interact with other viral proteins, viral RNA and cellular proteins, indicate that its noncatalytic role is equally important in viral infections. Recent studies have shown that 3D polymerase has multiple effects on host cell biological functions, including inducing cell cycle arrest, regulating host cell translation, inducing autophagy, evading immune responses, and triggering inflammasome formation. Thus, 3D polymerase would be a very valuable target for the development of antiviral therapies. This review summarizes current studies on the structure of 3D polymerase and its regulation of host cell responses, thereby improving the understanding of picornavirus-mediated pathogenesis caused by 3D polymerase.


Subject(s)
Picornaviridae Infections , Picornaviridae , Humans , Virus Replication/genetics , Picornaviridae/genetics , Viral Proteins/genetics , RNA, Viral/genetics
3.
Vet Res ; 55(1): 43, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38581048

ABSTRACT

Senecavirus A (SVA) causes outbreaks of vesicular disease in pigs, which imposes a considerable economic burden on the pork industry. As current SVA prevention measures are ineffective, new strategies for controlling SVA are urgently needed. Circular (circ)RNA is a newly characterized class of widely expressed, endogenous regulatory RNAs, which have been implicated in viral infection; however, whether circRNAs regulate SVA infection remains unknown. To investigate the influence of circRNAs on SVA infection in porcine kidney 15 (PK-15) cells, RNA sequencing technology was used to analyze the circRNA expression profiles of SVA-infected and uninfected PK-15 cells, the interactions between circRNAs, miRNAs, and mRNAs potentially implicated in SVA infection were predicted using bioinformatics tools. The prediction accuracy was verified using quantitative real-time (qRT)-PCR, Western blotting, as well as dual-luciferase reporter and RNA pull-down assays. The results showed that 67 circRNAs were differentially expressed as a result of SVA infection. We found that circ_8521 was significantly upregulated in SVA-infected PK-15 cells and promoted SVA infection. circ_8521 interacted with miR-324. miR-324 bound to LC3A mRNA which inhibited the expression of LC3A. Knockdown of LC3A inhibited SVA infection. However, circ_8521 promoted the expression of LC3A by binding to miR-324, thereby promoting SVA infection. We demonstrated that circ_8521 functioned as an endogenous miR-324 sponge to sequester miR-324, which promoted LC3A expression and ultimately SVA infection.


Subject(s)
MicroRNAs , Picornaviridae , Humans , Animals , Swine , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , Picornaviridae/genetics , RNA, Messenger/metabolism
4.
J Virol Methods ; 327: 114932, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38582378

ABSTRACT

Senecavirus A (SVA) is a newly identified picornavirus associated with swine vesicular disease and neonatal mortality. The development of an SVA incorporating an exogenous reporter gene provides a powerful tool for viral research. In this study, we successfully constructed a recombinant SVA expressing Gaussia Luciferase (Gluc), termed rSVA-Gluc. The growth kinetics of rSVA-Gluc in BHK-21 cells were found to be comparable to those of the parental virus, and Gluc activity paralleled the virus growth curve. Genetic analysis revealed stable inheritance of the inserted reporter protein genes for at least six generations. We evaluated the utility of rSVA-Gluc in antiviral drug screening, and the results highlighted its potential as an effective tool for such purposes against SVA. DATA AVAILABILITY STATEMENT: The data that support the findings of this study are available on request from the corresponding author.


Subject(s)
Antiviral Agents , Genes, Reporter , Luciferases , Picornaviridae , Picornaviridae/genetics , Picornaviridae/drug effects , Animals , Antiviral Agents/pharmacology , Cell Line , Luciferases/genetics , Luciferases/metabolism , Cricetinae , Drug Evaluation, Preclinical/methods
5.
Microb Pathog ; 191: 106661, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657711

ABSTRACT

Senecavirus A (SVA) belongs to the genus Senecavirus in the family Picornaviridae. This virus possesses a positive-sense, single-stranded RNA genome, approximately 7200 nt in length, composed of a single 5' untranslated region, encoding region and 3' untranslated region. In this study, a recombinant SVA tagged with enhanced green fluorescent protein (eGFP) sequence, rSVA-eGFP, was rescued from its cDNA clone using reverse genetics. The passage-5 (P5) rSVA-eGFP was totally subjected to 55 rounds of consecutive fluorescent plaque-to-fluorescent plaque (FP-FP) transfers, and one extra common passaging in vitro. The P61 viral stock was analyzed by next-generation sequencing. The result showed ten single-nucleotide mutations (SNMs) in the rSVA-eGFP genome, including nine transitions and only one transversion. The P61 progeny still showed a complete eGFP sequence, indicating no occurrence of copy-choice recombination within the eGFP region during serial FP-FP transfers. In other words, this progeny was genetically deficient in the recombination of eGFP sequence (RES), namely, an RES-deficient strain. Out of ten SNMs, three were missense mutations, leading to single-amino acid mutations (SAAMs): F15V in L protein, A74T in VP2, and E53R in 3D protein. The E53R was predicted to be spatially adjacent to the RNA channel of 3D protein, perhaps involved in the emergence of RES-deficient strain. In conclusion, this study uncovered a global landscape of rSVA-eGFP genome after serial FP-FP transfers, and moreover shed light on a putative SAAM possibly related to the RES-deficient mechanism.


Subject(s)
Genome, Viral , Green Fluorescent Proteins , Picornaviridae , Green Fluorescent Proteins/genetics , Genome, Viral/genetics , Picornaviridae/genetics , Reverse Genetics/methods , RNA, Viral/genetics , High-Throughput Nucleotide Sequencing , Recombination, Genetic , Viral Plaque Assay
6.
Pharm. pract. (Granada, Internet) ; 22(1): 1-11, Ene-Mar, 2024.
Article in English | IBECS | ID: ibc-231359

ABSTRACT

Human rhinoviruses (HRVs) are associated with a wide spectrum of clinical manifestations, ranging from mild cold symptoms to more severe respiratory illnesses, significantly burdening global healthcare systems. At the molecular level, HRVs belong to the Picornaviridae family and are classified into three species: HRV-A, HRV-B, and HRV-C. Advances in genomic sequencing and phylogenetic analysis have revealed a remarkable genetic diversity within HRV species, with over 160 serotypes identified. This genetic variability contributes to the ability of HRVs to evade host immune responses and facilitates their continuous circulation in the population. This review provides an overview of the molecular and clinical aspects of HRV infections.(AU)


Subject(s)
Humans , Rhinovirus/genetics , Rhinovirus/classification , Respiratory Tract Diseases/drug therapy , Genome/genetics , Picornaviridae/genetics , Picornaviridae Infections/microbiology
7.
Infect Genet Evol ; 120: 105585, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38508364

ABSTRACT

In this study, a picornavirus and a nidovirus were identified from a single available nasopharyngeal swab (NPS) sample of a freshly deceased sheep, as the only vertebrate viruses found with viral metagenomics and next-generation sequencing methods. The sample was originated from a mixed feedlot farm in Hungary where sheep and cattle were held together but in separate stalls. Most of the sheep had respiratory signs (coughing and increased respiratory effort) at the time of sampling. Other NPS were not, but additional enteric samples were collected from sheep (n = 27) and cattle (n = 11) of the same farm at that time. The complete/nearly complete genomes of the identified viruses were determined using RT-PCR and Nanopore (MinION-Flonge) / Dye-terminator sequencing techniques. The results of detailed genomic and phylogenetic analyses indicate that the identified picornavirus most likely belongs to a type 4 genotype of species Bovine rhinitis B virus (BRBV-4, OR885914) of genus Aphthovirus, family Picornaviridae while the ovine nidovirus (OvNV, OR885915) - as a novel variant - could belong to the recently created Bovine nidovirus 1 (BoNV) species of genus Bostovirus, family Tobaniviridae. None of the identified viruses were detectable in the enteric samples using RT-PCR and generic screening primer pairs. Both viruses are well-known respiratory pathogens of cattle, but their presence was not demonstrated before in other animals, like sheep. Furthermore, neither BRBV-4 nor BoNVs were investigated in European cattle and/or sheep flocks, therefore it cannot be determined whether the presence of these viruses in sheep was a result of a single host species switch/spillover event or these viruses are circulating in not just cattle but sheep populations as well. Further studies required to investigate the spread of these viruses in Hungarian and European sheep and cattle populations and to identify their pathogenic potential in sheep.


Subject(s)
Phylogeny , Picornaviridae Infections , Picornaviridae , Sheep Diseases , Animals , Hungary , Picornaviridae/genetics , Picornaviridae/isolation & purification , Picornaviridae/classification , Sheep , Sheep Diseases/virology , Cattle , Picornaviridae Infections/veterinary , Picornaviridae Infections/virology , Coinfection/virology , Coinfection/veterinary , Genome, Viral , Nidovirales/genetics , Nidovirales/isolation & purification , Nidovirales/classification , Nidovirales Infections/veterinary , Nidovirales Infections/virology
8.
Infect Genet Evol ; 118: 105550, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38199505

ABSTRACT

We describe four complete coding sequence (cCDS) of canine picornavirus from wastewater in Arizona, USA detected by coupling cCDS single-contig (∼7.5 kb) reverse-transcriptase polymerase chain reaction (RT-PCR) and low-cost long-read high-throughput sequencing. For viruses of medical/veterinary importance, this workflow expands possibilities of wastewater based genomic epidemiology for exploring virus evolutionary dynamics especially in low-resource settings.


Subject(s)
Picornaviridae Infections , Picornaviridae , Animals , Dogs , Reverse Transcriptase Polymerase Chain Reaction , Wastewater , Picornaviridae/genetics , Phylogeny
9.
Virus Res ; 339: 199269, 2024 01 02.
Article in English | MEDLINE | ID: mdl-37952688

ABSTRACT

Cis-acting replication element (cre) is required for generating a diuridylylated VPg that acts as a protein primer to initiate the synthesis of picornaviral genome or antigenome. The cre is a stem-loop structure, dependent of different picornaviruses, located in different genomic regions. The AAACA motif is highly conserved in the apical loop of cre among several picornaviral members, and plays a key role in synthesizing a diuridylylated VPg. We previously demonstrated that senecavirus A (SVA) also possesses an AAACA-containing cre in its genome. Its natural cre (Nc), if functionally inactivated through site-directed mutagenesis (SDM), would confer a lethal impact on virus recovery, whereas an artificial cre (Ac) is able to compensate for the Nc-caused functional inactivation, leading to successful rescue of a viable SVA. In this study, we constructed a set of SVA cDNA clones. Each of them contained one functionally inactivated Nc, and an extra SDM-modified Ac. Every cDNA clone had a unique SDM-modified Ac. The test of virus recovery showed that only two SVAs were rescued from their individual cDNA clones. They were AAACU- and AAACC-containing Ac genotypes. Both viruses were serially passaged in vitro for analyzing their viral characteristics. The results showed that both AAACU and AAACC genotypes were genetically stable during twenty passages, implying when the Nc was functionally inactivated, SVA could still use an AAACH-containing Ac to complete its own replication cycle.


Subject(s)
Picornaviridae , RNA, Viral , Humans , Base Sequence , RNA, Viral/genetics , DNA, Complementary , HeLa Cells , Nucleic Acid Conformation , Picornaviridae/genetics , Virus Replication/genetics
10.
Viruses ; 15(12)2023 12 12.
Article in English | MEDLINE | ID: mdl-38140654

ABSTRACT

The Picornaviridae family comprises a large group of non-enveloped viruses with enormous impact on human and animal health. The picornaviral genome contains one open reading frame encoding a single polyprotein that can be processed by viral proteases. The picornaviral 3C proteases share similar three-dimensional structures and play a significant role in the viral life cycle and virus-host interactions. Picornaviral 3C proteins also have conserved RNA-binding activities that contribute to the assembly of the viral RNA replication complex. The 3C protease is important for regulating the host cell response through the cleavage of critical host cell proteins, acting to selectively 'hijack' host factors involved in gene expression, promoting picornavirus replication, and inactivating key factors in innate immunity signaling pathways. The protease and RNA-binding activities of 3C are involved in viral polyprotein processing and the initiation of viral RNA synthesis. Most importantly, 3C modifies critical molecules in host organelles and maintains virus infection by subtly subverting host cell death through the blocking of transcription, translation, and nucleocytoplasmic trafficking to modulate cell physiology for viral replication. Here, we discuss the molecular mechanisms through which 3C mediates physiological processes involved in promoting virus infection, replication, and release.


Subject(s)
Picornaviridae , Virus Diseases , Animals , Humans , Proteolysis , Cysteine Endopeptidases/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Picornaviridae/genetics , RNA, Viral/metabolism , Polyproteins/metabolism , Peptide Hydrolases/metabolism , Virus Replication
11.
Virol J ; 20(1): 302, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38115118

ABSTRACT

Parechovirus A (PeV-A, Parechovirus, Picornaviridae) are human pathogens associated with mild to severe gastrointestinal and respiratory diseases in young children. While several studies have investigated the association of PeV-A with human disease, little is known about its epidemiology or detection in Latin America. Between the years 2014 and 2015, a total of 200 samples were collected from Panamanian pediatric patients aged < 16 years old exhibiting symptoms associated with respiratory (n = 64), gastrointestinal (n = 68), or neurological (n = 68) diseases. These samples were gathered from patients who had previously received negative diagnoses for the main respiratory viruses, rotavirus, and neurological viruses like herpes virus, enterovirus, and cytomegalovirus. The presence of PeV-A was analyzed by real time RT-PCR.Eight positive PeV-A infections (4.0%, 95% CI: 1.7 to 7.7) were detected: two in respiratory samples (3.0%, 95% CI: 0.3 to 10.8), five in gastrointestinal samples (7.3%, 95% CI: 2.4 to 16.3), and one in cerebrospinal fluid (1.5%, 95% CI: 1.4 to 7.9). The study provides evidence of PeV-A circulation in Panama and the data collectively, remarked on the importance of considering PeV-A in the Panamanian pediatric diagnostic landscape, especially when conventional testing for more common viruses yields negative results.


Subject(s)
Enterovirus Infections , Enterovirus , Parechovirus , Picornaviridae Infections , Picornaviridae , Humans , Child , Infant , Child, Preschool , Adolescent , Parechovirus/genetics , Picornaviridae Infections/diagnosis , Picornaviridae Infections/epidemiology , Enterovirus Infections/diagnosis , Enterovirus Infections/epidemiology , Picornaviridae/genetics
12.
J Infect Dis ; 228(Suppl 6): S427-S445, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37849401

ABSTRACT

Picornaviruses are nonenveloped particles with a single-stranded RNA genome of positive polarity. This virus family includes poliovirus, hepatitis A virus, rhinoviruses, and Coxsackieviruses. Picornaviruses are common human pathogens, and infection can result in a spectrum of serious illnesses, including acute flaccid myelitis, severe respiratory complications, and hand-foot-mouth disease. Despite research on poliovirus establishing many fundamental principles of RNA virus biology and the first transgenic animal model of disease for infection by a human virus, picornaviruses are understudied. Existing knowledge gaps include, identification of molecules required for virus entry, understanding cellular and humoral immune responses elicited during virus infection, and establishment of immune-competent animal models of virus pathogenesis. Such knowledge is necessary for development of pan-picornavirus countermeasures. Defining enterovirus A71 and D68, human rhinovirus C, and echoviruses 29 as prototype pathogens of this virus family may provide insight into picornavirus biology needed to establish public health strategies necessary for pandemic preparedness.


Subject(s)
Enterovirus Infections , Picornaviridae , Poliovirus , Animals , Humans , Picornaviridae/genetics , Poliovirus/physiology , Rhinovirus , Enterovirus B, Human/physiology
13.
J Med Virol ; 95(10): e29159, 2023 10.
Article in English | MEDLINE | ID: mdl-37805831

ABSTRACT

Saffold virus (SAFV) and human cosavirus (HCoSV) are emerging viruses of the Picornaviridae family. They have been shown to associate with gastrointestinal infection and more recently these viruses have also been demonstrated to associate with other clinical infections such as the respiratory tract, cardiovascular system, and the cerebral ventricular system. In this study, 2459 stool specimens collected from pediatric patients admitted to hospitals with acute gastroenteritis from January 2017 to December 2022, were screened for SAFV and HCoSV utilizing reverse transcription-polymerase chain reaction. Positive samples were then characterized into genotypes via nucleotide sequencing and bioinformatic analysis. Of the 2459 samples, 21 and 39 were positive for SAFV (0.9%) and HCoSV (1.6%), respectively. Three genotypes of SAFV were identified-SAFV-1 (38%), SAFV-2 (24%), and SAFV-3 (38%). Two genetic groups of HCoSV were identified-HCoSV-C (97%) and HCoSV-A (3%), demonstrating a large increase of HCoSV-C as compared to those reported previously from the same geographical region in Thailand. This study provides the prevalence of SAFV and HCoSV genotypes in Chiang Mai, Thailand during a period of 6 years from 2017 to 2022.


Subject(s)
Gastroenteritis , Picornaviridae Infections , Picornaviridae , Child , Humans , Picornaviridae Infections/epidemiology , Thailand/epidemiology , Feces , Phylogeny , Picornaviridae/genetics , Gastroenteritis/epidemiology , Hospitals
14.
Viruses ; 15(10)2023 10 09.
Article in English | MEDLINE | ID: mdl-37896845

ABSTRACT

The black-necked crane is the only species of crane that lives in the high-altitude region of the Tibet Plateau. At present, there is little research on viral diseases of the black-necked crane (Grus nigricollis). In this study, a viral metagenomic approach was employed to investigate the fecal virome of black-necked cranes in Saga County, Shigatse City, Tibet, China. The identified virus families carried by black-necked cranes mainly include Genomoviridae, Parvoviridae, and Picornaviridae. The percentages of sequence reads belonging to these three virus families were 1.6%, 3.1%, and 93.7%, respectively. Among them, one genome was characterized as a novel species in the genus Grusopivirus of the family Picornaviridae, four new parvovirus genomes were obtained and classified into four different novel species within the genus Chaphamaparvovirus of the subfamily Hamaparvovirinae, and four novel genomovirus genomes were also acquired and identified as members of three different species, including Gemykroznavirus haeme1, Gemycircularvirus ptero6, and Gemycircularvirus ptero10. All of these viruses were firstly detected in fecal samples of black-necked cranes. This study provides valuable information for understanding the viral community composition in the digestive tract of black-necked cranes in Tibet, which can be used for monitoring, preventing, and treating potential viral diseases in black-necked cranes.


Subject(s)
Picornaviridae , Virus Diseases , Viruses , Humans , Phylogeny , Viruses/genetics , Metagenome , Feces , Virus Diseases/genetics , Picornaviridae/genetics
15.
Arch Virol ; 168(10): 256, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37737963

ABSTRACT

Senecavirus A (SVA) can cause a vesicular disease in swine. It is a positive-strand RNA virus belonging to the genus Senecavirus in the family Picornaviridae. Positive-strand RNA viruses possess positive-sense, single-stranded genomes whose untranslated regions (UTRs) have been reported to contain cis-acting RNA elements. In the present study, a total of 100 SVA isolates were comparatively analyzed at the genome level. A highly conserved fragment (HCF) was found to be located in the 3D sequence and to be close to the 3' UTR. The HCF was computationally predicted to form a stem-loop structure. Eight synonymous mutations can individually disrupt the formation of a single base pair within the stem region. We found that SVA itself was able to tolerate each of these mutations alone, as evidenced by the ability to rescue all eight single-site mutants from their individual cDNA clones, and all of them were genetically stable during serial passaging. However, the replication-competent SVA could not be rescued from another cDNA clone containing all eight mutations. The failure to recover SVA might be attributed to disruption of the predicted stem-loop structure, whereas introduction of a wild-type HCF into the cDNA clone with eight mutations still had no effect on virus recovery. These results suggest that the putative stem-loop structure at the 3' end of the 3D sequence is a cis-acting RNA element that is required for SVA growth.


Subject(s)
Picornaviridae , Animals , Swine , DNA, Complementary , Picornaviridae/genetics , Positive-Strand RNA Viruses , 3' Untranslated Regions/genetics , Conserved Sequence
16.
Biomed Environ Sci ; 36(7): 595-603, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37533383

ABSTRACT

Objective: To improve the understanding of the virome and bacterial microbiome in the wildlife rescue station of Poyang Lake, China. Methods: Ten smear samples were collected in March 2019. Metagenomic sequencing was performed to delineate bacterial and viral diversity. Taxonomic analysis was performed using the Kraken2 and Bracken methods. A maximum-likelihood tree was constructed based on the RNA-dependent RNA polymerase (RdRp) region of picornavirus. Results: We identified 363 bacterial and 6 viral families. A significant difference in microbial and viral abundance was found between samples S01-S09 and S10. In S01-S09, members of Flavobacteriia and Gammaproteobacteria were the most prevalent, while in S10, the most prevalent bacteria class was Actinomycetia. Among S01-S09, members of Myoviridae and Herelleviridae were the most prevalent, while the dominant virus family of S10 was Picornaviridae. The full genome of the pigeon mesivirus-like virus (NC-BM-233) was recovered from S10 and contained an open reading frame of 8,124 nt. It showed the best hit to the pigeon mesivirus 2 polyprotein, with 84.10% amino acid identity. Phylogenetic analysis showed that RdRp clustered into Megrivirus B. Conclusion: This study provides an initial assessment of the bacteria and viruses in the cage-smeared samples, broadens our knowledge of viral and bacterial diversity, and is a way to discover potential pathogens in wild birds.


Subject(s)
Picornaviridae , Viruses , Animals , Animals, Wild/genetics , Lakes , Phylogeny , Picornaviridae/genetics , Viruses/genetics , China , Metagenomics , Genome, Viral
17.
RNA Biol ; 20(1): 548-562, 2023 01.
Article in English | MEDLINE | ID: mdl-37534989

ABSTRACT

The genomic arrangement of most picornavirus of the Picornaviridae family shares a similar monocistronic genomic pattern and a defining organizational feature. A defining feature of picornavirus is the presence of evolutionarily conserved and highly-structured RNA elements in untranslated regions (UTRs) at the genome' 5'and 3' ends, essential for viral replication and translation. Given the diversity and complexity of RNA structure and the limitations of molecular biology techniques, the functional characterization and biological significance of UTRs remain to be fully elucidated, especially for 5' UTR. Here, we summarize the current knowledge of the 5' UTR of picornavirus. This review focuses on the structural characterization and the biological function of the RNA secondary and tertiary structures in the 5' UTR of picornavirus. Understanding the role of the 5' UTR of picornavirus can provide a deep insight into the viral replication cycle and pathogenic mechanisms.


Subject(s)
Picornaviridae , Ribosomes , 5' Untranslated Regions , Ribosomes/genetics , Nucleic Acid Conformation , Picornaviridae/genetics , Picornaviridae/chemistry , RNA, Viral/genetics , RNA, Viral/chemistry , 3' Untranslated Regions
18.
Virol J ; 20(1): 175, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37550694

ABSTRACT

BACKGROUND: Saffold virus (SAFV), which belongs to the genus Cardiovirus of the family Picornaviridae, is associated with acute respiratory or gastrointestinal illnesses in children; it is also suspected to cause severe diseases, such as acute flaccid paralysis and aseptic meningitis. However, the understanding of the mechanism of its pathogenicity is still limited due to the many unknowns about its lifecycle; for example, the cellular receptor for its infection remains to be determined. A system to monitor SAFV infection in vitro and in vivo is required in order to accelerate research on SAFV. RESULTS: We generated a recombinant SAFV expressing green fluorescent protein (GFP) or UnaG, a novel fluorescent protein derived from Japanese eel. HeLa cells infected by either GFP or UnaG-expressing SAFV showed a bright green fluorescent signal, enabling convenient monitoring of SAFV infection. However, the expression of GFP but not UnaG was quickly lost during virus passaging due to the difference in genetic stability in the SAFV virus genome; the UnaG gene was stably maintained in the virus genome after at least five passages. CONCLUSIONS: SAFV infection of cultured cells can easily be monitored using UnaG-expressing SAFV, which is superior to GFP in terms of genetic stability in the virus genome. This virus could be a useful tool for SAFV research, such as comparing the susceptibility of various cells to SAFV infection and evaluating the effects of antivirals on SAFV infection in high-throughput screening.


Subject(s)
Cardiovirus , Picornaviridae , Virus Diseases , Child , Humans , HeLa Cells , Cardiovirus/genetics , Picornaviridae/genetics , Genome, Viral , Virus Diseases/genetics , Green Fluorescent Proteins/genetics
19.
Infect Genet Evol ; 113: 105488, 2023 09.
Article in English | MEDLINE | ID: mdl-37558190

ABSTRACT

Over the past 20 years, the Seneca Valley virus (SVV) has emerged in various countries and regions around the world. Infected pigs display symptoms similar to foot-and-mouth disease and other vesicular diseases, causing severe economic losses to affected countries. In recent years, the number of SVV infections has been increasing in Brazil, China, and the United States. In this study, we comprehensively analyzed SVV genomic sequence data from the perspectives of evolutionary dynamics, phylogeography, and codon usage bias. We aimed to gain further insights into SVV's genetic diversity, spatiotemporal distribution patterns, and evolutionary adaptations. Phylogenetic analysis revealed that SVV has evolved into eight distinct lineages. Based on the results of phylogeographic analysis, it is speculated that the United States might have been the source of SVV, from where it subsequently spread to different countries and regions. Moreover, our analysis of positive selection sites in SVV capsid proteins suggests their potential importance in the process of receptor recognition. Finally, codon preference analysis indicates that natural selection has been a primary evolutionary driver influencing SVV codon usage bias. In conclusion, our in-depth investigation into SVV's origin, dissemination, evolution, and adaptation emphasizes the significance of SVV surveillance and control measures.


Subject(s)
Picornaviridae Infections , Picornaviridae , Swine Diseases , Animals , Swine , Phylogeny , Picornaviridae/genetics
20.
J Gen Virol ; 104(7)2023 07.
Article in English | MEDLINE | ID: mdl-37436428

ABSTRACT

Foot-and-mouth-disease virus (FMDV), the aetiological agent responsible for foot-and-mouth disease (FMD), is a member of the genus Aphthovirus within the family Picornavirus. In common with all picornaviruses, replication of the single-stranded positive-sense RNA genome involves synthesis of a negative-sense complementary strand that serves as a template for the synthesis of multiple positive-sense progeny strands. We have previously employed FMDV replicons to examine viral RNA and protein elements essential to replication, but the factors affecting differential strand production remain unknown. Replicon-based systems require transfection of high levels of RNA, which can overload sensitive techniques such as quantitative PCR, preventing discrimination of specific strands. Here, we describe a method in which replicating RNA is labelled in vivo with 5-ethynyl uridine. The modified base is then linked to a biotin tag using click chemistry, facilitating purification of newly synthesised viral genomes or anti-genomes from input RNA. This selected RNA can then be amplified by strand-specific quantitative PCR, thus enabling investigation of the consequences of defined mutations on the relative synthesis of negative-sense intermediate and positive-strand progeny RNAs. We apply this new approach to investigate the consequence of mutation of viral cis-acting replication elements and provide direct evidence for their roles in negative-strand synthesis.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Picornaviridae , Animals , Foot-and-Mouth Disease Virus/genetics , Foot-and-Mouth Disease Virus/metabolism , Virus Replication/genetics , Picornaviridae/genetics , RNA, Viral/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...